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Abstract— Subspace identification can be used to obtain
models of piecewise linear state-space systems for which the
switching is known. The models should not switch faster than
the block size of the Hankel matrices used. The nonconsecutive
parts of the input and output data that correspond to one of
the local linear systems can be used to obtain the system
matrices of that system up to a linear state transformation.
The linear systems obtained in this way cannot be combined
directly, because the state transformation is different for
each of the local linear systems. The transitions between the
local linear systems can be used to transform the models
to the same state space basis. We show that the necessary
transformations can be obtained from the data, if the data
contains a sufficiently large number of transitions for which
the states at the transition are linearly independent. An
algorithm to determine the transformations is presented, and
the sensitivity with respect to noise is investigated using a
Monte-Carlo simulation.

I. INTRODUCTION

Hybrid systems form an important class of dynamical

systems for which analysis, verification and control tech-

niques have been widely studied [1], [2], [3]. However,

the identification of hybrid models from measured data is

still in its infancy. The identification methods proposed

in the literature focus on piecewise affine (PWA) and

piecewise linear (PWL) systems. PWA and PWL systems

form important subclasses of hybrid systems [4], [5], [6],

[7], [8]. PWL systems were introduced by Sontag [9] as

unifying models for describing interconnections between

automata and linear systems. The few identification studies

that are available focus on models in input-output form

[10], [11], [12], [13], [14], [15], [16], expect for [17] which

considers autonomous state-space systems. Although input-

output models can be used to describe dynamical systems,

they are not suitable for most dynamic analysis and control

methods. Indeed, many existing hybrid and piecewise linear

analysis and control methods are based on state-space

models. Furthermore, state-space models are more suitable

for dealing with multivariable inputs and outputs.

In this paper we present a subspace identification method

for PWL systems with known switching. It has been argued

that the identification of PWA and PWL systems for which

the switching is known can be tackled using standard

techniques [15]. However, we would like to point out that

such a statement holds true for systems in input/output form,

but not for systems in state-space form. The identification of

state-space models provides an additional challenge of find-

ing the unknown states of the system. Traditional prediction
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error models for state-space identification lead to nonlinear

nonconvex optimization problems. Subspace identification

techniques avoid such problems by utilizing techniques

from linear algebra. At this time, subspace identification

methods exist for linear time-invariant [18], [19], linear

parameter-varying [20] and certain nonlinear systems (an

overview is given in [21]).

A PWL system can be described by a set of state-space

equations

x(k + 1) = Aix(k) + Biu(k), (1)

y(k) = Cix(k) + Diu(k), (2)

for [
x(k)
u(k)

]
∈ Pi,

where u(k) ∈ R
m is the input, y(k) ∈ R

� the output and

x(k) ∈ R
n the state; and where Pi, i = 1, 2, . . . ,M is a

partition such that

M⋃
i=1

Pi = R
n × R

m, and Pi ∩ Pj = ∅ for i �= j.

The local linear state-space models described by

(Ai, Bi, Ci,Di), i = 1, 2, . . . ,M are switched according

to the regions Pi.

In this paper we assume that for each time-instant it is

known in which partition the system operates: the switching

is known. With this assumption we can rewrite the system

description in the following form

x(k + 1) =

M∑
i=1

pi(k)
(
Aix(k) + Biu(k)

)
, (3)

y(k) =

M∑
i=1

pi(k)
(
Cix(k) + Diu(k)

)
, (4)

where pi(k) is the switching signal which equals one if

model i is active at time instant k. These switching signals

satisfy for all k:

pi(k) ∈ {0, 1} and

M∑
i=1

pi(k) = 1.

The goal is to determine the system matrices

(Ai, Bi, Ci,Di) of the PWL system (3)–(4) from a finite

number of measurements of the input u(k), output y(k)
and switching signals pi(k). Note that there does not exist

a unique set of matrices (Ai, Bi, Ci,Di), i = 1, 2, . . . ,M
that are compatible with the measurements of u(k), y(k)
and pi(k): for each invertible matrix T the set of matrices

(T−1AiT, T−1Bi, CiT,Di), i = 1, 2, . . . ,M is compatible
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with the measurements. In fact this corresponds to a linear

state transformation applied to the system (3)–(4). It is

important to realize that this state transformation must be

the same for all local state-space models. Without any

other information of the system than the measurements

mentioned above, we can only determine the system up to

a linear state transformation. This is usually not considered

to be a problem.

In the identification problem it is assumed that the noise

is additive to the output:

y(k) =
M∑
i=1

pi(k)
(
Cix(k) + Diu(k) + vi(k)

)
,

where vi(k) is a zero-mean sequence. The variance of

the noise can be different for each local model. It is also

assumed that all the local models are observable.

This paper is organized as follows. Section II describes

the use of subspace identification to obtain the local models

up to a linear state transformation. This state transformation

is different for each local model. Section III discusses how

the transitions between the models can be used to transform

all local models to the same state basis. A simulation

example is provided in Section IV.

II. IDENTIFICATION OF LOCAL MODELS

In this section we show that if the switching signals pi(k)
are known the local models of the system (3)–(4) can be

obtained up to a linear state transformation using subspace

identification techniques.

For ease of notation we define the delay vectors:

ys(k) =
[
y(k)T y(k + 1)T . . . y(k + s − 1)T

]T
,

us(k) =
[
u(k)T u(k + 1)T . . . u(k + s − 1)T

]T
,

v(i)
s (k) =

[
vi(k)T vi(k + 1)T . . . vi(k + s − 1)T

]T
.

If the system does not switch during the time interval [k, k+
s− 1] and local model i is active during this interval, then

the delay vectors can be related as follows

ys(k) = Γ(i)
s x(k) + H(i)

s us(k) + v(i)
s (k), (5)

where

Γ(i)
s =

⎡
⎢⎢⎢⎢⎢⎣

Ci

CiAi

CiA
2
i

...

CiA
s−1
i

⎤
⎥⎥⎥⎥⎥⎦ ,

and

H(i)
s =

⎡
⎢⎢⎢⎢⎢⎣

Di 0 0 · · · 0
CiBi Di 0 · · · 0

CiAiBi CiBi Di 0
...

. . .
. . .

CiA
s−2
i Bi CiA

s−3
i Bi · · · CiBi Di

⎤
⎥⎥⎥⎥⎥⎦ .

(6)

The delay vectors can be used to build Hankel matrices,

commonly used in subspace identification:

Y1,s,N =
[
ys(1) ys(2) . . . ys(N)

]
.

The matrix U1,s,N can be constructed in a similar way.

Since the system (3)–(4) regularly switches from one local

model to the other, only some columns of the Hankel ma-

trices Y1,s,N and U1,s,N satisfy equation (5). To be precise:

only the columns of which the rows span a time interval in

which the system does not switch satisfy equation (5). The

other columns contain data that correspond to more than

one model; we will call these columns mixed columns. The

structure of a Hankel matrix around a transition (switch) is

illustrated in Figure 1.

We construct the local Hankel matrix Y
(i)
1,s,N for the

ith model by taking all the columns from Y1,s,N that

correspond to the ith model, such that Y
(i)
1,s,N does not

contain any mixed columns. The local Hankel matrices

U
(i)
1,s,N and V

(i)
1,s,N can be constructed in a similar way. For

the ith model we can formulate a local data equation:

Y
(i)
1,s,N = Γ(i)

s X
(i)
1,N + H(i)

s U
(i)
1,s,N + V

(i)
1,s,N , (7)

where X
(i)
1,N contains the states that correspond to the

columns of Y
(i)
1,s,N as in equation (5). To be able to use

subspace identification, the PWL system should not switch

faster than the block size s > n of the Hankel matrices: if

it does switch that fast all columns of the Hankel matrices

will be mixed columns and the local Hankel matrices Y
(i)
1,s,N

and U
(i)
1,s,N will be empty.

The local data equation (7) allows us to use the MOESP

type of subspace algorithms [19], [22] to identify each local

model up to a linear state transformation. Below, we will

discuss the use of the PI-MOESP method [22] which can

deal with nonwhite noises vi(k). First, the matrices Ai

and Ci will be computed from an estimate of the matrix

Γ
(i)
s , and then used in a second step to derive the Bi

and Di matrices. The PI-MOESP method starts with the

computation of the following RQ factorization:⎡
⎣U (i)

Z(i)

Y (i)

⎤
⎦ =

⎡
⎢⎣R

(i)
11 0 0

R
(i)
21 R

(i)
22 0

R
(i)
31 R

(i)
32 R

(i)
33

⎤
⎥⎦

⎡
⎢⎣Q

(i)
1

Q
(i)
2

Q
(i)
3

⎤
⎥⎦ , (8)

where for ease of notation we dropped the subscripts of

the Hankel matrices and where Z(i) is an instrumental

variable matrix. This matrix is constructed as follows for

each column of U (i) given by us(k) the corresponding

column in Z(i) is taken as us(k − s). Note that with

this construction the Hankel matrix Z(i) contains some

mixed columns (compare Figure 1). This is not a problem

under the standard assumption that the noise and input are

independent, that is

lim
N(i)→∞

1

N (i)
V (i)

[
(U (i))T (Z(i))T

]
︸ ︷︷ ︸ = 0, (9)
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Model 1 Mixed columns Model 2

. . . y(k − 6) y(k − 5) y(k − 4) y(k − 3) y(k − 2) y(k − 1) y(k) y(k + 1) y(k + 2) . . .

. . . y(k − 5) y(k − 4) y(k − 3) y(k − 2) y(k − 1) y(k) y(k + 1) y(k + 2) y(k + 3) . . .

. . . y(k − 4) y(k − 3) y(k − 2) y(k − 1) y(k) y(k + 1) y(k + 2) y(k + 3) y(k + 4) . . .

. . . y(k − 3) y(k − 2) y(k − 1) y(k) y(k + 1) y(k + 2) y(k + 3) y(k + 4) y(k + 5) . . .

Fig. 1. Mixed columns in the Hankel matrix Y1,4,N in the vicinity of a model transition at time instant k.

where N (i) is the number of data points for the ith model.

Note that from a practical point of view it is not realistic

to let the number of data points for each model go to

infinity. In practice a sufficiently large number will do.

This is supported by the simulation examples provided in

Section IV.

If in addition the input is persistently exciting such that

the underbraced matrix in equation (9) has rank 2sm, then

it can be shown that [22]

lim
N(i)→∞

1√
N (i)

R
(i)
31 = lim

N(i)→∞

1√
N (i)

(
Γ(i)

s X(i)(Q
(i)
1 )T

+H(i)R
(i)
11

)
, (10)

lim
N(i)→∞

1√
N (i)

R
(i)
32 = lim

N(i)→∞

1√
N (i)

Γ(i)
s X(i)(Q

(i)
2 )T .

(11)

Note that in the noise free case, these equations hold

without the limits. The second equation shows that the

column space of the matrix R
(i)
32 equals the column space

Γ
(i)
s , asymptotically. Therefore, the matrices Ai and Ci

(which determine Γ
(i)
s ) can be retrieved up to a linear state

transformation from the column space of R
(i)
32 . This column

space is determined by a singular value decomposition

R
(i)
32 =

[
U (i) U (i)

⊥

] [S(i) 0

0 S(i)
⊥

] [V(i)

V(i)
⊥

]
, (12)

where S(i) is a diagonal matrix containing the n dominant

singular values. An estimate of the matrix Ci up to a linear

transformation can be obtained as the first � rows of U (i):

Ĉi = U (i)(1 : �, : ),

where the Matlab-like notation (1 : �, : ) refers to the first �

rows. The corresponding matrix Âi follows by solving the

set of linear equations:

U (i)(1 : (s − 1)�, : )Ai = U (i)(� + 1: s�, : ).

Given estimates of the matrices A and C, the corresponding

matrices B and D are usually obtained by solving a linear

least squares problem using the data and the estimates of A

and C. However, such a procedure relies on using a con-

secutive batch of data points of the input and output, which

is not available when a local model for a PWL systems

needs to be determined: due to the switching nature of the

PWL system we need to determine the system matrices of

one local model from a number of different nonconsecutive

batches of data points. Therefore, we determine matrices B̂i

and D̂i using equation (10). This alternative procedure was

explained in one of the first papers on MOESP methods.

By construction (U (i)
⊥ )T Γ

(i)
s = 0, hence an estimate Ĥ

(i)
s

of the matrix H
(i)
s satisfies

(U (i)
⊥ )T R

(i)
31 (R

(i)
11 )−1 = (U (i)

⊥ )T Ĥ(i)
s ,

where R
(i)
11 is invertible because of the persistency of

excitation assumption on the input. Because of the Toeplitz

structure of the matrix Ĥ
(i)
s —see equation (6)— this can

be rewritten in a set of equations that are linear in B̂i and

D̂i. For further details we refer to the paper [22].

III. DETERMINATION OF STATE TRANSFORMATIONS

The local models obtained from subspace identification

cannot be combined directly because they have been deter-

mined up to a state transformation which is different for

each local model. To be able to use the local models they

must be transferred to the same state basis. The necessary

state transformations can be obtained by comparing at each

transition the state of the model before the transition with

the state of the model after the transition. This idea was first

formulated in [17] for autonomous systems. However, they

used only one transition to determine each transformation.

This leads to an underdetermined set of equations for

which there are several solutions. These solutions are all

compatible with the data used for identification, but not
necessarily with another data set. Therefore, we propose to

use several transitions to determine one state transformation.

Below we will state conditions on the transitions such that

a unique state transformation can be determined.

Before presenting the general algorithm we take a closer

look at estimating the transformation from one particular

type of transition. Consider all transitions from model p to

model q. Let τ t
j denote the time instant of the jth transition

from model p to q, that is, the first time instant that model q

becomes active. Let τ s
j denote the start of the data segment

in which model p is active, that precedes the transition j,

and let τ e
j denote the end of the data segment in which

model q is active after the transition j. These time instances

are illustrated in Figure 2. The state of model p before the

transition can be estimated at time instant τ t
j − s as

x̂p(τ t
j − s) = (Γ(p)

s )†
(
Y ( : , τ t

j − s) − H(p)
s U( : , τ t

j − s)
)
,

where for ease of notation we dropped again the subscripts

of the Hankel matrices and where (Γ
(p)
s )† denotes the

pseudo-inverse of Γ
(p)
s . The time instant τ t

j − s is used to
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� � � �
Model p Model q

τ s
j τ t

j
τ e
j

Fig. 2. Definition of the time instances τ s

j , τ t

j , and τe

j .

avoid using mixed columns of the Hankel matrices U and

Y (this follows from Figure 1). Simulating model p we can

obtain the state x̂p at the transition time τ t
j as follows:

x̂p(τ t
j ) = As

px̂
p(τ t

j − s) +

s−1∑
i=0

As−i−1
p Bpu(i + τ t

j − s).

The state of model q after the transition follows as

x̂q(τ t
j ) = (Γ(q)

s )†
(
Y ( : , τ t

j ) − H(q)
s U( : , τ t

j )
)
.

The estimates x̂p and x̂q are unbiased as long as the output

noises vi(k) are zero mean. Now it follows that the final

state of model p and the initial state of model q at the

transition are related by

x̂p(τ t
j ) = Tqx̂

q(τ t
j ), (13)

where Tq ∈ R
n×n is the state transformation that needs to

be applied to model q to bring it into the same state basis

as model p. Not only the transitions from model p to model

q can be used to obtain equations like (13) involving the

state transformation Tq, in addition also the transitions from

model q to model p can be used in a similar fashion. In a

transition from model q to model p, first model q is active,

thus

x̂q(τ t
j − s) = (Γ(q)

s )†
(
Y ( : , τ t

j − s) − H(q)
s U( : , τ t

j − s)
)
.

After the transition model p is active:

x̂p(τ t
j ) = (Γ(p)

s )†
(
Y ( : , τ t

j ) − H(p)
s U( : , τ t

j )
)
.

The state transformation Tq can be determined using several

transitions from model p to q and vice versa to set up a set

of linear equations:[
x̂p(τ t

1) x̂p(τ t
2) · · · ]

= Tq

[
x̂q(τ t

1) x̂q(τ t
2) · · · ]

︸ ︷︷ ︸ .

(14)

We arrive at the important conclusion that from this set of

equations Tq can be uniquely determined if the underbraced

matrix is of rank n. This rank condition can be considered

as a kind of persistency of excitation condition: we need

a sufficient number of linearly independent states at the

transition times to be able to determine the state transfor-

mation. Equation (14) can be solved in a least squares sense

to obtain Tq. To take the estimation errors on the state into

account the use of total least squares seems to be appropriate

[23].

Given multiple models, say p1, p2, . . . , pd, that share

the same state basis we can determine a transformation

Tq that brings model q into the same basis using all

Step 1:
C 1 ↔ 2 1 ↔ 3 1 ↔ 4 2 ↔ 3 2 ↔ 4 3 ↔ 4
T 6 4 3 4 2 1

Step 2:
C 1 ↔ 3 1 ↔ 4

2 ↔ 3 2 ↔ 4
T 4 + 4 3 + 2

Step 3:
C 1 ↔ 4

2 ↔ 4

3 ↔ 4

T 3 + 2 + 1

Fig. 3. Example of the order in which the state transformations are
determined. There are four local models. The bold entries indicate the
selected combination of models. C: combination of models. T: total number
of transitions for a particular combination of models. In step 1, models
1 and 2 are selected, because their combination has the largest number
of transitions. In step 2, model 3 is selected, because it has the largest
number of transitions with models 1 and 2. In step 3 only model 4 is left.

available transitions from the models p1, p2, . . . , pd to the

model q and transitions from the model q to the models

p1, p2, . . . , pd.

These observations form the basis for an algorithm that

transforms all the local state-space models obtained from

subspace identification into the same state-space basis. As-

sume that we have M models: 1, 2, . . . ,M . The algorithm

starts by determining for each combination (p, q) of models,

the total number of transitions from p to q and from q to p.

The combination with the largest number of transitions is

chosen; let us assume that this is the combination (1, 2). A

transformation is computed to bring model 1 and 2 in the

same basis. The next step is to determine the total number

of transitions for each model i, i = 3, 4, . . . ,M with both
model 1 and 2. Again the model with the largest number of

transitions is selected. The algorithm proceeds in this way

until all models have been transformed. An example with

four models is shown in Figure 3.

The general algorithm described in pseudo code is as

follows:

1) Initialization: M = {1, 2, . . . ,M}, F = ∅.

2) Select model q that is involved in the largest number

of transitions. M = M\{q}, F = F ∪ {q}.

3) while M �= ∅
a) Determine total number of switches:

for each model j ∈ M
T (j) equals the total number of switches

from the models p ∈ F to the model j

end
b) Select the model q ∈ M with the largest number

of transitions T (q).
c) Determine states at the transitions:

for each model p ∈ F
for each transition j with model q
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determine x̂p(τ t
j )

determine x̂q(τ t
j )

end
end

d) Determine state transformation Tq as in equation

(14).

e) Apply state transformation to model q:

Aq ← TqAqT
−1
q , Bq ← TqBq, Cq ← CqT

−1
q .

f) Adapt model sets: M = M\{q}, F = F ∪{q}.

end
In this algorithm the set M contains the models for

which the state transformation still needs to be determined.

The set F contains the models that have been processed

already. The order in which the models are processed is

determined by the number of transitions with the already

finished models.

IV. SIMULATION EXAMPLE

We have tested the proposed identification approach

using simulated data from the following second-order PWL

model:

A =

[
0 0.8 0 0.5 0.8 0 0 0.4

−0.8 0.5 −0.5 0 0 −0.3 −0.4 0

]
,

B =

[
0.4 1 1 1
0 0.5 0 0

]
,

C =
[

1 0 1 0 1 1 1 0.5
]
,

D = 0.

The system is excited using a zero-mean white noise input

signal that has been filtered using a fourth-order Butterworth

filter with a cut-off frequency of 0.8 times the Nyquist

frequency. The switching sequence p(k) is generated using

pseudo random binary signals such that only one model is

active at a certain time instant and such that the models

do not switch faster than 20 time steps. Data sequences

of u(k), y(k), and p(k) of 2000 data points are used to

identify a PWL system. The block size used in the subspace

method equals 6. The performance of the identified system

is evaluated by looking at the eigenvalues of the Ai matrices

and the value of the variance-accounted-for (VAF) on a data

set different from the one used for identification. The VAF

value is defined as:

VAF = max

{
1 − var(yk − ŷk)

var(yk)
, 0

}
× 100%,

where ŷk denotes the output signal obtained by simulating

the identified PWL system, yk is the output signal of the true

PWL system, and var(·) denotes the variance of a quasi-

stationary signal.

To investigate the sensitivity of the identification algo-

rithm with respect to noise, a Monte-Carlo simulation with

100 runs was carried out. For each of the 100 simulations a

different realization of the input u(k) and switching signal

p(k) were used. The corresponding output signal y(k) was

simulated and zero-mean white noise was added to create

three different noisy signals with signal-to-noise ratios of

15, 20, and 25 dB. The signal to noise ratio is defined as:

SNR = 20 log10

var(y(k))

var(v(k))
,

where v(k) is the noise sequence. For each of the three

noisy signals a PWL model was identified. The results

are summarized in Figures 4–9. The eigenvalues of the

estimated models are compared to the true values in the

first three figures; one figure for each signal-to-noise ratio.

Figures 7–9 show the corresponding histograms of the VAF

values on a fresh validation data set. As expected the quality

of the models decreases with decreasing signal-to-noise

ratio. The quality is still reasonable in all cases.

V. CONCLUSIONS

Multivariable PWL state-space systems with known

switching can be identified using subspace identification

methods. We have shown that the PI-MOESP method can

be used on nonconsecutive parts of the input and output

data that correspond to one of the switching linear systems

as long as the PWL system does not switch faster than the

block size used to build the Hankel matrices. The system

matrices of the local models are obtained up to a linear

state transformation. This state transformation is different

for each of the local linear systems. To combine the local

models they need to be transformed to the same state

basis. We have discussed an algorithm that transforms the

local systems into the same basis. It utilizes the transitions

between the local linear systems. It requires a sufficiently

large number of transitions for which the states at the

transition are linearly independent.
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