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Abstract— In this paper, a method for the identification of
Hammerstein-Wiener systems is presented. The method extends
the linear subspace intersection algorithm, mainly by introduc-
ing a kernel canonical correlation analysis (KCCA) to calculate
the state as the intersection of past and future. The linear model
and static nonlinearities are obtained from a regression problem
using componentwise Least Squares Support Vector Machines
(LS-SVMs).

I. INTRODUCTION

In this paper, we will consider the extension of the clas-

sical subspace intersection algorithm [15] to Hammerstein-

Wiener systems in state-space form:{
xt+1 = Axt + Bf(ut),

g−1(yt) = Cxt + Dut, ∀t
(1)

where ut ∈ R
m and yt ∈ R

l are the input and output at

time t and xt ∈ R
n denotes the state. f : R

m → R
m

and g : R
l → R

l are static nonlinear maps with g such
that g−1 exists for all possible outputs of the system. The

extension is obtained by replacing the linear CCA-step, used

for the estimation of the state by a kernel CCA (KCCA)

approximator. In a second step, the system matrices A, B,
C and D and the nonlinearities f and g are obtained from
the solution of a componentwise Least Squares - Support

Vector Machine (LS-SVM) regression problem, which was

earlier used in an extension of the N4SID [11] identification

algorithm towards Hammerstein systems.

In [3], a scheme for the identification of SISO

Hammerstein-Wiener systems is developed based on the

idea of overparametrization [5]. However, in this scheme

a very specific model structure is assumed, limiting its

practical applicability. Based on [3], a more general blind

approach for the identification of SISO systems was proposed

in [4]. An identification method for Hammerstein-Wiener

MIMO systems was proposed in [7], [6] but imposes certain

restrictions on the inputs and is iterative in nature. Other

contributions such as [9], [21] are limited to SISO systems

and/or iterative in nature.

In contrast to these methods, a clear advantage of the

proposed technique in this paper is that it does not rely

on restrictive assumptions on the inputs, except for the well

known persistency of excitation [19], that it is non-iterative

in nature, and that it can conveniently be applied to MIMO

systems. Furthermore, other than the invertibility of g and
a certain degree of smoothness, no specific restrictions are

imposed on the nonlinear maps f and g.

Due to space limitations this paper mainly focuses on the

estimation step of the state. The subsequent estimation of the

system matrices and the nonlinearities f and g is only very
briefly commented upon and the reader is kindly refered to

a companion paper [10] for further reading on this subject.

The outline of this paper is as follows: in Section II the basic

ingredients of the subspace intersection algorithm for linear

systems are reviewed briefly. Section III extends the linear

intersection algorithm towards a nonlinear setting using a

variation on the theme of LS-SVMs and kernel CCA. Section

IV, finally, presents some illustrative examples.

As a general rule in this paper, lowercase symbols will be

used to denote column vectors. Uppercase symbols are used

for matrices. Elements of matrices and vectors are selected

using Matlab standards, e.g. A(i, j) denotes the ijth entry

of a matrix A, and A(:, i) symbolizes the ith column of the
same matrix. Estimates for a parameter x will be denoted by
x̂. The symbol � is used for definitions.

II. THE SUBSPACE INTERSECTION ALGORITHM

The subspace algorithm considered in this paper was

originally proposed in [8], [15] and is largely based on

the idea that the state of a linear or nonlinear model can

be considered as the intersection between past and future

measurement data [14].

The subspace intersection algorithm identifies deterministic

models of the form{
xt+1 = Axt + But,

yt = Cxt + Dut, ∀t
(2)

for all t = 0, . . . , N − 1 and with ut ∈ R
m and yt ∈ R

l the

input and output at time t. xt ∈ R
n denotes the state. Based

on a finite set of training data {(ut, yt)}
N−1
t=0 , intersection

algorithms are concerned with finding an estimate for the

model order n of the system (2), and estimates for the system
matrices A ∈ R

n×n, B ∈ R
n×m, C ∈ R

l×n and D ∈ R
l×m

up to a similarity transformation. Block Hankel matrices play

an important role in these algorithms. The input block Hankel

matrices are defined as

U0|2i−1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0 . . . uj−1

...
...

ui−1 . . . ui+j−2

ui . . . ui+j−1

...
...

u2i−1 . . . u2i+j−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

[
Up

Uf

]
∈ R

2im×j ,
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with i and j user defined indices such that 2i + j − 1 =
N . The output block Hankel matrices Yp, Yf ∈ R

il×j are

defined in a similar way. The joint past and future Wp

and Wf are defined as Wp �
[
UT

p Y T
p

]T
, Wf �[

UT
f Y T

f

]T
. Finally, Xp �

[
x0 x1 . . . xj−1

]
and

Xf �
[
xi xi+1 . . . xi+j−1

]
, are introduced as finite

state sequences of length j. The main reasoning behind
subspace intersection algorithms follows from the fact that

under the assumptions that:

1) the input ut is persistently exciting of order 2i, i.e. the
input block Hankel matrix U0|2i−1 is of full rank,

2) The intersection of the row space of Uf (the future

inputs) and the row space of Xp (the past states) is

empty,

the following relation holds: row(Xf) = row(Wp) ∩
row(Wf). Hence, the order of the system and a realization
for the state can be obtained from the intersection of past

and future. Mathematically, this step is typically performed

using a CCA algorithm, and retaining the canonical variates

corresponding to canonical angles equal to 1. Once the state

is known, extraction of A, B, C and D is straightforward.
Without going into further theoretical details of the sub-

space intersection algorithm (interested readers are referred

to [8], [15], we summarize here a practical implementation

that will be used towards the Hammerstein-Wiener model

extension:

1) Perform canonical correlation analysis onWp andWf :

WpW
T
f Vf = WpW

T
p VpΛ,

WfWT
p Vp = WfWT

f VfΛ,
(3)

with Λ a diagonal matrix containing the canonical
correlations.

2) Determine the order n from the number of canonical
correlations equal to one. Retain Xf as the n corre-
sponding canonical variates in Wp.

Xf = Vp(:, 1 : n)T Wp.

3) Extract A, B, C and D from:[
Xf(:, 2 : j)

Yi|i(:, 1 : j − 1)

]
=

[
A B
C D

] [
Xf (:, 1 : j − 1)
Ui|i(:, 1 : j − 1)

]
.

The intersection algorithm is a so-called deterministic sub-

space identification algorithm, in that no process and mea-

surement noise are assumed. However, under certain condi-

tions outlined in [15] the method is known to be consistent,

even in the presence of process and measurement noise. We

refer the reader to [15] for further reading on this subject.

III. HAMMERSTEIN-WIENER SUBSPACE INTERSECTION

A. Introducing the static nonlinearities

Equation (2) is transformed into a Hammerstein-Wiener

system by introducing two static nonlinearities f : R
m →

R
m and g : R

l → R
l. With this definition for the nonlin-

earities, and assuming that g : R
l → R

l is such that g−1

exists for all possible outputs of the system, equation (2) is

rewritten as:{
xt+1 = Axt + Bf(ut),

g−1(yt) = Cxt + Df(ut), ∀t.
(4)

As mentioned in Section II, a CCA algorithm could be used

to extract the state x if f(u) and g−1(y) were known. The
state is then obtained from

F(Wp)F(Wf )T Vf = F(Wp)F(Wp)
T VpΛ,

F(Wf )F(Wp)T Vp = F(Wf )F(Wf )T VfΛ,

where F(Wp) is defined as follows

F(Wp) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(u0) f(u1) . . . f(uj−1)
...

...
...

f(ui−1) f(ui) f(ui+j−2)
g−1(y0) g−1(y1) . . . g−1(yj−1)
...

...
...

g−1(yi−1) g−1(yi) g−1(yi+j−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with an equivalent definition for F(Wf ). However, because
f(u) and g−1(y) are unknown, another approach is required
to extract the state. A well-suited technique to fulfill this task

is kernel CCA, a nonlinear extension of CCA, which will be

treated in the following subsection. Once the state is known,

f(u) and g−1(y) will be estimated in a second step using
LS-SVM regerssion.

B. Introducing the kernel

To extract a state of a nonlinear dynamical system, a
nonlinear extension of CCA is employed, known as ker-

nel CCA or KCCA [13], [2]. In kernel methods [18] the

available data are mapped into a high-dimensional feature

space of dimension nH , where classical CCA is applied.

The nonlinearity is condensed in the transformation, which

is represented by feature maps ϕu : R
m → R

nH and

ϕy : R
l → R

nH . Using the mapped past data points ϕu(u)
and ϕy(y), one constructs a feature matrix

Φp � Φ(Wp) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕu(u0) ϕu(u1) . . . ϕu(uj−1)
...

...
...

ϕu(ui−1) ϕu(ui) ϕu(ui+j−2)
ϕy(y0) ϕy(y1) . . . ϕy(yj−1)
...

...
...

ϕy(yi−1) ϕy(yi) ϕy(yi+j−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5)

with a similar definition for Φf � Φ(Wf ).
In the kernel method context the feature maps are assumed

to be associated with kernels Ku : R
m × R

m → R :
(us, ut) �→ Ku(us, ut) and Ky : R

l × R
l → R : (ys, yt) �→

Ky(ys, yt). These kernels are bilinear functions that serve as
similarity measure between data points (s, t = 0, . . . , N−1).
If the kernels are symmetric and positive definite then they

are referred to as Mercer kernels [1] and it can be shown

that feature maps are implicitly defined by the kernels such

7109



that scalar products between mapped points equal kernel

evaluations:

ϕu(us)
T ϕu(ut) = Ku(us, ut),

ϕy(ys)
T ϕy(yt) = Ky(ys, yt).

This property allows in practice to circumvent working with

the high-dimensional vectors (as long as only scalar products

appear), and instead perform computations with (elements

of) the j × j kernel Gram matrices Kp � ΦT
p Φp and Kf �

ΦT
f Φf . With the feature matrix introduced in Eq. (5) we

adopted a so-called ANOVA kernel [20], [16].

C. From CCA to KCCA; the state estimate

For reasons of clarity of presentation we adopt here a for-

mal introduction into the KCCA algorithm as it was initially

presented in [13], [2]. For a more rigorous description of the

main concepts behind KCCA, the reader is kindly referred

to the latter references.

By mapping the elements of Wp and Wf the CCA problem

in feature space becomes:

ΦpΦ
T
f Vf = ΦpΦ

T
p Vp Λ,

ΦfΦT
p Vp = ΦfΦT

f Vf Λ,
(6)

Remark that the coefficient matrices Vp, Vf are elements of

R
2i(m+l)nH×2i(m+l)nH where nH can be potentially infinite-

dimensional, which is not practical. However, if these ma-

trices are restricted to the subspace spanned by the mapped

data by redefining:

Vp = ΦpVp, Vf = ΦfVf , (7)

and the first and second equation of (6) are left multiplied

by ΦT
p and ΦT

f , respectively, we obtain:

KpKf Vf = KpKp Vp Λ,

KfKp Vp = KfKf Vf Λ.
(8)

Assuming that Kp and Kf are invertible, which is hypothet-

ically the case for RBF kernels (but not necessarily for linear

kernels), this can further be reduced to

Kf Vf = Kp Vp Λ

Kp Vp = Kf Vf Λ,
(9)

which is the classical form of the KCCA algorithm as

presented in [13], [2]. A disadvantage of this KCCA version

is the fact that the used kernel derivations do not contain

regularization leaving the possibility of a severe over-fitting

of the nonlinearities involved.

The KCCA version proposed in [18] is formulated using

a support vector machine approach [20] with primal and

dual characterizations for the optimization problems and

an additional centering of the data-points in feature space.

Regularization is thereby incorporated within the primal for-

mulation in a well-established manner leading to numerically

better conditioned solutions. Without going into the details

of this algorithm (the interested reader is kindly referred to

[18] and Appendix B), we state here the obtained generalized

eigenvalue problem:

Kc
f Vf =

(
Kc

p +
1

γ
Ij

)
Vp Λ,

Kc
p Vp =

(
Kc

f +
1

γ
Ij

)
Vf Λ,

where µp = (1/j)
∑j

s=1 Φp(:, s) and µf =

(1/j)
∑j

s=1 Φf (:, s) are the expected centers of the
mapped past and future, and with

Kc
p = (Φp − 1T

j ⊗ µp)
T (Φp − 1T

j ⊗ µp),

Kc
f = (Φf − 1T

j ⊗ µf )T (Φf − 1T
j ⊗ µf ),

the centered kernels. The symbol ⊗ denotes the matrix
Kronecker product. The tuning parameter γ controls the
amount of regularization. Comparison with the derived result

without centering yields that Kc
f = McKfMc with Mc =

(Ij − (1/j)11T
j ) [17].

Thus by solving a generalized eigenvalue problem in the

dual space, one can find the correlations and the nonlinear

canonical variates, gathered resp. in the KCCA estimates Λ̂,
V̂p and V̂f . From the number of canonical correlations which

are equal to one, we determine the order n. The estimated
state is obtained as the n corresponding linear combinations
of the centered variates in Φp. Hence, the final state is

obtained as:

X̂f = V̂p(1 : n, :)T Kc
p. (10)

In the following subsection we will show how the state (10)

can be used to obtain estimates for A, B and f .

D. Estimation of A, B and the nonlinear function f

Once state estimates are obtained, estimates for f and the
system matrices A and B can be obtained in a second step
as follows:

(Â, B̂, f̂) = argmin
A,B,f

∥∥∥∥X̂i+1 −
[
A B

] [
X̂i

Uf

]∥∥∥∥2

F

, (11)

with

X̂i � X̂f (:, 1 : j − 1),

X̂i+1 � X̂f (:, 2 : j),

Uf �
[
f(ui) f(ui+1) . . . f(ui+j−2)

]
,

It will be shown below that this least-squares problem can

be written as a classical LS-SVM regression problem (see

Appendix A for a brief introduction into LS-SVM regres-

sion). The first step towards such a regression problem is to

make the replacement

Bf =

⎡⎢⎢⎢⎣
wT

f,1

wT
f,2
...

wT
f,n

⎤⎥⎥⎥⎦ϕu, (12)
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with ϕu the feature-map introduced in Section III. With this

replacement, equation (11) is rewritten as

(Â, B̂, f̂) = arg min
A,B,f

∥∥∥∥∥∥∥∥∥X̂i+1 − AX̂i −

⎡⎢⎢⎢⎣
wT

f,1

wT
f,2
...

wT
f,n

⎤⎥⎥⎥⎦Uϕ

∥∥∥∥∥∥∥∥∥

2

F

,

with

Uϕ �
[
ϕu(ui) ϕu(ui+1) . . . ϕu(ui+j−2)

]
.

In a companion paper [10], it is shown that this problem

can readily be solved for A, B and f using the concept of
componentwise LS-SVM regression. We refer the reader to

[10] for the full details.

E. Estimation of C, D and the nonlinear function g

From f̂ , an estimate Ûf for Uf can be obtained. With

Ûf estimates for the system matrices C and D and the

nonlinearity g−1 are obtained from:

(Ĉ, D̂, ĝ−1) = arg min
C,D,g−1

∥∥∥∥∥Yg −
[
C D

] [
X̂i

Ûf

]∥∥∥∥∥
2

F

, (13)

with

Yg �
[
g−1(yi) g−1(yi+1) . . . g−1(yi+j−2)

]
.

Again this problem can readily be solved for C, D and

g−1 using the concept of componentwise LS-SVM regression

(see the companion paper [10]).

IV. ILLUSTRATIVE EXAMPLES

A. A SISO system

Consider the following artificial linear system which be-

longs to the class of Hammerstein-Wiener models:

y = g

(
B(z)

A(z)
f(u)

)
, (14)

with A and B polynomials in the forward shift operator z
where B(z) = z6 + 0.8z5 + 0.3z4 + 0.4z3 and A(z) =
(z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i), the input-
and output-nonlinearities are given by f : R → R : f(u) =
sinc(u) and

g : R → R : g(y) =

{
y/12, y ≤ 0,
tanh(y/4), y > 0.

(15)

Two datasets were generated from this system with the

inputs uk ∼ N (0, 2) white Gaussian noise sequences for
t = 0, . . . , N − 1 with N = 500. Although the intersection
algorithm is in principal only designed for deterministic

systems, 5% of zero mean white Gaussian noise was added
to the outputs in both datasets to illustrate the relative

robustness of the proposed technique to moderate amounts

of noise. The first dataset obtained using the procedure

described above was used to train the model, the second one

was used to tune the model. Only the less critical number of

block-rows in the Hankel matrices was fixed beforehand at

10, a common choice in subspace algorithms.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Input nonlinearity (f)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Output nonlinearity (g)

Fig. 1. Estimated input nonlinearity f and output nonlinearity g eval-
uated on the validation inputs and outputs (dots) compared with the true
nonlinearities (solid line) for the SISO example described in IV.

For Ku and Ky, RBF kernels were chosen with σu =
1 and σy = 0.5 respectively. The hyper-parameter γ was
chosen as γ = 1. The obtained nonlinear functions f̂ and ĝ
evaluated on the validation inputs and outputs, are compared

with the true functions f and g in Figure 1. As can be seen
in the figure, the obtained estimates are quite reliable. The

obtained linear system is compared with the true system in

Figure 2.

B. A MIMO system

To illustrate the freedom that one gets by plugin of an

appropriate kernel, in a second example, the proposed iden-

tification method was applied to a 2×2 purely deterministic
MIMO Hammerstein system with a static input-nonlinearity

involving saturation and a saddle point. The system is given

as:

y =

[
b1(z)
a1(z)

b2(z)
a1(z)

b1(z)
a2(z)

b2(z)
a2(z)

]
f(u) +

[
1

a1(z)
1

a2(z)

]
e (16)

with

a1(z) = (z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i),
a2(z) = (z − 0.97e±0.7i)(z − 0.98e±1.4i)(z − 0.97e±2.3i),
b1(z) = z6 + 0.8z5 + 0.3z4 + 0.4z3,
b2(z) = z6 + 0.9z5 + 0.7z4 + 0.2z3,

f(u) =

[
− arctan(u(1)) arctan(u(2))
arctan(u(1)) − arctan(u(2))

]
.
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Fig. 2. Estimated transfer functions (dashed) for the SISO example
described in IV using a PO-MOESP after estimation of the functions f
and g. The true transfer function is displayed in solid.

A two-component zero mean white Gaussian input sequence

u with length 500 and standard deviation 1 was generated
and fed into the system (16). Based on u and the obtained
output y, estimates for the linear system and f are obtained
using the Hammerstein-Wiener identification algorithm pro-

posed in this paper, whereby an RBF kernel was chosen

for Ku and a linear kernel for Ky to effectively limiting

the Hammerstein-Wiener algorithm to the identification of

Hammerstein systems.

As in the SISO example, the number of block-rows in

the Hankel matrices was chosen equal to 10. The hyper-

parameters were again obtained by evaluation on a validation

set and chosen as σu = 1, γ = 0.1 and γu = γy = 1.
The order was easily found to be 12 from an inspection of

the canonical correlations in the kernel CCA step. As an

indication of the performance, the results of a simulation

on an independent test-set using the obtained model are

shown in Figure 3 for the first component of the output.

Also available in the figure is the result of a classical linear

PO-MOESP subspace estimator which is clearly inferior to

that obtained using the Hammerstein-Wiener approach.

V. CONCLUSIONS

In this paper, a method for the identification of

Hammerstein-Wiener systems was presented based on the

theory of kernel canonical correlation analysis and Least

Squares Support Vector Machines. The proposed algorithm

is applicable to SISO and MIMO systems and does not

impose restrictive assumptions on the input sequence in

contrast to most existing Hammerstein-Wiener approaches.

Furthermore, the algorithm was seen to work well on a set

of examples.
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APPENDIX

A. LS-SVM function regression

Let {xi, yi}N
i=1 ⊂ R

d ×R be a set of input/output training

data with input xi and output yi. Consider the regression

model yi = f(xi) + ei where x1, . . . , xN are deterministic

points, f : R
d → R is an unknown real-valued smooth

function and e1, . . . , eN are uncorrelated random errors with

E [ei] = 0, E
[
e2

i

]
= σ2

e < ∞. In recent years, Support
Vector Machines (SVMs) have been used for the purpose of

estimating the nonlinear f . The following model is assumed:

f(x) = wT ϕ(x) + b,

where ϕ(x) : R
d → R

nH denotes a potentially infinite

(nH = ∞) dimensional feature map. The regularized cost
function of the Least Squares SVM (LS-SVM) is given as

min
w,b,e

J (w, e) =
1

2
wT w +

γ

2

N∑
i=1

e2
i ,

subject to : yi = wT ϕ(xi) + b + ei, i = 1, . . . , N.

The relative importance between the smoothness of the

solution and the data fitting is governed by the scalar

γ ∈ R
+
0 referred to as the regularization constant. The

optimization performed corresponds to ridge regression [12]

in feature space. In order to solve the constrained optimiza-

tion problem, the Lagrangian L(w, b, e; α) = J (w, e) −∑N
i=1 αi{wT ϕ(xi) + b + ei − yi} is constructed, with αi

the Lagrange multipliers. After applocation of the conditions

for optimality: ∂L
∂w

= 0, ∂L
∂b

= 0, ∂L
∂ei

= 0, ∂L
∂αi

= 0, the
following set of linear equations is obtained:[

0 1N
T

1N Ω + γ−1IN

] [
b
α

]
=

[
0
y

]
, (17)

where y =
[
y1 . . . yN

]T
, 1N =

[
1 . . . 1

]T
,

α =
[
α1 . . . αN

]T
, Ωij = K(xi, xj) =

ϕ(xi)
T ϕ(xj), ∀i, j = 1, . . . , N , with K the positive

definite kernel function. Note that in order to solve the

set of equations (17), the feature map ϕ does never have
to be defined explicitly. Only its inner product, a positive

definite kernel, is needed. This is called the kernel trick

[20], [17]. For the choice of the kernel K(·, ·), see e.g.
[17]. Typical examples are the use of a polynomial kernel

K(xi, xj) = (τ + xT
i xj)

d of degree d or the RBF kernel
K(xi, xj) = exp(−‖xi − xj‖2

2/σ2) where σ denotes the
bandwidth of the kernel. The resulting LS-SVM model for

function estimation can be evaluated at a new point x∗ as

f̂(x∗) =

N∑
i=1

αiK(x∗, xi) + b,

where (b, α) is the solution to (17).

B. Regularized KCCA

With the notations of III-C, the regularized version of

KCCA as derived in [18] follows by defining µp =

(1/j)
∑j

s=1 Φp(:, s) and µf = (1/j)
∑j

s=1 Φf (:, s) as the
expected centers. and solving the following minimax prob-

lem:⎧⎨⎩
max

∑j
s=1 esrs, (Maximize correlations)

min vT
p vp + vT

f vf , (Minimize norms)

min
∑j

s=1(e
2
s + r2

s), (Regularization)

subject to es = vp
T (Φp(:, s)−µp) and rs = vf

T (Φf (:, s)−
µf ) for s = 1, . . . , j. This leads to the following primal
cost-function:

max
vp,vf

j∑
s=1

[
1

λ
esrs −

1

2γ
e2

s −
1

2γ
r2
s

]
−

1

2
vp

T vp −
1

2
vf

T vf

with hyperparameters λ, γ ∈ R
+
0 . Introducing αs, βs as

Lagrange multiplier parameters, the Lagrangian is written

as

L(vp, vf , e, r; a, b) =

j∑
s=1

[
1

λ
esrs −

1

2γ
e2

s −
1

2γ
r2
s

]

−
1

2
vp

T vp −
1

2
vf

T vf −

j∑
s=1

αs(es − vp
T (Φp(:, s) − µp))

−

j∑
s=1

βs(rs − vf
T (Φf (:, s) − µf )).

After application of the conditions for optimality: ∂L
∂v

= 0,
∂L
∂w

= 0, ∂L
∂es

= 0, ∂L
∂rs

= 0 ∂L
∂αs

= 0, ∂L
∂βs

= 0, and
elimination of the primal variables wp, wf , e and r, the dual
problem that is finally obtained is given by the following

regularized system of equations

Kc
f Vf =

(
Kc

p +
1

γ
Ij

)
Vp Λ,

Kc
p Vp =

(
Kc

f +
1

γ
Ij

)
Vf Λ,

which is the standard form of the regularized kernel CCA

algorithm as presented in [18].
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