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Abstract. A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a
matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation
for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches
in the literature for computing low-rank approximations, randomized algorithms have attracted researchers’ recent attention
due to their surprising reliability and computational efficiency in different application areas. Typically, such algorithms are
shown to compute with very high probability low-rank approximations that are within a constant factor from optimal, and
are known to perform even better in many practical situations. In this paper, we present a novel error analysis that considers
randomized algorithms within the subspace iteration framework and show with very high probability that highly accurate
low-rank approximations as well as singular values can indeed be computed quickly for matrices with rapidly decaying singular
values. Such matrices appear frequently in diverse application areas such as data analysis, fast structured matrix computations
and fast direct methods for large sparse linear systems of equations and are the driving motivation for randomized methods.
Furthermore, we show that the low-rank approximations computed by these randomized algorithms are actually rank-revealing
approximations, and the special case of a rank-1 approximation can also be used to correctly estimate matrix 2-norms with
very high probability. Our numerical experiments are in full support of our conclusions.
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1. Introduction. Randomized algorithms have established themselves as some of the most competitive
methods for rapid low-rank matrix approximation, which is vital in many areas of scientific computing,
including principal component analysis [48, 66] and face recognition [61, 79], large scale data compression [21,
22, 36, 57] and fast approximate algorithms for PDEs and integral equations [16, 34, 58, 72, 73, 84, 83]. In this
paper, we consider randomized algorithms for low-rank approximations and singular value approximations
within the subspace iteration framework, leading to results that simultaneously retain the reliability of
randomized algorithms and the typical faster convergence of subspace iteration methods.

Given any m×n matrix A with m ≥ n, its singular value decomposition (SVD) is described by the equation

A = UΣV T ,(1.1)

where U is an m× n column orthogonal matrix; V is an n× n orthogonal matrix; and Σ = diag(σ1, · · · , σn)
with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Writing U and V in terms of their columns,

U = (u1, · · · , un) and V = (v1, · · · , vn) ,

then uj and vj are the left and right singular vectors corresponding to σj , the j-th largest singular value of
A. For any 1 ≤ k ≤ n, we let

Ak = (u1, · · · , uk) diag(σ1, · · · , σk) (v1, · · · , vk)T

be the (rank-k) truncated SVD of A. The matrix Ak is unique only if σk+1 < σk. The assumption that
m ≥ n > max k, 2 will be maintained throughout this paper for ease of exposition. Our results still hold for
m < n by applying all the algorithms on AT . Similarly, all our main results are derived under the assumption
that rank(A) = n. But they remain unchanged even if rank(A) < n, and hence remain valid by a continuity
argument. All our analysis is done without consideration of round-off errors, with the implicit assumption
that the user tolerances for the low-rank approximation are always set to be above machine precision levels.
Additionally, we assume throughout this paper that all matrices are real. In general, Ak is an ideal rank-k
approximation to A, due to the following celebrated property of the SVD:
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Theorem 1.1. (Eckart and Young [24], Golub and van Loan [31])

min
rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.(1.2)

min
rank(B)≤k

‖A−B‖F = ‖A−Ak‖F =

√√√√ n∑
j=k+1

σ2
j .(1.3)

Theorem 1.1 states that the truncated SVD provides a rank-k approximation to A with the smallest possible
2-norm error and Frobenius-norm error. In the 2-norm, any rank-k approximation will result in an error no
less than σk+1, and in the Frobenius-norm, any rank-k approximation will result in an error no less than√∑n

j=k+1 σ2
j . Additionally, the singular values of Ak are exactly the first k singular values of A, and the

singular vectors of Ak are the corresponding singular vectors of A. Note, however, that while the solution to
problem (1.3) must be Ak, solutions to problem (1.2) are not unique and include, for example, the rank-k
matrix B defined below for any 0 ≤ θ ≤ 1:

B = Ak − θσk+1 (u1, · · · , uk) (v1, · · · , vk)T
.(1.4)

This subtle distinction between the 2-norm and Frobenius norm will later on become very important in our
analysis of randomized algorithms (see Remark 3.4.) In Theorem 3.4 we prove an interesting result related
to Theorem 1.1 for rank-k approximations that only solve problems (1.2) and (1.3) approximately.

To compute a truncated SVD of a general m× n matrix A, one of the most straightforward techniques is to
compute the full SVD and truncate it, with a standard linear algebra software package like the LAPACK [1].
This procedure is stable and accurate, but it requires O(mn2) floating point operations, or flops. This
is prohibitively expensive for applications such as data mining, where the matrices involved are typically
sparse with huge dimensions. In other practical applications involving the truncated SVD, often the very
objective of computing a rank-k approximation is to avoid excessive computation on A. Hence it is desirable
to have schemes that can compute a rank-k approximation more efficiently. Depending on the reliability
requirements, a good rank-k approximation can be a matrix that is accurate to within a constant factor
from the optimal, such as a rank-revealing factorization (more below), or it can be a matrix that closely
approximates the truncated SVD itself.

Many approaches have been taken in the literature for computing low-rank approximations, including rank-
revealing decompositions based on the QR, LU, or two-sided orthogonal (aka UTV) factorizations [14, 25,
33, 43, 60, 64, 45]. Recently, there has been an explosion of randomized algorithms for computing low-rank
approximations [16, 21, 22, 28, 29, 55, 54, 56, 62, 81, 71]. There is also software package available for
computing interpolative decompositions, a form of low-rank approximation, and for computing the PCA,
with randomized sampling [59]. These algorithms are attractive for two main reasons: they have been
shown to be surprisingly efficient computationally; and like subspace methods, the main operations involved
in many randomized algorithms can be optimized for peak machine performance on modern architectures.
For a detailed analysis of randomized algorithms and an extended reference list, see [36]; for a survey of
randomized algorithms in data analysis, see [57].

The subspace iteration is a classical approach for computing singular values. There is extensive convergence
analysis on subspace iteration methods [31, 19, 4, 3] and a large literature on accelerated subspace iteration
methods [69]. In general, it is well-suited for fast computations on modern computers because its main com-
putations are in terms of matrix-matrix products and QR factorizations that have been highly optimized for
maximum efficiency on modern serial and parallel architectures [19, 31]. There are two well-known weak-
nesses of subspace iteration, however, that limit its practical use. On one hand, subspace iteration typically
requires very good separation between the wanted and unwanted singular values for good convergence. On
the other hand, good convergence also often critically depends on the choice of a good start matrix [4, 3].
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Another classical class of approximation methods for computing an approximate SVD are the Krylov sub-
space methods, such as the Lanczos algorithm (see, for example [10, 17, 50, 52, 70, 82].) The computational
cost of these methods depends heavily on several factors, including the start vector, properties of the input
matrix and the need to stabilize the algorithm. One of the most important part of the Krylov subspace
methods, however, is the need to do a matrix-vector product at each iteration. In contrast to matrix-matrix
products, matrix-vector products perform very poorly on modern architectures due to the limited data
reuse involved in such operations, In fact, one focus of Krylov subspace research is on effective avoidance of
matrix-vector operations in Krylov subspace methods (see, for example [32, 68].)

This work focuses on the surprisingly strong performance of randomized algorithms in delivering highly
accurate low-rank approximations and singular values. As in Algorithm 1.1, the random matrix Ω in Algo-
rithm 2.2 must be a standard Gaussian matrix (see Remark 1.1.) the The distribution of a standard Gaussian
matrix is rotationally invariant: If V is a matrix with orthonormal columns, then V T Ω has the same standard
Gaussian distribution as Ω. This invariance will allow us to access the vast literature on Gaussian matrices
while completely ignoring the matrix V . our analysis is made much easier with the Gaussian matrix due to
the existence of the vast literature on the probability density functions of its singular values. To illustrate,
we introduce Algorithm 1.1, one of the basic randomized algorithms (see [36].)

Algorithm 1.1. Basic Randomized Algorithm

Input: m× n matrix A with m ≥ n, integers k > 0 and n > ` > k.
Output: a rank-k approximation.

1. Draw a random n× ` test matrix Ω.
2. Compute Y = A Ω.
3. Compute an orthogonal column basis Q for Y .
4. Compute B = QT A.
5. Compute Bk, the rank-k truncated SVD of B.
6. Return QBk.

Remark 1.1. Throughout this paper, a random matrix, such as Ω in Algorithm 1.1, is a standard Gaussian
matrix, i.e., its entries are independent standard normal variables of zero mean and standard deviation 1.

While other random matrices might work equally well, the choice of the Gaussian matrix provides two
unique advantages: First, the distribution of a standard Gaussian matrix is rotationally invariant: If V is
an orthonormal matrix, then V T Ω is itself a standard Gaussian matrix with the same statistical properties
as Ω [36]. Second, our analysis is much simplified by the vast literature on the singular value probability
density functions of the Gaussian matrix.

While Algorithm 1.1 looks deceptively simple, its analysis is long, arduous, and involves very strong doses
of statistics [36]. The following theorem establishes an error bound on the accuracy of QQT A as a low-rank
approximation to A. There are similar results in the Frobenius norm.

Theorem 1.2. (Halko, Martinsson, Tropp [36, Corollary 10.9]) The column-orthonormal matrix Q produced
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by Step 3 in Algorithm 1.1 satisfies

‖
(
I −QQT

)
A‖2 ≤

(
1 + 17

√
1 +

k

p

)
σk+1 +

8
√

k + p

p + 1

√√√√ n∑
j=k+1

σ2
j , provided that p = `− k ≥ 4,

with failure probability at most 6e−p.

Remark 1.2. Comparing Theorem 1.2 with Theorem 1.1, it is clear that Algorithm 1.1 could provide a
very good low rank approximation to A with probability at least 1 − 6e−p, despite its simple operations,
provided that σk+1 � ‖A‖2. While algorithms [16, 21, 22, 28, 29, 55, 54, 81] differ in their algorithm design,
efficiency, and domain applicability, they typically share the same advantages of computational efficiency
and approximation accuracy.

Algorithm 1.1 is the combination of Stages A and B of the Proto Algorithm in [36], where the truncated
SVD is considered separately from low-rank approximation. In Section 2.3 we will discuss the pros and cons
of SVD truncation vs. no truncation. Algorithm 1.1 is a special case of the randomized subspace iteration
method (see Algorithm 2.2), for which Halko, Martinsson, Tropp [36] have developed similar results.

However, while the upper bound in Theorem 1.2 can be very satisfactory for many applications, there may
be situations where singular value approximations are also desirable. In addition, it is well-known that in
practical computations randomized algorithms often far outperform their error bounds [36, 59, 67], whereas
the results in [36] do not suggest convergence of the computed rank-k approximation to the truncated SVD
in either Algorithm 1.1 or the more general randomized subspace iteration method.

Our entire work is based on novel analysis of the subspace iteration method, and we consider randomized
algorithms within the subspace iteration framework. This allows us to take advantage of existing theories
and technical machinery in both fields.

Current analysis on randomized algorithms focuses on the errors in the approximation of A by a low rank
matrix, whereas classical analysis on subspace iteration methods focuses on the accuracy in the approximate
singular values. Our analysis allows us to obtain both kinds of results for both of these methods, leading to
the stronger rank-revealing approximations. In terms of randomized algorithms, our matrix approximation
bounds are in general tighter and can be drastically better than existing ones; in terms of singular values,
our relative convergence lower bounds can be interpreted as simultaneously convergence error bounds and
rank-revealing lower bounds.

Our analysis has lead us to some interesting conclusions, all with high probability (more precise statements
are in Sections 5 through 7):

• The leading k singular values computed by randomized algorithms are at least a good fraction of
the true ones, regardless of how the singular values are distributed, and they converge quickly to
the true singular values in case of rapid singular value decay. In particular, this result implies that
randomized algorithms can also be used as efficient and reliable condition number estimators.

• The above results, together with the fact that randomized algorithms compute low-rank approx-
imations up to a dimension dependent constant factor from optimal, mean that these low-rank
approximations are in fact rank-revealing factorizations. In addition, for rapidly decaying singular
values, these approximations can be as accurate as a truncated SVD.

• The subspace iteration method in general and the power method in particular is still slowly conver-
gent without over-sampling in the start matrix. We present an alternative choice of the start matrix
based on our analysis, and demonstrate its competitiveness.

The rest of this paper is organized as follows: In Section 2 we discuss subspace iteration methods and their
4



randomized versions in more detail; in Section 3 we list a number of preliminary as well as key results
needed for later analysis; in Section 4 we derive deterministic lower bounds on singular values and upper
bounds on low-rank approximations; in Section 5 we provide both average case and large deviation bounds
on singular values and low-rank approximations; in Section 6 we compare these approximations with other
rank-revealing factorizations; in Section 7 we discuss how randomized algorithms can be used as efficient and
reliable condition number estimators; in Section 8 we present supporting numerical experimental results;
and in Section 9 we draw some conclusions and point out possible directions for future research.

Much of our analysis has its origin in the analysis of subspace iteration [69] and randomized algorithms [36].
It relies both on linear algebra tools as well as statistical analysis to do some of the needed heavy lifting to
reach our conclusions. To limit the length of this paper, we have put the more detailed parts of the analysis
as well as some additional numerical experimental results in the Supplemental Material, which is accessible
at SIAM’s on-line portal.

2. Algorithms. In this section, we present the main algorithms that are discussed in the rest of this
paper. We also discuss subtle differences between our presentation of randomized algorithms and that in [36].

2.1. Basic Algorithms. We start with the classical subspace iteration method for computing the
largest few singular values of a given matrix.

Algorithm 2.1. Basic Subspace Iteration

Input: m× n matrix A with n ≤ m, integers 0 < k ≤ ` < n,
and n× ` start matrix Ω.

Output: a rank-k approximation.

1. Compute Y =
(
AAT

)q
A Ω.

2. Compute an orthogonal column basis Q for Y .
3. Compute B = QT A.
4. Compute Bk, the rank-k truncated SVD of B.
5. Return QBk.

Given the availability of Lanczos-type algorithms for the singular value computations, the classical subspace
iteration method is not widely used in practice except when k � n. We present it here for later comparisons
with its randomized version. We ignore the vast literature of accelerated subspace iteration methods (see,
for example [69]) in this paper since our main goal here is to analyze the convergence behavior of subspace
iteration method with and without randomized start matrix Ω.

We have presented Algorithm 2.1 in an over-simplified form above to convey the basic ideas involved. In
practice, the computation of Y would be prone to round-off errors. For better numerical accuracy, Algo-
rithm A.1 in the Appendix should be used numerically to compute the Q matrix in Algorithm 2.1. In
practical computations, however, Algorithm A.1 is often performed once every few iterations, to balance
efficiency and numerical stability (see Saad [69].) In the rest of Section 2, any QR factorization of the matrix
Y =

(
AAT

)q
AΩ should be computed numerically through periodic use of Algorithm A.1.

While there is little direct analysis of subspace iteration methods for singular values (Algorithm 2.1) in the
literature, one can generalize results of subspace iteration methods for symmetric matrices to the singular
value case in a straightforward fashion. The symmetric matrix version of Theorem 2.1 can be found in [4].
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Theorem 2.1. (Bathe and Wilson) Assume that Algorithm 2.1 converges as q →∞. Then

|σj − σj(QT Bk)| ≤ O

((
σ`+1

σk

)2q+1
)

.

Thus convergence is governed by the ratio
σ`+1

σk
. The per-iteration cost of Algorithm 2.1 depends linearly on

` ≥ k. A choice ` > k can be economical if the more rapid convergence obtained through the ratio
σ`+1

σk
can

more than offset the extra cost per iteration. Another important issue with Algorithm 2.1 is the constant
hidden in the O notation. This constant can be exceedingly large for the unfortunate choices of Ω. In fact,
an Ω matrix that is almost orthogonal to any leading singular vectors will lead to large number of iterations.
Both issues will be made clearer with our relative convergence theory for Algorithm 2.1 in Theorem 4.3.

A special case of Algorithm 2.1 is when k = ` = 1. This is the classical power method for computing the
2-norm of a given matrix. This method, along with its randomized version, is included in Appendix A for
later discussion in our numerical experiments (see Section 8.) The power method has the same convergence
properties of Algorithm 2.1. More generally, the subspace iteration method is typically run with k = `.

2.2. Randomized Algorithms. In order to enhance the convergence of Algorithm 2.1 in the absence of
any useful information about the leading singular vectors, a sensible approach is to replace the deterministic
start matrix with a random one, leading to

Algorithm 2.2. Randomized Subspace Iteration

Input: m× n matrix A with n ≤ m, integers 0 < k ≤ `,
Output: a rank-k approximation.

1. Draw a random n× ` start matrix Ω.
2. Compute Y =

(
AAT

)q
A Ω.

3. Compute an orthogonal column basis Q for Y .
4. Compute B = QT A.
5. Compute Bk, the rank-k truncated SVD of B.
6. Return QBk.

Remark 2.1. Since Algorithm 2.2 is the special case of Algorithm 2.1 with Ω being chosen as random, all
our results for Algorithm 2.1 equally hold for Algorithm 2.2.

The only difference between Algorithm 2.1 and Algorithm 2.2 is in the choice of Ω, yet this difference will lead
to drastically different convergence behavior. One of the main purposes of this paper is to show that the slow
or non-convergence of Algorithm 2.1 due to bad choice of Ω vanishes with near certainty in Algorithm 2.2.
In particular, a single iteration (q = 0 in Algorithm 2.2) in the randomized subspace iteration method is
often sufficient to return good enough singular values and low-rank approximations (Section 5).

Our analysis of deterministic and randomized subspace iteration method was in large part motivated by
the analysis and discussion of randomized algorithms in [36]. We have chosen to present the algorithms in
Section 2 in forms that are not identical to those in [36] for ease of stating our results in Sections 4 through 8.
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2.3. To Truncate or not to Truncate. The randomized algorithms in Section 2 are presented in
a slight different form than those in [36]. One key difference is in the step of SVD truncation, which is
considered an optional postprocessing step there. In this section, we discuss the pros and cons of SVD
truncation. We start with the following simple lemma, versions of which appear in [7, 23, 36].

Lemma 2.2. Given an m× ` matrix with orthonormal columns Q, with ` ≤ n, then for any `×n matrix B,

‖A−Q
(
QT A

)
‖2 ≤ ‖A−QB‖2 and ‖A−Q

(
QT A

)
‖F ≤ ‖A−QB‖F .

Lemma 2.2 makes it obvious that any SVD truncation of QT A will only result in a less accurate approximation
in the 2-norm and Frobenius norm. This is strong motivation for no SVD truncation. The SVD truncation of
QT A also involves the computation of the SVD of QT A in some form, which also results in extra computation.

On the other hand, some singular values of QT A may be poor approximations of those of A, making QQT A
an inferior rank-` approximation to A, potentially leading to less efficient subsequent computations involving
QQT A. In contrast, for the right choices of k, the rank-k truncated SVD of QT A can result in excellent
rank-k approximations to A, sometimes almost as good as the rank-k truncated SVD of A itself, with all k
singular values of A approximated to very high accuracy. So the choice of whether to truncate the SVD of
QT A depends on practical considerations of computational efficiency and demands on reliability. This paper
focuses on a rank-k approximations obtained from truncated SVD of QT A.

3. Setup. In this section we build some of the technical machinery needed for our heavy analysis later
on. We start by reciting two well-known results in matrix analysis, and then develop a number of theoretical
tools that outline our approach in the low-rank approximation analysis. Some of these results may be of
interest in their own right. For any matrix X, we use σj(X) to denote its j-th largest singular value.

The Cauchy interlacing theorem shows the limitations of any approximation with an orthogonal projection.

Theorem 3.1. (Golub and van Loan [31, p. 411]) Let A be an m × n matrix and Q be a matrix with
orthonormal columns. Then σj(A) ≥ σj(QT A) for 1 ≤ j ≤ min(m,n).

Remark 3.1. A direct consequence of Theorem 3.1 is that σj(A) ≥ σj(Â), where Â is any submatrix of A.

Weyl’s monotonicity theorem relates singular values of matrices X and Y to those of X + Y .

Theorem 3.2. (Weyl’s monotonicity theorem [44, Thm. 3.3.16]) Let X and Y be m × n matrices with
m ≥ n. Then

σi+j−1 (X + Y ) ≤ σi(X) + σj(Y ) for all i, j ≥ 1 such that i + j − 1 ≤ n.

The Hoffman-Wielandt theorem bounds the errors in the differences between the singular values of X and
those of Y in terms of ‖X − Y ‖F .

Theorem 3.3. (Hoffman and Wielandt [42]) Let X and Y be m× n matrices with m ≥ n. Then√√√√ n∑
j=1

|σj (X)− σj (Y )|2 ≤ ‖X − Y ‖F .

7



Below we develop a number of theoretical results that will form the basis for our later analysis on low-
rank approximations. Theorem 3.4 below is of potentially broad independent interest. Let B be a rank-k
approximation to A. Theorem 3.4 below relates the approximation error in the Frobenius norm to that in
the 2-norm as well as the approximation errors in the leading k singular values. It will be called the Reverse
Eckart and Young Theorem due to its complimentary nature with Theorem 1.1 in the Frobenius norm.

Theorem 3.4. (Reverse Eckart and Young) Assume that B is a rank-k approximation to A satisfying

‖A−B‖F ≤

√√√√η2 +
n∑

j=k+1

σ2
j(3.1)

for some η ≥ 0. Then we must have

‖A−B‖2 ≤
√

η2 + σ2
k+1,(3.2) √√√√ k∑

j=1

(σj − σj(B))2 ≤ η.(3.3)

Remark 3.2. Notice that √
η2 + σ2

k+1 = σk+1 +
η2√

η2 + σ2
k+1 + σk+1

.

Equation (3.2) can be simplified to

‖A−B‖2 ≤ σk+1 + η(3.4)

when η is larger than or close to σk+1. On the other hand, if η � σk+1, then equation (3.2) simplifies to

‖A−B‖2 ≤ σk+1 +
η2

σk+1
,

where the last ratio can be much smaller than η, implying a much better rank-k approximation in B. Similar
comments apply to equation (3.1). This interesting feature of Theorem 3.4 is one of the reasons why our
eventual 2-norm and Frobenius norm upper bounds are much better than those in Theorem 1.2 in the event
that η � σk+1. This also has made our proofs in Appendix B somewhat involved in places.

Remark 3.3. Equation (3.3) asserts that a small η in equation (3.1) necessarily means good approximations
to all the k leading singular values of A. In particular, η = 0 means the leading k singular values of A and B
must be the same. However, our singular value analysis will not be based on Equation (3.3), as our approach
in Section 4 provides us with much better results.

Proof of Theorem 3.4: Write A = (A−B) + B. It follows from Theorem 3.2 that for any 1 ≤ i ≤ n− k:

σi+k(A) ≤ σi(A−B) + σk+1(B) = σi(A−B),

since B is a rank-k matrix. It follows that

‖A−B‖2
F =

n∑
i=1

σ2
i (A−B) ≥ σ2

1(A−B) +
n−k∑
i=2

σ2
i (A−B) ≥ σ2

1(A−B) +
n−k∑
i=2

σ2
i+k.
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Plugging this into equation (3.1) yields (3.2).

As to equation (3.3), we observe that the (k +1)− st through the last singular values of B are all zero, given
that B has rank k. Hence the result trivially follows from Theorem 3.3,

k∑
j=1

(σj − σj(B))2 +
n∑

j=k+1

σ2
j ≤ ‖A−B‖2

F ≤ η2 +
n∑

j=k+1

σ2
j . Q.E.D.

Our next theorem is a generalization of Theorem 1.1.

Theorem 3.5. Let Q be an m× ` matrix with orthonormal columns, let 1 ≤ k ≤ `, and let Bk be the rank-k
truncated SVD of QT A. Then Bk is an optimal solution to the following problem

min
rank(B)≤k,B B is `× n

‖A−QB‖F = ‖A−QBk‖F .(3.5)

In addition, we also have

‖A−QBk‖2
F ≤ ‖

(
I −QQT

)
Ak‖2

F +
n∑

j=k+1

σ2
j .(3.6)

Remark 3.4. Problem (3.5) in Theorem 3.5 is a type of restricted SVD problem. Oddly enough, this
problem becomes much harder to solve for the 2-norm. In fact, Bk might not even be the solution to the
corresponding restricted SVD problem in 2-norm. Combining Theorems 3.4 and 3.5, we obtain

‖A−QBk‖2
2 ≤ ‖

(
I −QQT

)
Ak‖2

F + σ2
k+1.(3.7)

Our low-rank approximation analysis in the 2-norm will be based on equation (3.7). While this is sufficient,
it also makes our 2-norm results perhaps weaker than they should be due to the mixture of the 2-norm and
the Frobenius norm.

By Theorem 1.1, Ak is the best Frobenius norm approximation to A, whereas by Theorem 3.5 QBk is the
best restricted Frobenius norm approximation to A. This leads to the following interesting consequence

‖A−Ak‖F ≤ ‖A−QBk‖F ≤ ‖A−QQT Ak‖F .(3.8)

Thus we can expect QBk to also be an excellent rank-k approximation to A as long as Q points to the
principle singular vector directions.

Proof of Theorem 3.5: We first rewrite

‖A−QB‖2
F = ‖

(
I −QQT

)
A + Q

(
QT A−B

)
‖2

F = ‖
(
I −QQT

)
A‖2

F + ‖
(
QT A−B

)
‖2

F .

Result (3.5) is now an immediate consequence of Theorem 1.1. To prove (3.6), we observe that

‖A−QQT Ak‖2
F = trace

((
A−QQT Ak

)T (
A−QQT Ak

))
= trace

((
A−Ak + Ak −QQT Ak

)T (
A−Ak + Ak −QQT Ak

))
= ‖A−Ak‖2

F + ‖Ak −QQT Ak‖2
F + 2trace

(
(A−Ak)T (

Ak −QQT Ak

))
=

n∑
j=k+1

σ2
j + ‖Ak −QQT Ak‖2

F + 2trace
(((

I −QQT
)
Ak

)
(A−Ak)T

)
.

The third term in the last equation is zero because Ak (A−Ak)T = 0. Combining this last relation with
equation (3.8) gives us relation (3.6). Q.E.D.
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4. Deterministic Analysis. In this section we perform deterministic convergence analysis on Algo-
rithm 2.1. Theorem 4.3 is a relative convergence lower bound, and Theorem 4.4 is an upper bound on the
matrix approximation error. Both appear to be new for subspace iteration. Our approach, while quite novel,
was motivated in part by the analysis of subspace iteration methods by Saad [69] and randomized algorithms
in [36]. Since Algorithm 1.1 is a special case of Algorithm 2.2 with q = 0, which in turn is a special case of
Algorithm 2.1 with an initial random matrix, our analysis applies to them as well and will form the basis
for additional probabilistic analysis in Section 5.

4.1. A Special Orthonormal Basis. We begin by noticing that the output QBk in Algorithm 2.1 is
also the rank-k truncated SVD of the matrix QQT A, due to the fact that Q is column orthonormal. In fact,
columns of Q are nothing but an orthonormal basis for the column space of matrix

(
AAT

)q
A Ω. This is the

reason why Algorithm 2.1 is called subspace iteration. Lemma 4.1 below shows how to obtain alternative
orthonormal bases for the same column space. We omit the proof.

Lemma 4.1. In the notation of Algorithm 2.1, assume that X is a non-singular `× ` matrix and that Ω has
full column rank. Let Q̂R̂ be the QR factorization of the matrix

(
AAT

)q
AΩX, then

QQT = Q̂Q̂T .

Since (
AAT

)q
AΩ = UΣ2q+1V T Ω,

define and partition

Ω̂
def
= V T Ω =

`− p {
n− ` + p {

(
Ω̂1

Ω̂2

)
,(4.1)

where 0 ≤ p ≤ `−k. The introduction of the additional parameter p is to balance the need for oversampling
for reliability (see Theorem 1.2) and oversampling for faster convergence (see Theorem 2.1). We also partition
Σ = diag (Σ1,Σ2,Σ3), where Σ1, Σ2, and Σ3 are k× k, (`− p− k)× (`− p− k), and (n− `+ p)× (n− `+ p).
This partition allows us to further write

(
AAT

)q
AΩ = U


(

Σ1

Σ2

)2q+1

Ω̂1

Σ2q+1
3 Ω̂2

 .(4.2)

The matrix Ω̂1 has at least as many columns as rows. Assume it is of full row rank so that its pseudo-inverse
satisfies

Ω̂1Ω̂
†
1 = I.

Below we present a special choice of X that will reveal the manner in which convergence to singular
values and low-rank approximations takes place. Ideally, such an X would orient the first k columns of

U


(

Σ1

Σ2

)2q+1

Ω̂1

Σ2q+1
3 Ω̂2

X in the directions of the leading k singular vectors in U . We choose

X =

(
Ω̂†1

(
Σ1

Σ2

)−(2q+1)

, X̂

)
,(4.3)
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where the ` × p matrix X̂ is chosen so that X is non-singular and Ω̂1X̂ = 0. Recalling equation (4.2), this
choice of X allows us to write

(
AAT

)q
AΩX = U

 I 0 0
0 I 0

H1 H2 H3

 ,(4.4)

where

H1 = Σ2q+1
3 Ω̂2Ω̂

†
1

(
Σ−(2q+1)

1

0

)
, H2 = Σ2q+1

3 Ω̂2Ω̂
†
1

(
0

Σ−(2q+1)
2

)
, H3 = Σ2q+1

3 Ω̂2X̂.

Notice that we have created a “gap” in H1: the largest singular value in Σ3 is σ`−p+1, which is potentially
much smaller than σk, the smallest singular value in Σ1. We can expect H1 to converge to 0 rather quickly
when q → ∞, if σ`−p+1 � σk and if the matrix Ω̂†1 is not too large in norm. Our convergence analysis of
Algorithms 2.1 and 2.2 will mainly involve deriving upper bounds on various functions related to H1. Our
gap disappears when we choose p =� −k, in which case our results in Section 5 will be more in line with
Theorem 1.2.

By equation (4.4), the QR factorization of
(
AAT

)q
AΩX can now be written in the following 3×3 partition:

U

 I 0 0
0 I 0

H1 H2 H3

 = Q̂R̂ =
(

Q̂1 Q̂2 Q̂3

) R̂11 R̂12 R̂13

R̂22 R̂23

R̂33

 .(4.5)

We will use this representation to derive convergence upper bounds for singular value and rank-k approxi-
mations. In particular, we will make use of the fact that the above QR factorization also embeds another
one

U

 I
0

H1

 = Q̂1R̂11.(4.6)

We are now ready to derive a lower bound on σk(Bk).

Lemma 4.2. Let H1 be defined in equation (4.4), and assume that the matrix Ω̂1 has full row rank, then the
matrix Bk computed in Algorithm 2.1 must satisfy

σk (Bk) ≥ σk√
1 + ‖H1‖2

2

.(4.7)

Remark 4.1. It might seem more intuitive in equation (4.3) to choose X = (X1 X2) where X1 solves
the following least squares problem

min
X1

∥∥∥∥∥∥∥∥

(

Σ1

Σ2

)2q+1

Ω̂1

Σ2q+1
3 Ω̂2

X1 −

 I
0
0


∥∥∥∥∥∥∥∥

2

.

Our choice of X seems as effective and allows simpler analysis.
11



Proof of Lemma 4.2: We note by Lemma 4.1 that

QQT A = Q̂Q̂T A = Q̂



Q̂T
1 U

 Σ1

0
0

 Q̂T
1 U

 0 0
Σ2

Σ3


(

Q̂T
2

Q̂T
3

)
U

 Σ1

0
0

 (
Q̂T

2

Q̂T
3

)
U

 0 0
Σ2

Σ3




V T .(4.8)

From equations (4.8) and (4.6), we see that the matrix

Q̂T
1 U

 Σ1

0
0

 =

U

 I
0

H1

 R̂−1
11

T

U

 Σ1

0
0

 = R̂−T
11 Σ1

is simply a submatrix of the middle matrix on the right hand side of equation (4.8). By Remark 3.1, it
follows immediately that

σk (Bk) = σk

(
Q̂Q̂T A

)
≥ σk

(
R̂−T

11 Σ1

)
.

On the other hand, we also have

σk = σk

(
R̂T

11

(
R̂−T

11 Σ1

))
≤
∥∥∥R̂T

11

∥∥∥
2
σk

(
R̂−T

11 Σ1

)
.

Combining these two relations, and together with the fact that
∥∥∥R̂T

11

∥∥∥
2

=
√

1 + ‖H1‖2
2, we obtain (4.7).

Q.E.D.

4.2. Deterministic Bounds. In this section we develop the analysis in Section 4.1 into deterministic
lower bounds for singular values and upper bounds for rank-k approximations.

Since the interlacing theorem 3.1 asserts an upper bound σk (Bk) ≤ σk, equation (4.7) provides a nice lower
bound on σk (Bk). These bounds mean that σk (Bk) is a good approximation to σk as long as ‖H1‖2 is small.
This consideration is formalized in the theorem below.

Theorem 4.3. Let A = UΣV T be the SVD of A, let 0 ≤ p ≤ ` − k, and let V T Ω be partitioned in
equation (4.1). Assume that the matrix Ω̂1 has full row rank, then Algorithm 2.1 must satisfy for j = 1, · · · , k:

σj ≥ σj (Bk) ≥ σj√
1 +

∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

(
σ`−p+1

σj

)4q+2
.

Proof of Theorem 4.3: By the definition of the matrix H1 in equation (4.4), it is straightforward to get

‖H1‖2 ≤
∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2

(
σ`−p+1

σk

)2q+1

.(4.9)

This, together with lower bound (4.7), gives the result in Theorem 4.3 for j = k. To prove Theorem 4.3 for
any 1 ≤ j < k, we observe that since σj (Bk) = σj (Bj), all that is needed is to repeat all previous arguments
for a rank j truncated SVD. Q.E.D.

Remark 4.2. Theorem 4.3 makes explicit the two key factors governing the convergence of Algorithm 2.1.
On one hand, we can expect fast convergence for σj(Bk) if σ`−p+1 � σj . On the other hand, an unfortunate
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choice of Ω could potentially make ‖Ω†1‖2 very large, leading to slow converge even if the singular values do
decay quickly. The main effect of randomization in Algorithm 2.2 is to ensure a reasonably sized ‖Ω̂2‖2‖Ω̂†1‖2

with near certainty. See Theorem 5.8 for a precise statement and more details.

Now we consider rank-k approximation upper bounds. Toward this end and considering Theorem 3.5, we
would like to start with an upper bound on ‖

(
I −QQT

)
Ak‖F . By Lemma 4.1 and equation (4.5), we have∥∥(I −QQT

)
Ak

∥∥
F

=
∥∥∥(I − Q̂Q̂T

)
Ak

∥∥∥
F
≤
∥∥∥(I − Q̂1Q̂

T
1

)
Ak

∥∥∥
F

.

Since Ak = U diag (Σ1, 0, 0) V T , and since Q̂1 = U

 I
0

H1

 R̂−1
11 according to equation (4.6), the above right

hand side becomes

∥∥∥(I − Q̂1Q̂
T
1

)
Ak

∥∥∥
F

=

∥∥∥∥∥∥∥
I −

 I
0

H1

(I + HT
1 H1

)−1

 I
0

H1

T

 Σ1

0
0


∥∥∥∥∥∥∥

F

,

where we have used the fact that (see (4.6))

R̂−1
11 R̂−T

11 =
(
R̂T

11R̂11

)−1

=
(
I + HT

1 H1

)−1
.

Continuing,

∥∥∥(I − Q̂1Q̂
T
1

)
Ak

∥∥∥
F

=

∥∥∥∥∥∥∥
 I −

(
I + HT

1 H1

)−1 0 −
(
I + HT

1 H1

)−1
HT

1

0 I 0
−H1

(
I + HT

1 H1

)−1 0 I −H1

(
I + HT

1 H1

)−1
HT

1


 Σ1

0
0


∥∥∥∥∥∥∥

F

=

∥∥∥∥∥∥∥
 HT

1

(
I + H1H

T
1

)−1
H1

−
(
I + H1H

T
1

)−1
H1

Σ1

∥∥∥∥∥∥∥
F

=
√

trace
(
Σ1HT

1

(
I + H1HT

1

)−1
H1Σ1

)
(4.10)

We are now ready to prove

Theorem 4.4. With the notation of Section 4, we have

‖
(
I −QQT

)
A‖F ≤ ‖A−QBk‖F ≤

√√√√√√
 n∑

j=k+1

σ2
j

+
α2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

1 + γ2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

,

‖
(
I −QQT

)
A‖2 ≤ ‖A−QBk‖2 ≤

√√√√√√σ2
k+1 +

α2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

1 + γ2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

,

where

α =
√

kσ`−p+1

(
σ`−p+1

σk

)2q

and γ =
(

σ`−p+1

σ1

)(
σ`−p+1

σk

)2q

.
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Remark 4.3. Theorem 4.4 trivially simplifies to

‖
(
I −QQT

)
A‖F ≤ ‖A−QBk‖F ≤

√√√√√
 n∑

j=k+1

σ2
j

+ α2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2
,

‖
(
I −QQT

)
A‖2 ≤ ‖A−QBk‖2 ≤

√
σ2

k+1 + α2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2
.

However, when Ω is taken to be Gaussian, only the bounds in Theorem 4.4 allow average case analysis for
all values of p (See Section 5.2.)

Remark 4.4. Not surprisingly, the two key factors governing the singular value convergence of Algorithm 2.1
also govern the convergence of the low-rank approximation. Hence Remark 4.2 applies equally well to
Theorem 4.4.

Proof of Theorem 4.4: We first assume that the matrix H1 in equation (4.4) has full column rank. Rewrite

Σ1H
T
1

(
I + H1H

T
1

)−1
H1Σ1 =

((
(H1Σ1)

T (H1Σ1)
)−1

+ Σ−2
1

)−1

=
(
‖H1Σ1‖−2

2 I + Σ−2
1

)−1

−((
‖H1Σ1‖−2

2 I + Σ−2
1

)−1

−
((

(H1Σ1)
T (H1Σ1)

)−1

+ Σ−2
1

)−1
)

.

The last expression is a symmetric positive semi-definite matrix. This allows us to write

∥∥(I −QQT
)
Ak

∥∥
F
≤
√

trace
(
Σ1HT

1

(
I + H1HT

1

)−1
H1Σ1

)
≤

√
trace

((
‖H1Σ1‖−2

2 I + Σ−2
1

)−1
)

= ‖H1Σ1‖2

√
trace

(
Σ1

(
‖H1Σ1‖2

2 I + Σ2
1

)−1

Σ1

)
≤

√
k ‖H1Σ1‖2 σ1√
σ2

1 + ‖H1Σ1‖2
2

.(4.11)

By a continuity argument, the last relation remains valid even if H1 does not have full column rank.

Due to the special form of H1 in equation (4.4), we can write H1Σ1 as

H1Σ1 = Σ2q+1
3 Ω̂2Ω̂

†
1

(
Σ−(2q)

1

0

)
.

Hence

‖H1Σ1‖2 ≤ σ`−p+1

(
σ`−p+1

σk

)2q

‖Ω̂2‖2‖Ω̂†1‖2.

Plugging this into equation (4.11) and dividing both the nomerator and denominator by σ1,

∥∥(I −QQT
)
Ak

∥∥
F
≤

α
∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2√

1 + γ2
∥∥∥Ω̂2

∥∥∥2

2

∥∥∥Ω̂†1∥∥∥2

2

.

Comparing this with Theorems 3.4 and 3.5 proves Theorem 4.4. Q.E.D.
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5. Statistical Analysis. This section carries out the needed statistical analysis to reach our approxi-
mation error bounds. In Section 5.1 we make a list of the statistical tools used in this analysis; in Section 5.2
we perform average value analysis on our error bounds; and in Section 5.3 we provide large deviation bounds.

5.1. Statistical Tools. The simplest of needed statistical results necessary for our analysis is the
following proposition from [36].

Proposition 5.1. For fix matrices S, T and standard Gaussian matrix G, we have

E‖SGT‖2 ≤ ‖S‖2‖T‖F + ‖S‖F ‖T‖2.

The following large deviation bound for the pseudo-inverse of a Gaussian matrix is also from [36].

Lemma 5.2. Let G be an (` − p) × ` Gaussian matrix where p ≥ 0 and ` − p ≥ 2. Then rank(G) = ` − p
with probability 1. For all t ≥ 1,

P

{∥∥G†∥∥
2
≥ et

√
`

p + 1

}
≤ t−(p+1).

The following theorem provides classical tail bounds for functions of Gaussian matrices. It was taken
from [6][Thm. 4.5.7].

Theorem 5.3. Suppose that h is a real valued Lipschitz function on matrices:

|h(X)− h(Y )| ≤ L‖X − Y ‖F for all X, Y and a constant L > 0.

Draw a standard Gaussian matrix G. Then

P {h(G) ≥ Eh(G) + Lu} ≤ e−u2/2.

The two propositions below will be used in our average case error bounds analysis, both for singular values
and rank-k approximations. Their proofs are lengthy and can be found in the Supplemental Material.

Proposition 5.4. Let α > 0, β > 0, γ > 0 and δ > 0, and let G be an m× n Gaussian matrix. Then

E

(
1√

1 + α2‖G‖2
2

)
≥ 1√

1 + α2C2
(5.1)

E

(√
δ2 +

α2‖G‖2
2

β2 + γ2‖G‖2
2

)
≤

√
δ2 +

α2C2

β2 + γ2C2
,(5.2)

where C =
√

m +
√

n + 7.

There are lower and upper bounds similar to Proposition 5.4 for the pseudo-inverse of a Gaussian, with a
significant complication. When G is a square Gaussian matrix, it is non-singular with probability 1. However,
the probability density function for its pseudo-inverse could have a very long tail according to Lemma 5.2.
A similar argument could also be made when G is almost a square matrix. This complication will have
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important implications for parameter choices in Algorithm 2.2 (see Sections 5.2 and 5.3.) Function log(·)
below is base-e.

Proposition 5.5. Let α > 0, β > 0, γ > 0 and δ > 0, and let G be an (`− p)× ` Gaussian matrix. Then
rank(G) = `− p with probability 1, and

E

(
1√

1 + α2‖G†‖2
2

)
≥



1√
1 + α2C2

for p ≥ 2,

1

1 + α2C2 log 2
√

1+α2C2

αC

for p = 1,

1
1 + αC

for p = 0.

(5.3)

E

(√
δ2 +

α2‖G†‖2
2

β2 + γ2‖G†‖2
2

)
≤



√
δ2 +

α2C2

β2 + γ2C2
for p ≥ 2,

δ +
α2 (`− 1)

δβ2

(
2 +

1
2

log
(

1 +
δ2β2

α2

))
for p = 1,

δ +
4
√

`
√

δ2γ2 + α2

β
log

(
1 +

(
α

δγ

)2
)

for p = 0,

(5.4)

where C =
4e
√

`

p + 1
.

5.2. Average Case Error Bounds. This section is devoted to the average case analysis of Algo-
rithm 2.2. This work requires us to study the average case behavior on the upper and lower bounds in
Theorems 4.3 and 4.4. As observed in Section 2.2, the distribution of a standard Gaussian matrix is rota-
tionally invariant, and hence the matrices Ω̂1 and Ω̂2 are themselves independent standard Gaussian matrices.
With the tools established in Section 5.1, our analysis here consists mostly of stitching together the right
pieces from there.

We first analyze the singular value lower bounds in Theorems 5.6. This will require separate analysis for
p ≥ 2, p = 1, and p = 0, as suggested in Section 5.1. We then analyze the low-rank approximation bounds
in Theorem 4.4, which also requires separate analysis for the same three cases of p. Throughout Section 5.2,
we will need the following definition for any 0 ≤ p ≤ `:

C1 =
√

n− ` + p +
√

` + 7, C2 =
4e
√

`

p + 1
, C = C1C2, and τj =

σ`−p+1

σj
.

Theorem 5.6. Let A = UΣV T be the SVD of A, and let QBk be a rank-k approximation computed by
Algorithm 2.2. Then for j = 1, · · · , k,

E (σj (QBk)) ≥



σj√
1 + C2τ4q+2

j

for p ≥ 2,

σj

1 + C2τ4q+2
j log

√
C2 + τ

−(4q+2)
j

for p = 1,

σj

1 + Cτ2q+1
j

for p = 0.

(5.5)
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Remark 5.1. The value of p is not part of Algorithm 2.2 and can thus be arbitrarily chosen within [0, `−k].
Since our bounds for p ≤ 1 are worse than that for p ≥ 2, they should probably not be used unless `− k ≤ 1
or unless there is a large singular value gap at σ` or σ`+1.

Remark 5.2. Theorem 5.6 strongly suggests that in general some over-sampling in the number of columns
can significantly improve convergence in the singular value approximation. This is consistent with the
literature [16, 21, 22, 28, 29, 55, 54, 62, 81, 71, 36] and is very significant for practical implementations.

Remark 5.3. A typical implementation of the classical subspace iteration method in general and the
classical power method in particular chooses ` = k, which leads to p = 0. Theorem 5.6 implies that this
choice in general leads to slower convergence than p > 0 and thus should be avoided. We will elaborate this
point in more detail in Section 5.3 and provide numerical evidence to support this conclusion in Section 8.

Remark 5.4. Since τj ≤ 1 for all j, Theorem 5.6 implies that for p ≥ 2 and for all j ≤ k,

E (σj (QBk)) ≥ σj√
1 + C2

.

In other words, Algorithm 2.2 approximates the leading k singular values by a good fraction on average,
regardless of how the singular values are distributed, even for q = 0. This result is surprising and yet valuable.
It will have applications in condition number estimation (see Sections 5.3 and 7 for more discussion.)

Remark 5.5. For matrices with rapidly decaying singular values, convergence could be so rapid that one
could even set q = 0 in some cases (Section 5.3.) This is the basis of the excitement about Algorithm 2.2
in that very little work is typically sufficient to realize an excellent low-rank approximation. The faster the
singular values decay, the faster Algorithm 2.2 converges.

Remark 5.6. Kuczyński and Woźniakowski [47] developed probabilistic error bounds for computing
the largest eigenvalue of an SPD matrix by the power method for a unit start vector under the uniform
distribution. Their results correspond to the case of ` = k = 1 and p = 0 in Theorem 5.6. However, our
results appear to be much stronger.

Proof of Theorem 5.6: As in Theorem 4.3, we will only prove Theorem 5.6 for j = k. All other values of j
can be proved by simply citing Theorem 5.6 for a rank-j SVD truncation. Since Ω̂2 and Ω̂1 are independent
of each other, we will take expectations over Ω̂2 and Ω̂1 in turn, based on Propositions 5.4 and 5.5.

Let α =
∥∥∥Ω̂†1∥∥∥

2
τ2q+1
k . By Theorem 4.3 and Proposition 5.4,

E
(
σk (QBk)

∣∣∣ Ω̂1

)
≥ σk√

1 + α2C2
1

.(5.6)

For p ≥ 2, we further take expectation over Ω̂1 according to Proposition 5.5. By equation (5.6),

E (σk (QBk)) = E
(
E
(
σk (QBk)

∣∣∣ Ω̂1

))
≥ E

 σk√
1 +

(∥∥∥Ω̂†1∥∥∥
2
τ2q+1
k

)2

C2
1

 ≥ σk√
1 + C2τ4q+2

k

.

To complete the proof, we note that the results for p = 1 and p = 0 can be obtained similarly by taking
expectation of Ω̂1 over equation (5.6) and simplifying. Q.E.D.
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It is now time for average case analysis of low-rank matrix approximations. Again, we base our arguments
on Propositions 5.4 and 5.5. For ease of notation, let

δ̂k+1 =

√√√√ n∑
j=k+1

σ2
j .

For the sake of simplicity, in Theorem 5.6 below we have omitted

E‖
(
I −QQT

)
A‖F ≤ E‖A−QBk‖F .

Theorem 5.7. Let QBk be a rank-k approximation computed by Algorithm 2.2. Then

E‖A−QBk‖F ≤



√
δ̂2
k+1 + kC2σ2

`−p+1τ
4q
k for p ≥ 2,

δ̂k+1 +
kC2σ2

`−p+1τ
4q
k

δ̂k+1

log

√√√√C2 +
1
k

(
δ̂k+1

σ`−p+1

)2

τ−4q
k for p = 1,

δ̂k+1 +
√

nCσ`−p+1τ
2q
k log

1 + k

(
σ1

δ̂k+1

)2
 for p = 0.

E‖A−QBk‖2 ≤



√
σ2

k+1 + kC2σ2
`−p+1τ

4q
k for p ≥ 2,

σk+1 +
kC2σ2

`−p+1τ
4q
k

σk+1
log

√
C2 +

1
k

(
σk+1

σ`−p+1

)2

τ−4q
k for p = 1,

σk+1 +
√

(k + 1)Cσ`−p+1τ
2q
k log

(
1 + k

(
σ1

σk+1

)2
)

for p = 0.

Remark 5.7. Remark 3.2 applies to Theorem 5.7 as well.

Proof of Theorem 5.7: We only prove Theorem 5.7 for the Frobenius norm. The case for the 2-norm is
completely analogous. As in the proof for Theorem 5.6, this one involves taking expectations over Ω̂2 first

and Ω̂1 next. Let δ = δ̂k+1 =

√√√√ n∑
j=k+1

σ2
j . Fixing Ω̂1 in Theorem 4.4 and taking expectation on Ω̂2 according

to Proposition 5.4, we obtain immediately

E‖A−QBk‖F ≤

√√√√√√δ̂2
k+1 +

α2C2
1

∥∥∥Ω̂†1∥∥∥2

2

1 + γ2C2
1

∥∥∥Ω̂†1∥∥∥2

2

,(5.7)

with α =
√

kσ`−p+1τ
2q
k and γ =

(
σ`−p+1

σ1

)
τ2q
k .
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For p ≥ 2, we further take expectation over Ω̂1 according to Proposition 5.5. By equation (5.4),

E
(
E‖A−QBk‖F

∣∣∣ Ω̂1

)
≤ E


√√√√√√δ̂2

k+1 +
α2C2

1

∥∥∥Ω̂†1∥∥∥2

2

1 + γ2C2
1

∥∥∥Ω̂†1∥∥∥2

2


≤

√
δ̂2
k+1 +

α2C2

1 + γ2C2
≤
√

δ̂2
k+1 + α2C2,

which is the Frobenius norm upper bound in Theorem 5.7.

For p = 1, we again take expectation over Ω̂1 in equation (5.7) according to Proposition 5.5:

E‖A−QBk‖F ≤ E


√√√√√√δ̂2

k+1 +
α2C2

1

∥∥∥Ω̂†1∥∥∥2

2

1 + γ2C2
1

∥∥∥Ω̂†1∥∥∥2

2


≤ δ̂k+1 +

α2C2
1 (`− 1)

δ̂k+1

(
2 +

1
2

log

(
1 +

δ̂2
k+1

α2C2
1

))
,

which is bounded above by the corresponding expression in Theorem 5.7.

Now, we turn our attention to the case p = 0. Taking expectations as before,

E‖A−QBk‖F ≤ E


√√√√√√δ̂2

k+1 +
α2C2

1

∥∥∥Ω̂†1∥∥∥2

2

1 + γ2C2
1

∥∥∥Ω̂†1∥∥∥2

2


≤ δ̂k+1 + 4

√
`

√
δ̂2
k+1γ

2C2
1 + α2C2

1 log

1 +

(
αC1

δ̂2
k+1γC1

)2


= δ̂k+1 + 4
√

`C1

√
δ̂2
k+1γ

2 + α2 log

1 +

(
α

δ̂k+1γ

)2
 .

Plugging in the expressions for α and γ in equation (5.7),

E‖A−QBk‖F ≤ δ̂k+1 + 4
√

`C1

√√√√( δ̂k+1

σ1

)2

+ k σ`−p+1τ
2q
k log

1 + k

(
σ1

δ̂k+1

)2
 ,

which is bounded above by the corresponding expression in Theorem 5.7 since δ̂k+1 ≤
√

n− k σ1. Q.E.D.

5.3. Large Deviation Bounds. In this section we develop approximation error tail bounds. Theo-
rems 4.3 and 4.4 dictate that our main focus will be in developing probabilistic upper bounds on

∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2
.

Theorem 5.8. Let A = UΣV T be the SVD of A, and 0 ≤ p ≤ ` − k. Further let QBk be a rank-k
approximation computed by Algorithm 2.2. Given any 0 < ∆ � 1, define

C∆ =
e
√

`

p + 1

(
2
∆

) 1
p+1
(√

n− ` + p +
√

` +

√
2 log

2
∆

)
.
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We must have for j = 1, · · · , k,

σj (QBk)) ≥ σj√
1 + C2

∆

(
σ`−p+1

σj

)4q+2
,

and

‖
(
I −QQT

)
A‖F ≤ ‖A−QBk‖F ≤

√√√√√
 n∑

j=k+1

σ2
j

+ kC2
∆σ2

`−p+1

(
σ`−p+1

σk

)4q

,

‖
(
I −QQT

)
A‖2 ≤ ‖A−QBk‖2 ≤

√
σ2

k+1 + kC2
∆σ2

`−p+1

(
σ`−p+1

σk

)4q

.

with exception probability at most ∆.

Remark 5.8. Like the average case, the factor σ2
`−p+1 shows up in all three bounds, for all q ≥ 0. Hence

Algorithm 1.1 can make significant progress toward convergence in case of rapidly decaying singular values
in A, with probability 1−∆. This is clearly a much stronger result than Theorem 1.2.

Remark 5.9. While the value of ∆ could be set arbitrarily tiny, it can never be set to 0. This implies that
there is a chance, however arbitrarily small, that Algorithm 2.2 might not converge according to the bounds
in Theorem 5.8. This small exception chance probably has less to do with Algorithm 2.2 and more to do
with the inherent complexity of efficiently computing accurate matrix norms. Since Algorithm 2.2 accesses
A only through the 2q+2 matrix-matrix products of the form AX or AT Y for different X and Y matrices, it
can be used to efficiently compute ‖A−1‖2 (setting k = 1) provided that a factorization of A is available or if
A is itself a non-singular triangular matrix. On the other hand, it is generally expected that even estimating
‖A−1‖2 to within a constant factor independent of the matrix A must cost as much, asymptotically, as
computing A−1. Demmel, Diament, and Malajovich [20] show that the cost of computing an estimate of
‖A−1‖ of guaranteed quality is at least the cost of testing whether the product of two n×n matrices is zero,
and performing this test is conjectured to cost as much as actually computing the product [41, p. 288]. Since
Algorithm 2.2 costs only O(n2q`) operations to provide a good estimate for ‖A−1‖2, it probably can not be
expected to work without any failure. See Section 7 for more comments.

Proof of Theorem 5.8: Since Ω̂2 and Ω̂1 are independent from each other, we can study how the error
depends on the matrix Ω̂2 when Ω̂1 is reasonably bounded. To this end, we define an event as follows:

Et =
{

Ω̂1 :
∥∥∥Ω̂†1∥∥∥

2
≤ tL

}
, where L =

e
√

`

p + 1
.

Invoking the conclusion of Lemma 5.2, we find that

P (Ec
t) ≤ t−(p+1).(5.8)

In other words, we have just shown that
∥∥∥Ω̂†1∥∥∥

2
≤ tL with probability at least 1− t−(p+1).

Below we consider the function

h(X) = ‖X‖2

∥∥∥Ω̂†1∥∥∥
2
,

where X has the same dimensions as Ω̂2. It is straightforward to show that

|h(X)− h(Y )| ≤
∥∥∥Ω̂†1∥∥∥

2
‖X − Y ‖F ≤ tL‖X − Y ‖F ,
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under event Et. Also under event Et and by Proposition 5.1, we have

Eh(X) ≤
(√

n− ` + p +
√

`
)∥∥∥Ω̂†1∥∥∥

2
≤ et

√
`

p + 1

(√
n− ` + p +

√
`
)

def
= tE .

Applying the concentration of measure equation, Theorem 5.3, conditionally to Ω̂2 under event Et,

P
{∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2
≥ tE + tLu

∣∣∣ Et

}
≤ e−u2/2.

Use the equation (5.8) to remove the restriction on Ω̂1, therefore,

P
{∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2
≥ tE + tLu

}
≤ t−(p+1) + e−u2/2,

Now we choose

t =
(

2
∆

)1/(p+1)

and u =

√
2 log

2
∆

so that t−(p+1) + e−u2/2 = ∆. With this choice of t and u,

tE + tLu = C∆ or P
{∥∥∥Ω̂2

∥∥∥
2

∥∥∥Ω̂†1∥∥∥
2
≥ C∆

}
≤ ∆.

Plugging this bound into the formulas in Theorem 4.3 and Remark 4.3 proves Theorem 5.8. Q.E.D.

While the value of oversampling size p does not look so important in the average case error bounds as long as
p ≥ 2, it makes an oversized difference in large deviation bounds. Consider the case p = 2 with a tiny ∆ > 0.
In this case, C∆ may still be quite large, and quite a few extra number of iterations might be necessary to
ensure satisfactory convergence with small exception probability.

For p ≤ 1, the large deviation bound is brutal. For very small values of k, such as 1 in the case of the
randomized power method (see Algorithm A.3), it seems unreasonable to require a relatively large value of
p. On the other hand, a small p value would significantly impact convergence. We will address this conflicting
issue of choosing p further in Section 8.

But for any large enough values of k (such as k = 20 or more, for example,) a reasonable choice would be to

choose p so
(

2
∆

)1/(p+1)

is a modest number. We will now choose

p = dlog10

(
2
∆

)
e − 1.(5.9)

This choice gives
(

2
∆

)1/(p+1)

≤ 10. For a typical choice of ∆ = 10−16, equation (5.9) gives p = 16. For this

value of ∆, the exception probability is smaller than that of matching DNA fingerprints [65]. Given that
the ”random numbers” generated on modern computers are really only pseudo random numbers that may
have quite different upper tail distributions than the true Gaussian (see, for example [78, 80]), and given
that only finite precision computations are typically done in practice, it is probably meaningless to require
∆ to be much less than 10−16, the double precision. Additionally, with this choice of p, the large deviation
bounds are very similar to the average case error bounds, suggesting that the typical behavior is also the
worst case behavior, with probability 1−∆.

Our final observation on Theorem 5.8 is so important that we present it in the form of a Corollary. We will
not prove it because it is a direct consequence.
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Corollary 5.9. In the notation of Theorem 5.8, we must have for j = 1, · · · , k,

σj (QBk)) ≥ σj√
1 + C2

∆

and ‖A−QBk‖2 ≤ σk+1

√
1 + kC2

∆(5.10)

with exception probability at most ∆.

This is a surprisingly strong result. We will discuss its implications in terms of rank-revealing factorizations
in Section 6 and condition number estimation in Section 7.

6. Rank-revealing Factorizations. Rank-revealing factorizations were first discussed in Chan [12].
Generally speaking, there are rank-revealing UTV factorizations [26, 77], QR factorizations [13, 14, 33],
and LU factorizations [60, 63]. While there is no uniform definition of the rank-revealing factorization, a
comparison of different forms of rank-revealing factorizations has appeared in Foster and Liu [27]. For the
discussions in this section, we make the following definition, which is loosely consistent with those in [27].

Definition 6.1. Given m × n matrices A and B and integer k < min(n, m), we call B a rank-revealing
rank-k approximation to A if rank(B) ≤ k and if there exist polynomials c1(m,n), and c2(m,n) such that

σj(B) ≥ σj(A)
c2(m,n)

, j = 1, · · · , k,(6.1)

‖A−B‖2 ≤ c1(m,n)σk+1(A).(6.2)

A rank-revealing rank-k approximation differs from an ordinary rank-k approximation in the extra condi-
tion (6.1), which requires some accuracy in all k leading singular values. Therefore a rank-revealing rank-k
approximation is likely a stronger approximation than a simple low rank approximation. To see why (6.1) is
so important, we consider for an example the case where the leading k + 1 singular values of A are identical:
σ1(A) = · · · = σk+1(A). This includes the n × n identity matrix as a special case. Now choose θ = 1 in
equation (1.4). It follows that B = 0 is an optimal rank-k approximation to A, which is likely unacceptable
to most users. On the other hand, B = 0 obviously does not satisfy condition (6.1) for any polynomial
c2(m,n), and therefore is not a rank-revealing rank-k approximation to A. Similarly, any orthogonal matrix
Q would satisfy the bound in Theorem 1.2 for such an A matrix, and only the matrix Q from Algorithm 2.2
would satisfy Theorem 5.8.

By definition, Algorithm 2.2 produces a rank-revealing rank-k approximation with probability at least 1−∆.
In this section, we compare this approximation with the strong RRQR factorization developed in Gu and
Eisenstat [33].

Theorem 6.1. (Gu and Eisenstat [33]) Let A be an m × n matrix and let 1 ≤ k ≤ min(m,n). For any
given parameter f > 1, there exists a permutation Π such that

AΠ = Q

(
R11 R12

R22

)
,

where for any 1 ≤ i ≤ k and 1 ≤ j ≤ n− k,

1 ≤ σi(A)
σi(R11)

,
σj(R22)
σk+j

≤
√

1 + f2k(n− k).(6.3)

Let Âk = Q

(
R11 R12

0

)
ΠT . Then Âk is a rank-k matrix. It follows from equation (6.3) that

σj

(
Âk

)
≥ σj√

1 + f2k(n− k)
, j = 1, · · · , k,

22



∥∥∥A− Âk

∥∥∥
2
≤ σk+1

√
1 + f2k(n− k).

These properties are compatible with the inequalities in Theorem 5.8. The strong RRQR factorization in
Theorem 6.1 also includes a permutation Π that selects k linearly independent columns of A such that∥∥R−1

11 R12

∥∥
2
≤ f . Such information could be useful in some applications [59].

But the matrix QBk, being a two-sided orthogonal approximation, does not contain any information about
such permutation. On the other hand, it is likely to be cheaper to compute due to the matrix-matrix product
operations involved, and for rapidly decaying singular values or by potentially increasing the value of q, it
could make a much better approximation than Âk.

7. Condition Number Estimation. For any given square non-singular matrix A, define

κ(A) = ‖A‖‖A−1‖,

as its condition number. Here ‖ · ‖ is any matrix norm, such as the matrix 1-norm, 2-norm, ∞-norm,
Frobenius norm, or max-norm. Condition numbers are of central importance in solving many matrix com-
putation problems, such as linear equations, least squares problems, eigenvalue/eigenvector problems, and
sparse matrix problems. For a detailed discussion of condition number estimation, see the survey paper by
Higham [38] and the references therein. More recent work includes Laub and Xia [51].

A typical condition estimator uses a matrix norm estimator to estimate ‖A‖ and ‖A−1‖ separately, and
multiply them together to get an estimate for κ(A). A typical matrix norm estimator, in turn, only accesses
the matrix A through matrix-matrix or matrix-vector multiplications, without the need to directly access
entries of A. Thus the costs of estimating ‖A‖ and ‖A−1‖ are similar if a factorization for A is available. The
goal in matrix norm estimation is to compute a reliable estimate of ‖A‖ up to a factor that does not grow too
fast with the dimension of A, perhaps without direct access to entries of A, at a cost that is considerably less
than that of matrix factorization or inversion, something that is believed to be impossible (see Remark 5.9.)

However, by Corollary 5.9, we know Algorithm 2.2 does compute a reliable estimate for ‖A‖2 with k = 1
and a reasonable choice of ` > 1, due to the randomization of the start matrix. Below we concentrate on
estimating ‖A‖1. Currently, Hager’s method is one of the most popular estimators for ‖A‖1, is the default
1-norm estimator of LAPACK [1, 35, 38, 39]. Hager’s method is based on a variant of the gradient descent
method to find a local maximizer for the following optimization problem:

‖A‖1 = max
x∈S

‖Ax‖1 , where S = {x ∈ Rn : ‖x‖1 ≤ 1.}(7.1)

Algorithm 7.1. Hager’s Method

Input: m× n matrix A, and initial 1-norm unit vector x.
Output: An estimate for ‖A‖1.

repeat
1. Compute y = Ax, z = AT sign(y).
2. if ‖z‖∞ ≤ zT x then

return γ = ‖y‖1.
3. x = ej , where j = argmaxk|zk|.
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The ej is the j-th unit vector. While it could occasionally take much longer, Hager’s method typically takes
very few (less than 5) iterations to converge to a local maximum that is within a reasonable factor (like 10
or less) of ‖A‖1. As Algorithm 2.2 already computes a reliable estimate for ‖A‖2, it is straightforward to
combine Algorithms 2.2 and 7.1 to obtain a reliable estimate for ‖A‖1, which satisfies ‖A‖1 ≥ ‖A‖2/sqrtn.

Algorithm 7.2. Randomized Hager’s Method

Input: m× n matrix A, and integer ` > 1.
Output: An estimate for ‖A‖1.

1. Compute rank-1 approximation QB1 to A using Algorithm 2.2
2. Set û to be the right singular vector of QB1.
3. Run Algorithm 7.1 on A with initial vector x = û/‖û‖1.
4. Return γ from Algorithm 7.1.

Since QB1 is a rank-1 matrix, û is straightforward to compute. The number of iterations in Algorithm 7.1
can be restricted to as few as 1 or 2. This is because Algorithm 7.1 is only used to find a column whose
vector 1-norm provides the estimate for ‖A‖1, no local maximum to problem (7.1) is necessary. Corollary 7.1
directly follows from Corollary 5.9.

Corollary 7.1. For any 0 < ∆ � 1, the output γ from Algorithm 7.2 must satisfy

γ ≥ ‖A‖1

√
n

√
1 + Ĉ2

∆

where Ĉ∆ =
e√
`

(
2
∆

) 1
`

(
√

n +
√

` +

√
2 log

2
∆

)
,

with exception probability at most ∆.

Remark 7.1. One probably does not need to choose a very tiny ∆ for matrix norm estimation. In our
numerical experiments, ` = 5 worked very well. For matrices of dimension up to 200, Algorithm 7.2 never

under-estimated the true norm by a factor over 10. In general, we can choose ` = dlog2

(
2
∆

)
e, in which

case the constants Ĉ∆ and γ above satisfy

Ĉ∆ < 2e

(√
n

`
+ 3
)

and γ ≥ ‖A‖1

2e
√

n

(√
n

`
+ 4
) .

Remark 7.2. Hager’s method has been generalized by Higham [40] to estimate the matrix p-norm for any
p ≥ 1 and the mixed matrix norm ‖A‖α,β for α ≥ 1 and β ≥ 1. In particular, the max-norm is the special
case with α = ∞ and β = 1. Algorithm 7.2 can be trivially generalized to those cases as well, by replacing
Hager’s method in Algorithm 7.2 with its generalized version, leading to a Corollary 7.1-like conclusion for
reliability. We omit the details.

Remark 7.3. Kuczyński and Woźniakowski [46] developed probabilistic error bounds for estimating the
condition number using the Lanczos algorithm for unit start vectors under the uniform distribution. However,
our results appear to be much stronger.
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Below, we demonstrate the robustness of Algorithm 7.2 through the following example. Let

A =
(

α bT

b ρEÂE

)
, for E = I − 1

n− 1

 1
...
1


 1

...
1


T

,

where α > 0, ρ > 0 are scalars, b > 0 is an n− 1 dimensional vector, and Â is an (n− 1)× (n− 1) matrix.
If we take the initial vector x in Algorithm 7.1 to be the vector of all 1’s (the default choice in LAPACK),
then Algorithm 7.1 will always return α + ‖b‖1 as the 1-norm estimate, regardless of ρÂ.

In our numerical experiment, we set n = 100, ρ = 1010 and chose α, b and Â to be random, with ‖A‖1 ≈
8.35×1011. For ` = 5, we obtained ‖A‖1 ≈ 2.46×1011 from Algorithm 7.2. On the other hand, Algorithm 7.1
returned ‖A‖1 ≈ 4.72× 101, which was completely wrong.

8. Numerical Experiments. In this section we perform numerical experiments to shed more light
on randomized algorithms. Our main purpose of these experiments is to provide numerical support to our
probabilistic analysis and to demonstrate that different applications can lead to different singular value
distributions in the matrix and impose different accuracy requirements, and thus demand different levels of
computational effort on the randomized algorithms.

8.1. Improved Randomized Power Iteration. In the case of a small k, it seems unreasonable to
require a potentially large value of p as suggested in equation (5.9). However, for a truely small value of p,
going random is still not enough to overcome the potential problem of slow convergence associated with a
poor start matrix in Algorithm 2.2, and some additional work maybe needed (see Sections 5.)

This discussion is particularly relevant for k = 1, which corresponds to the classical power method, Algo-
rithm A.2, and its randomized version, Algorithm A.3, in Appendix A. Any value of p > 0 seems to be too
much work, but p = 0 does not lead to fast enough convergence.

According to Corollary 5.9, Algorithm 2.2 can already compute order of magnitude approximations to all
the leading singular values with q = 0. Thus, an obvious improvement of Algorithm 2.2 for small values of k
would be to compute Ω with Algorithm 1.1 and then compute a subspace approximation with Algorithm 2.1.

Algorithm 8.1 below is designed for subspace computations where k = O

(
dlog10

(
2
∆

)
e
)

or smaller.

Algorithm 8.1. Improved Randomized Subspace Iteration for small k

Input: m× n matrix A with n ≤ m,
integers q and `1 > `2 ≥ k.

Output: a rank-k approximation.

1. Run Algorithm 1.1 with ` = `1 for a rank-`2 approximation.
2. Set Ω to be approximate right singular vector matrix.
3. Run Algorithm 2.1 with Ω and ` = `2 for a rank-k approximation.

We perform our experiments with 4000× 4000 matrices of the form

A =
(
log ‖Xi − Yj‖2

)
,
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where {Xi} are n-dimensional Gaussian random variables with mean 0 and standard deviation 1, and where
{Yj} are n-dimensional Gaussian random variables with mean µ and standard deviation 1. We choose
different µ values to control the ratio of the two leading singular values of A.

We ran Algorithm 8.1 with `1 = 5 and `2 = k = 1. We also ran Randomized Power Method, Algorithm A.3,
to compute ‖A‖2. We choose µ = 1 for a large σ2/σ1 ratio and µ = 2.5 for a small ratio. The results are
summarized in Figure 8.1.

For the case of large σ2/σ1 ratio, Algorithm 8.1 converged to ‖A‖2 in about 250 steps, as opposed to about
350 steps for Algorithm A.3. For the case of a small σ2/σ1 ratio, both algorithms performed equally well.
Algorithm 8.1 converged slightly more quickly, but that is offset by the extra work needed to compute the
initial Ω.
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Fig. 8.1. Faster Convergence of Algorithm 8.1 due to Better Choice of Start Vector

Figure 8.1 confirms our analysis. At the cost of the initial step to obtain a good start vector, Algorithm 8.1
can converge significantly faster than Algorithm A.3.

8.2. low-rank approximation. In this experiment, we consider a 4000× 4000 matrix of the form

A =
(
log ‖Xi − Yj‖2

)
,

where {Xi} are equi-spaced points on the edge of the disc ‖X−
(
−1
−1

)
‖2 =

√
2 and {Yj} equi-spaced points

on the edge of the disc ‖Y −
(

2
2

)
‖2 = 2

√
2 (see Figure 8.2.) We compare the performance of Algorithms 1.1

and 2.2 against that of svds, the matlab version of ARPACK [52] for finding a few selected singular values
of large matrices. We choose k = 50. The results are summarized in Table 8.1.

Table 8.1
Numbers of Matrix-Vector Multiplies

Tolerance q = 0 q = 2 q = 4 svds
10−6 143 5× 96 9× 79 500
10−8 180 5× 96 9× 87 600
10−10 190 5× 96 9× 93 600

Since the singular values of this matrix decay relatively quickly, Algorithm 1.1 seems to out-perform Algo-
rithm 2.2 for any values of q > 0. Algorithm 1.1 also outperforms svds. As Algorithm 1.1 mostly computes
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Fig. 8.2. X and Y points in A

matrix-matrix products whereas each step of svds involves a matrix-vector product, we would expect Al-
gorithm 1.1 to have even better performance than svds on modern serial and parallel architectures. This
example demonstrates that for matrices with fast decaying singular values, randomized algorithms can be
as competitive as the best methods for computing highly accurate low-rank approximations.

8.3. Structured Matrix Computations. In this example, we demonstrate the effectiveness of ran-
domized algorithms for low-rank approximation in the context of structured matrix computations. G3circuit
is a 1585478 × 1585478 sparse SPD matrix arising from circuit simulations. It is publicly available in the
University of Flordia Sparse Matrix Collection [18]. Figure 8.3 depicts its sparsity pattern in the symmetric
minimum degree ordering [30]. A direct factorization of this matrix creates a large amount of fill-in. In
particular, the Schur complement of the leading 1582178 × 1582178 principal submatrix, to be called A, is
a 3300 × 3300 dense submatrix. Here we compute hierarchical semiseparable (HSS) preconditioners to A
with the techniques in [53] and report the numbers of preconditioned conjugate gradient (PCG) steps to
iteratively solve for a linear system of equations Ax = b for a random right hand side b. The PCG is a
very popular technique for solving large SPD systems of equations [37, 2]. We refer the reader to [53, 58]
for details about the HSS matrix structure and its numerical construction, but emphasize that the key and
most time-consuming step for computing HSS preconditioners is to approximate various off-diagonal blocks
of the matrix A by matrices of rank k or less. We choose convergence tolerance δ = 10−12. The conjugate
gradient method (CG) without any preconditioning takes 878 iterations to reduce the residual below this
tolerance.

Table 8.2
Numbers of PCG Iterations

Maximum off-diagonal rank k p = 10 p = 20 p = 40
20 75 77 72
40 69 69 69
60 64 61 61

Table 8.2 summarizes our results. We can see that all choices of p drastically decrease the number of CG
iterations. Howver, the additional reduction in the number of CG iterations is typically small for higher
values of p. Considering the extra cost involved in higher p values in the construction of HSS preconditioners,
it seems that higher p values are ineffective for this application. This example suggests that for the purpose
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Fig. 8.3. A Sparse Matrix in Symmetric Minimum Degree Ordering

of constructing preconditioners in structured matrix computations, a small p value is typically sufficient to
develop highly effective preconditioners. This is consistent with the rule of thumb that typically randomized
algorithms require very little oversampling and a value of p in between 10 to 20 suffices [58, 59, 67].

Table 8.3
Comparison of Numbers of Incorrect Matches

Rank k p = 10 p = 20 p = 40 Truncated SVD
10 32 25 23 24
20 25 26 25 21
30 21 20 18 17
40 20 17 17 16

8.4. Eigenfaces. Eigenfaces is a well studied method of face recognition based on principal component
analysis (PCA), popularised by the seminal work of Turk and Pentland [79]. For more recent work and
survey, see [8, 49, 74, 75, 76] and the references therein. In this experiment we demonstrate the effects of
randomized algorithms on face recognition.

Typical face recognition starts with a data base of training images, which are then processed as follows:

1. Calculate the mean of the training images.
2. Subtract the mean from the training images, obtaining the mean-shifted images.
3. Calculate a truncated SVD of the mean-shifted images.
4. Project the mean-shifted images into the singular vector space using the retained singular vectors,

obtaining feature vectors.

To classify a new face, one does the following calculations:
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Fig. 8.4. Original Faces and their Eigenfaces

1. Subtract the mean from the new image, obtaining the mean-shifted image.
2. Project the mean-shifted image into the singular vector space, obtaining a new feature vector.
3. Find the feature vector in the data base that best matches the new feature vector.

Our face data are obtained from the Database of Faces maintained at the AT&T Laboratories Cambridge [11].
All faces are greyscale images with a consistent resolution. There are ten different images of each of 40 distinct
subjects. The size of each image is 92×112 pixels, with 256 grey levels per pixel. We use 200 of these images,
5 from each individual, as training images, and the remaining ones for classification.

In Figure 8.4, the first row are the original face images; the second row are eigenfaces with a rank-10 truncated
SVD, and the third row eigenfaces with a rank-20.

In addition to the exact truncated SVD, we also perform image training and classification using Algorithm 1.1
with different p values. The results are summarized in Table 8.3. It is clear that smaller p values give worse
results than truncated SVD, but p = 40 gives results that are very similar to truncated SVD, even though
some of the singular values are accurate to only within 1 to 2 digits. This example demonstrates that limited
accuracy that goes beyond being correct to within a constant factor is sufficient for some applications.

9. Conclusions and Future Work. We have presented some interesting results on randomized al-
gorithms within the framework of the subspace iteration method for singular value and low-rank matrix
approximations. While randomized algorithms have been primarily considered as an efficient tool to com-
pute low-rank approximations, our results further suggest that they actually compute the much stronger
rank-revealing factorizations, and can be used to reliably estimate condition numbers. We have also pre-
sented numerical experimental results that support our analysis.
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This work opens up many directions for future research. Most immediate is the convergence analysis on
singular vectors. We expect results compatible to those for singular values. Variations of subspace iteration
methods exist for computing eigenvalues of symmetric and non-symmetric matrices. It would be interesting
to extend our results to these methods.
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Appendix. For numerical stability, Algorithm A.1 below is often performed once every few iterations in
subspace iteration methods, to balance efficiency and numerical stability (see Saad [69].)

Algorithm A.1. Orthorgonalization with QR

Input: m× n matrix A, n× ` start matrix Ω, and integer q ≥ 0.
Output: Y =

(
AAT

)q
AΩ.

Compute Y = AΩ, and QR factorize QR = Y .
for i = 1, · · · , q do

Y = AT Q; QR factorize QR = Y ;
Y = A Q; QR factorize QR = Y .

endfor

Below is the classical power method for computing the 2-norm of a given matrix.

Algorithm A.2. Basic Power Method

Input: m× n matrix A with n ≤ m,
and n× 1 start vector Ω.

Output: approximation to ‖A‖2.

1. Compute Y =
(
AAT

)q
A Ω.

2. Compute an orthogonal column basis Q for Y .
3. Compute B = QT A.
4. Return ‖B‖2.

In situations where no useful information about the leading right singular vector is available, the vector Ω
in Algorithm A.2 can also be chosen to be random, to enhance convergence, leading to

Algorithm A.3. Randomized Power Method
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Input: m× n matrix A with n ≤ m,
Output: approximation to ‖A‖2.

1. Draw a random n× 1 vector Ω.
2. Compute Y =

(
AAT

)q
A Ω.

3. Compute an orthogonal column basis Q for Y .
4. Compute B = QT A.
5. Return ‖B‖2.
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