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Abstract: Background modeling is often used to detect moving object in video acquired by a fixed camera. 
Recently, subspace learning methods have been used to model the background in the idea to represent online 
data content while reducing dimension significantly. The first method using Principal Component Analysis 
(PCA) was proposed by Oliver et al. [1] and a representative patent using PCA concerns the detection of cars 
and persons in video surveillance [2]. Numerous improvements and variants were developed over the recent 
years. The purpose of this paper is to provide a survey and an original classification of these improvements.  
Firstly, we classify the improvements of the PCA in term of strategies and the variants in term of the used 
subspace learning algorithms. Then, we present a comparative evaluation of the variants and evaluate them 
with the state-of-art algorithms (SG, MOG, and KDE) by using the Wallflower dataset. 

Keywords: Background modeling, subspace learning, principal components analysis 

Short Running Title: Subspace learning for background modeling  

INTRODUCTION 

In many video applications, moving objects must be 

detected like in video surveillance [3], optical motion capture 

[4-6] and multimedia [7-9]. The common way to extract 

moving objects is to use background subtraction methods. 

These methods have different steps: background modeling, 

background initialization, background maintenance and 

foreground detection as shown in Fig. (1). 

 

Fig. (1). Background Subtraction: The pipeline 
 

 
 

The background modeling describes the kind of model used 

to represents the background. Once the model has been 

chosen, the background model is initialized during a learning 

step by using N frames. Then, a first foreground detection is 

made and consists in the classification of the pixel as a 

background or as a foreground pixel. Thus, the foreground 

mask is applied on the current frame to obtain the moving 

objects. After this, the background is adapted over time 

following the changes which have occurred in the scene and 

so on. The background modeling is the key choice because it 

determines how the model will adapt to the critical situations 

[7, 10]: Noise image due to a poor quality image source, 

camera jitter, camera automatic adjustments, time of the day, 

light switch, bootstrapping, camouflage, foreground aperture, 

moved background objects, inserted background objects, 

multimodal background, waking foreground object, sleeping 

foreground object and shadows. These critical situations 

have different spatial and temporal properties. The main 

difficulties come from the illumination changes and dynamic 

backgrounds: 

 

- Illumination changes appear in indoor and outdoor 

scenes. The Fig. (2). shows an indoor scene which 

presents a gradual illumination change. It causes false 

detections in several parts of the foreground mask as can 

be seen at the Fig. (2d). The Fig. (3). shows the case of a 

sudden illumination change due to a light on/off.  As all 

the pixels are affected by this change, a big amount of 

false detections is generated (see Fig. (3c)). 

 

- Dynamic backgrounds appear in outdoor scenes. The 

Fig. (4). shows four main types of dynamics 



  

   

Fig. (2). Gradual illumination changes (Sequence Time of Day from [11]) 
 

    
 

a) Dark     b) Middle   c) Clear     d) Foreground mask 

 
Fig. (3). Sudden illumination changes (Sequence Light Switch from [11]) 

 

     
 

a) Light-on  b) Light-off   c) Foreground mask 

 

backgrounds: Camera jitter, waving trees, water 

rippling and water surface. The left column shows 

the original images and the right the foreground 

mask obtained by the MOG [12]. In each case, there 

is a big amount of false detections. 

 

In the literature, many background modeling methods have 

been developed [13, 14] to be robust to these critical 

situations and can be classified in the following categories: 

Basic Background Modeling [15-17], Statistical Background 

Modeling [12, 18, 19], Fuzzy Background Modeling [20, 21], 

Background Estimation [10, 11, 22].  

 Reading the literature, one remark can be made: The 

statistical models offer more robustness to illumination 

changes and dynamic backgrounds. The simplest way to 

represent the background is to assume that the history over 

time of pixel’s intensity values can be modeled by a 

Gaussian. Following this idea, Wren et al. [18] have 

proposed to use a single Gaussian (SG). Kim et al. [23] have 

generalized the SG using single general Gaussian (SGG) to 

alleviate the constraint of a strict Gaussian. However, a 

unimodal model cannot handle dynamic backgrounds when 

there are waving trees, water rippling or moving algae. To 

solve this problem, the Mixture of Gaussians (MOG) has 

been used to model dynamic backgrounds [12]. In the same 

idea, Allili et al. [24] have proposed the mixture of general 

Gaussians (MOGG). This model has some disadvantages. 

For example, background having fast variations cannot be 

accurately modeled with just a few Gaussians (usually 3 to 

5), causing problems for sensitive detection. So, a non-

parametric technique was developed for estimating 

background probabilities at each pixel from many recent 

samples over time using Kernel density estimation (KDE) 

[19] but it is time consuming. These five models consist in 

the first category models which are based on the Gaussian 

models. The second category uses more sophisticated 

statistical models as support vector machine (SVM) [25], 

support vector regression (SVR) [26] and support vector data 

description (SVDD) [27].  

 
Fig. (4). Dynamic backgrounds 
 

 

  
 

a) Sequence Camera jitter from [28] 

 

  
 

b) Sequence Campus from [29] 

 

  
 

c) Sequence Water rippling from [29] 

 

  
 

d) Sequence Water surface from [29]



  

   

Table 1. Statistical Background Modeling: An Overview 

 

Categories Methods Authors - Dates 
Gaussian Models Single Gaussian (SG) (5) 

Single General Gaussian (SGG) (3) 

Mixture of Gaussians (MOG) (~100) 

Mixture of General Gaussians (MOGG) (3) 

Kernel Density Estimation (KDE) (21) 

Wren et al. (1997) [18] 

Kim et al. (2007) [23] 

Stauffer and Grimson (1999) [12]  

Allili et al. (2007) [24] 

Elgammal et al. (2000) [19] 

Support Vector Models Support Vector Machine (SVM) (3) 

Support Vector Regression (SVR) (2) 

Support Vector Data Description (SVDD) (5) 

Lin et al. (2002) [25] 

Wang et al. (2006) [26] 

Tavakkoli et al. (2006) [27] 

Subspace Learning Models Principal Components Analysis (SL-PCA) (15) 

Independent Component Analysis (SL-ICA) (2) 

Incremental Non Negative Matrix Factorization (SL-INMF) (2) 

Incremental Rank-(R1,R2,R3) Tensor (SL-IRT) (1) 

Oliver et al. (1999) [1] 

Yamazaki et al. (2006) [30] 

Bucak et al. (2007) [31] 

Li et al. (2008) [32] 

The third category employs Subspace Learning methods. In 

[1], Subspace Learning using Principal Component Analysis 

(SL-PCA) is applied on N images to construct a background 

model, which is represented by the mean image and the 

projection matrix comprising the first p significant 

eigenvectors of PCA. In this way, foreground segmentation 

is accomplished by computing the difference between the 

input image and its reconstruction. In the same idea, many 

improvements of SL-PCA [10] were developed to be more 

robust and fast [33-45]. In the same category, Yamazaki et al. 

[30] and Tsai et al. [46] have used an Independent 

Component Analysis (SL-ICA). In another way, Bucak et al. 

[31, 47] have proposed an Incremental Non-negative Matrix 

Factorization (SL-INMF) to reduce the dimension. In order 

to take into account the spatial information, Li et al. [32] 

have used an Incremental Rank-(R1,R2,R3) Tensor (SL-IRT). 

The Table 1 shows an overview of the statistical background 

modeling methods. The first column indicates the category 

model and the second column the name of each method. 

Their corresponding acronym is indicated in the first 

parenthesis and the number of papers counted for each 

method in the second parenthesis. The third column gives the 

name of the authors and the date of the related publication. 

The Gaussian models and support vector models are greatly 

designed for dynamics backgrounds and subspace learning 

models for illumination changes. 

In this paper, we present a survey on subspace 

learning approaches which have attracted much attention 

recently to deal with illumination changes. These approaches 

can be divided into improvements and variants of PCA. The 

improvements consist to enhance the adaptation and the 

robustness by using incremental and robust PCA algorithms 

[33-45]. The variants consist to use an other subspace 

learning algorithms as the Independent Component Analysis 

(ICA) [30, 46], Incremental Non-negative Matrix 

Factorization (INMF) [31, 47] and Incremental Rank-

(R1,R2,R3) Tensor (IRT) [32]. 

The rest of this paper is organized as follows: In the 

Section 2, we firstly provide a background on subspace 

learning methods. Then, in the section 3, we remind the 

original PCA method proposed by Oliver et al. [1]. Then, we 

classify the modified versions found in the literature. Then, 

the Sections 4, 5 and 6 review respectively SL-ICA, SL-

INMF and SL-IRT algorithms applied to background 

modeling. Finally, in the Section 7, we present a comparative 

evaluation of the SL-PCA’s variants with the state-of-art 

algorithms (SG, MOG, KDE) by using the Wallflower 

dataset.  

 

2. BACKGROUND ON SUBSPACE LEARNING 
METHODS 

 

The key problem in many data-analysis tasks is to find a 

suitable representation of the data. A useful representation 

can be obtained by reducing the dimensionality of the data so 

that further computational methods can be applied. Subspace 

learning methods have been developed in this context and so 

consist in reducing the dimension of the space significantly. 

The different methods have been classified by Skocaj and 

Leonardis [48] as reconstructive and discriminative methods: 

 

- Reconstructive subspace learning: The reconstructive 

methods allow a well approximation of data and so 

provide a good reconstruction. Another advantage is that 

reconstructive methods are unsupervised techniques. 

Furthermore, reconstructive methods enable incremental 

updating which is very suitable for real-time application. 

These methods are task-independents. The most 

common reconstructive methods are the following: 

Principal Components Analysis (PCA) [49], 

Independent Component Analysis (ICA) [50] and Non-

negative Matrix Factorization (NMF) [51]. PCA 

transforms a number of possibly correlated data into a 

smaller number of uncorrelated data called principal 

components. ICA is a variant of PCA in which the 

components are assumed to be mutually statistically 

independent instead of merely uncorrelated. The 

stronger condition allows to remove the rotational 

invariance of PCA, i.e. ICA provides a meaningful 

unique bilinear decomposition of two-way data that can 

be considered as a linear mixture of a number of 

independent source signals. 

 



  

   

Table 2. Subspace Learning Methods: An Overview 
 

Categories Methods Authors - Dates 
Reconstructive methods Principal Components Analysis (PCA) 

Independent Component Analysis (ICA) 

Non-negative Matrix Factorization (NMF) 

Joliffe (2002) [49] 

Hyvarinen and Oja (2000) [50] 

Lee and Seung (2000) [51] 

Discriminative methods Linear Discriminant Analysis (LDA) 

Canonical Correlation Analysis (CCA) 

Tang and Tao (2006) [52] 

Hardoon et al. (2004) [53] 

 

 

Non-negative matrix factorization (NMF) finds 

linear representations of non-negative data. Given a 

non-negative data matrix V , NMF finds an 

approximate factorization WHV ≈ into non-

negative factors W and H . The non-negativity 

constraints make the representation purely additive, 

i.e allowing no subtractions, in contrast to PCA and 

ICA. 

 

- Discriminative subspace learning: The 

discriminative methods are supervised techniques 

and allow a well separation of data and so provide a 

good classification. Furthermore, discriminative 

methods are spatially and computationally efficient. 

These methods are task-dependents. The most 

common discriminative methods are the following: 

Linear Discriminant Analysis (LDA) [52] and 

Canonical Correlation Analysis (CCA) [53]. LDA 

projects the data onto a lower-dimensional vector 

space such that the ratio of the between-class 

distance to the within-class distance is maximized. 

The goal is to achieve maximum discrimination. 

Canonical correlation analysis is a multivariate 

statistical model that facilitates the study of 

interrelationships among sets of multiple dependent 

variables and multiple independent variables. 

Canonical correlation simultaneously predicts 

multiple dependent variables from multiple 

independent variables. 

 

The Table 2 shows an overview of the common subspace 

learning methods. The first column indicates the category 

and the second column the name of each method. Their 

corresponding acronym is indicated in the first parenthesis. 

The third column gives for the related recent survey the 

name of the author and the date. 

 

All these methods are originally implemented with 

batch algorithms which require that the data must be 

available in advance and be given once altogether. However, 

this type of batch algorithms is not adapted for the 

application of background modeling in which the data are 

incrementally received from the camera. Furthermore, when 

the dimension of the dataset is high, both the computation 

and storage complexity grow dramatically. Thus, 

incremental methods are highly needed to compute in real-

time the adaptive subspace for the data arriving sequentially 

[54]. Following these constraints, the reconstructive methods 

are the most adapted for background modeling. Furthermore, 

their unsupervised aspect allows to avoid a manual 

intervention in the learning step.  

 

In the following sections, we survey the subspace 

leaning methods applied to background modeling: Principal 

Components Analysis, Independent Component Analysis , 

Non-negative Matrix Factorization and Incremental Rank-

(R1,R2,R3) Tensor. These four methods are reconstructive 

ones. 

 

3. SUBSPACE LEARNING VIA PCA (SL-PCA) 

 

3.1 Principle 

 

Oliver et al. [1] have proposed to model each background 

pixel using an eigenbackground model. This model consists 

in taking a sample of N images { }NIII ,...,, 21  and 

computing the mean background image 
Bµ and its 

covariance matrix BC . This covariance matrix is then 

diagonalized using an eigenvalue decomposition as follows: 

 
T
BBBB CL ΦΦ=   (1) 

 

where BΦ is the eigenvector matrix of the covariance of the 

data and BL is the corresponding diagonal matrix of its 

eigenvalues. 

 

In order to reduce, the dimensionality of the space, 

only M eigenvectors (M<N) are kept in a principal 

component analysis (PCA). The M largest eigenvalues are 

contained in the matrix ML  and the M vectors correspond to 

these M largest eigenvalues in the matrix MΦ . 

 

Once the eigenbackground images stored in the 

matrix MΦ  are obtained and the mean Bµ  too, the input 

image tI  can be approximated by the mean background and 

weighted sum of the eigenbackgrounds MΦ . 

 

 



 

 

 

 

 

 

Fig. (5). Adaptivity of the SL-PCA Algorithms 
 

So, the coordinate in eigenbackground space of input 

image tI  can be computed as follows: 
 

M
T

Btt Iw Φ−= )( µ  (2) 

 

When tw  is back projected onto the image space, a 

reconstructed background image is created as follows: 

 

B
T
tMt wB µ+Φ=  (3) 

 

Then, the foreground object detection is made as follows: 

 

TBI tt >−   (4) 

 

where T is a constant threshold. 

 

3.2 Improvements 

The eigenbackground model which we have called SL-

PCA provides a robust model of the probability 

distribution function of the background, but not of the 

moving objects while they do not have a significant 

contribution to the model. So, the first limitation of this 

model is that the size of the foreground object must be 

small and don’t appear in the same location during a long 

period in the training sequence. The second limitation 

appears for the background maintenance. Indeed, it is 

computationally intensive to perform model updating using 

the batch mode PCA. Moreover without a mechanism of 

robust analysis, the outliers or foreground objects may be 

absorbed into the background model [55-57]. The third 

limitation is that the application of this model is mostly 

limited to the gray-scale images since the integration of 

multi-channel data is not straightforward.  It involves much 

higher dimensional space and causes additional difficulty 

to manage data in general. Thus, the different 

improvements founds in the literature attempt to solve 

these three limitations: 
 

- Alleviate the limitation of the size of the foreground 
object: Xu et al. [33, 34] proposed to apply recursively 

an error compensation process which reduces the 

influence of foreground moving objects on the 

eigenbackground model. An adaptive threshold 

method is also introduced for background subtraction, 

where the threshold is determined by combining a 

fixed global threshold and a variable local threshold. 

Results show more robustness in presence of moving 

objects. Another approach developed by Kawabata et 

al. [35] consists in an iterative optimal projection 

method to estimate a varied background in real time 

from a dynamic scene with foreground. Firstly, 

background images are collected for a while and then 

the background images are compressed using 

eigenspace method to form a database. After this 

initialization, a new image is taken and projected onto 

the eigenspace to estimate the background. As the 

estimated image is much affected by the foreground, 

the foreground region is calculated by using 

background subtraction with former estimated 

background to exclude the region from the projection. 

Thus the image whose foreground region is replaced 

by the former background is projected to eigenspace 

and then the background is updated. Kawabata et al. 

[35] proved that the cycle converges to a correct 

background image. 

 

- Dealing with the time requirement and the 
robustness: For the maintenance, some authors [36-44] 

have proposed different algorithms of incremental 

PCA. The incremental PCA proposed by [36] need 

less computation but the background image is 

contamined by the foreground object. To solve this, Li 

et al. [37, 38] have proposed an incremental PCA 

which is robust in presence of outliers.  However, 

when keeping the background model updated 

incrementally, it assigned the same weights to the 

different frames. Thus, clean frames and frames which 

contain foreground objects have the same contribution. 

The consequence is a relative pollution of the 

background model. In this context, Skocaj et al. [39, 

40] used a weighted incremental and robust. The 

weights are different following the frame and this 

method achieved a better background model. However, 

the weights were applied to the whole frame without 

considering the contribution of different image parts to 

building the background model. To achieve a pixel-

wise precision for the weights, Zhang and Zhuang [41] 

have proposed an adaptive weighted selection for an 

incremental PCA. This method performs a better 

model by assigning a weight to each pixel at each new 

frame during the update. Experiments [41] show that 

this method achieves better results than the SL-IRPCA 

[37, 38]. Wang et al. [42, 43] used a similar approach 



using the sequential Karhunen-Loeve algorithm. All 

these incremental methods avoid the eigen-

decomposition of the high dimensional covariance 

matrix using approximation of it and so a low 

decomposition is allowed at the maintenance step with 

less computational load. However, these incremental 

methods maintain the whole eigenstructure including 

both the eigenvalues and the exact matrix MΦ . To 

solve it, Li et al. [44] have proposed a fast recursive 

and robust eigenbackground maintenance avoiding 

eigen-decomposition. This method achieves similar 

results than the SL-IPCA [36] and the SL-IRPCA [37, 

38] at better frames rates. The Fig. (5). shows a 

classification of these algorithms following their 

robustness and their adaptivity. 

 

- Dealing with the grey scale & the pixel-wise 
limitations: Han and Jain [45] have proposed an 

efficient algorithm using a weighted incremental 2-

Dimensional Principal Component Analysis. It is 

shown that the principal components in 2D PCA are 

computed efficiently by transformation to standard 

PCA. To perform the computational time, Han and 

Jain [45] have used an incremental algorithm to update 

eigenvectors to handle temporal variations of 

background. The proposed algorithm was applied to 3-

channel (RGB) and 4-channel (RGB+IR) data. Results 

[45] show noticeable improvements in presence of 

multimodal backgrounds and shadows. To solve the 

pixel-wise limitation, Zhao et al. [58] have employed 

spatio-temporal block instead of pixel. It is more 

robust to noise than the pixel wise approach [59]. 

Furthermore, their method consists in applying the 

candid covariance free incremental principal 

components analysis algorithm (CCIPCA) [60] which 

is fast in convergence rate and low in computational 

complexity than classical IPCA algorithms. Results 

[58] show more robustness robust to noise and fast 

lighting changes. 

 

The Table 3, Table 4 and Table 5 group by type these 

different improvements of the SL-PCA.  

 

Table 3. Size of the foreground objects  
 

 

Methods Authors - Dates 
Recursive Error 

Compensation  

(SL-REC-PCA) 

Xu et al. (2006) [33,  

34] 

Iterative Optimal 

Projection  

(SL-IOP-PCA) 

Kawabata et al. (2006) 

[35] 

 

 

 

Table 4. Time requirement and the robustness 
 

Methods Authors - Dates 
Incremental PCA 

(SL-IPCA) 

Rymel et al. (2004) 

[36] 

Incremental and robust 

PCA  

(SL-IRPCA) 

Li et al. (2003) [37, 38] 

Weighted Incremental and 

Robust PCA 

(SL-WIRPCA) 

Skocaj et al. ( 2003) 

[39, 40] 

Adaptive Weight 

Selection for Incremental 

PCA 

(SL-AWIPCA) 

Zhang and Zhuang 

(2007) [41] 

Sequential Karhunen-

Loeve algorithm 

(SL-SKL-PCA) 

Wang et al. (2006) [42, 

43] 

Fast Recursive 

Maintenance  

(SL-FRM-PCA) 

Li et al. (2006) [44] 

 

Table 5. Dealing with the grey scale & the pixel-wise 
limitations 
 

Methods Authors - Dates 
Weighted Incremental 2D 

PCA 

(SL-WI2DPCA) 

Han and Jain (2007) 

[45] 

Candid Covariance 

Incremental PCA 

(SL-CCIPCA) 

Zhao et al. (2008) [58] 

 

4. SUBSPACE LEARNING VIA ICA (SL-ICA) 

4.1 Principle 

ICA generalizes the technique of PCA and has proven to 

be a good tool of feature extraction. When some mixtures 

of probabilistically independent source signals are 

observed, ICA recovers the original source signals from the 

observed mixtures without knowing how the sources are 

mixed. The assumption made is that the observation 

vectors 
T

MxxxX ),...,,( 21= can be represented in terms of 

a linear superposition of unknown independent vectors 
T

NsssS ),...,,( 21= : 

 

 ASX =   (5) 

 

where A  is an unknown mixing matrix (M×N). The goal 

of ICA is to find a matrix W , so that the resulting vectors: 

 

WXY =  (6) 

 



recover the independent vectors S , probabilistically 

permuted and rescaled. W  is roughly the inverse matrix of 

A . 
 

4.2 Application to background modeling 

In the context of background modeling, the ICA model is 

given by: 

 

tWXY =  (7) 

 

where 
T

FBt xxX ),(=  is the mixture data matrix of size 

2*K in which K=M*N where M and N are the column and 

the row of the images of the sequence. 

),...,,( 112111 Kxxxx =  is the first frame which can contain 

or not foreground objects and ),...,,( 222212 Kxxxx =  is the 

second frame which contains foreground objects. 
TwwW ),( 21=  is the de-mixing matrix, in which 

),( 21 iii www =  with i=1,2. TyyY ),( 21=  is the estimated 

source signals in which ),...,,( 21 ikiii yyyy = . Several ICA 

algorithms can be used to determine W . Yamazaki et al. 

[30] used a neural learning algorithm [61]. Tsai and Lai [46] 

used a Particle Swarm Algorithm (PSO) [62]. Once W  is 

determined, there are two cases in the literature: 

 

- The first case where 1x  contains foreground object 

like in Yamazaki et al. [30]. Then, the foreground 

mask for the frames 1x  and 2x  is obtained by 

thresholding respectively 1y  and 2y . The background 

image is obtained by replacing regions representing 

foreground objects in 1x  by the corresponding regions 

representing background in 2x . 

 

- The second case where 1x  contains no foreground 

object like in Tsai and Lai [46]. Then, the foreground 

mask for the frames 2x  is obtained by thresholding 2y . 

The background image is 1y . 

 

The ICA model has been evaluated on traffic scenes in [30] 

and has shown robustness in changing background like 

illumination changes. In [46], the algorithm has been tested 

on indoor scenes which present illumination changes too. 

 

5. SUBSPACE LEARNING VIA INMF (SL-INMF) 

5.1 Principle 

The aim of non-negative matrix factorization (NMF), with 

rank r, is to decompose the data matrix qp
RV

×∈  into two 

matrices which are rp
RW

×∈  called the mixing matrix, 

and qr
RH

×∈  named as the encoding matrix: 

 

WHV ≈  (8) 

So, the goal of the NMF consists in finding an approximate 

factorization that minimizes the reconstruction error. 

Different cost functions based on the reconstruction error 

have been defined in the literature, but because of its 

simplicity and effectiveness, the squared error is the most 

used: 

 

2

1 1

2
))(( ij

p

i

q

i

ij WHVWHVF −=−= ∑∑
= =

 (9) 

 

where subscription ij stands for the ij
th

 matrix entity.  

 

5.2 Application to background modeling 

Bucak et al. [31, 47] have proposed an incremental NMF 

algorithm to model the background. The initialization is 

made using N training frames. So, V  is a vector column 

corresponding to a matrix of size Nqp ×× )(  where p and q 

are respectively the column and the row of the images. The 

matrices W  and H  are updated incrementally. The 

foreground detection is made by thresholding the residual 

error which corresponds to the deviation between the 

background model and the projection of the current frame 

onto the background model. The SL-INMF has similar 

performance to dynamic background and illumination 

changes than the SL-IPCA proposed by Li et al [37]. 

 

6. SUBSPACE LEARNING VIA INCREMENTAL 
RANK-(R1, R2, R3) TENSOR (SL-IRT) 

 

The different previous subspace learning methods consider 

image as a vector. So, the local spatial information is 

almost lost. To solve this problem, Li et al. [32] have 

proposed to use a high-order tensor learning algorithm 

called incremental rank-(R1,R2,R3) tensor based subspace 

learning. This online algorithm builds a low-order tensor 

eigenspace model in which the mean and the eigenbasis are 

updated adaptively. Denote { }
tq

NM
q RBMG

,...,2,1=
×∈=  as 

a scene’s background appearance sequence with the q-th 

frame being qBM . M and N are respectively the column 

and the row of the images. Denote uvp  as the u-th and the 

v-th pixel of the scene. The tensor-based eigenspace model 

for an existing { }
tq

tIIuv
q RBMA

,...,2,1
21

=
××∈=  

( 521 == II corresponding to a K  neigborhood of uvp  

with 24121 =−= IIK ) consists of the maintained 

eigenspace dimensions (R1,R2,R3) corresponding to the 

three tensor unfolding modes, the mode-n column 

projection matrices nn RIn RU
×∈)( , the mode-3 row 

projection matrix 32 ).()3( RIInRV
×∈ , the column means 

)1(
L  and )2(

L  of the mode-(1,2) unfolding matrices )1(A  

and )2(A , and the row mean )3(
L  of the mode-3 unfolding 



matrix )3(A . Given the K-neighbor image region 

1
1

21 ××
+ ∈ IIuv

t RI  centered at the u-th and v-th pixel uvp  of the 

current incoming frame 
1

1
××

+ ∈ NM
t RI , the distance uvRM  

(determined by the three reconstruction error norms of the 

three modes) between 
uv
tI 1+  and the learned tensor-based 

eigenspace model is computed.  

Then, Li et al. [32] made the foreground detection 

as follows: 

 

uvp  is classified as background if T
RM uv >− )
2

exp(
2

2

σ
 

uvp  is classified as foreground otherwise 

 

 

where σ  is a scaling factor and T denotes a threshold. 

Thus, the new background model ),(1 vuBM t+  at time t+1 

is defined by Li et al. [32] as follows: 

 

uvt HvuBM =+ ),(1  if uvp  is classified as foreground 

),(),( 11 vuIvuBM tt ++ =  otherwise 

 

where ),(),()1( 1 vuIvuMBH ttuv ++−= αα , tMB is the 

mean matrix of tBM :1  at time t and α  is a learning rate 

factor.  

Then, the tensor eigenspace model is updated 

incrementally and so on. The SL-IRT shows more 

robustness to noise than the SL-IPCA proposed by Li et al. 

[37]. 

 

7. PERFORMANCE EVALUATION 

For the performance evaluation, we have compared the 

original version of the subspace learning models with the 

state-of-art algorithms which are composed by three 

gaussian models: 

  

- Single Gaussian: The mean and covariance of pixel 

values are updated continuously [18]. Foreground 

detection is made by thresholding the difference 

between the current mean and the current value.  

- Mixture of Gaussians: A mixture of K Gaussians 

models the background [12]. Each Gaussian is 

weighted according to the frequency with which it 

represents the observed background. The most heavily 

weighted Gaussians that together gives a sum over 

50% of past data are considered background. 

- Kernel Density Estimation: This model keeps a 

sample of intensity values for each pixel in the image 

and uses this sample to estimate the probability density 

function of the pixel intensity [19]. The density 

function 

-  is estimated using kernel density estimation technique. 

The foreground detection is made by thresholding the 

probability. 

7.1 Wallflower dataset 

For a comparative evaluation, several datasets exist and the 

most used is the Wallflower dataset provided by Toyama et 

al. [11]. It consists in a set of image sequences where each 

sequence presents a different type of difficulty that a 

practical task may meet. The performance is evaluated 

against hand-segmented ground truth. Three terms are used 

in evaluation: The false positive (FP) is the number of 

background pixels that are wrongly marked as foreground. 

The false negative (FN) is the number of foreground pixels 

that are wrongly marked as background. The total error 

(TE) is the sum of FP and FN. A brief description of the 

Wallflower image sequences can be made as follows:  

 

- Moved Object: A person enters into a room, makes a 

phone call, and leaves. The phone and the chair are left 

in a different position.  

- Time of Day: The light in a room gradually changes 

from dark to bright. Then, a person enters the room 

and sits down. 

- Light Switch: A room scene begins with the lights on. 

Then a person enters the room and turns off the lights 

for a long period. Later, a person walks in the room, 

switches on the light, and moves the chair, while the 

door is closed.  

- Waving Trees: A tree is swaying and a person walks 

in front of the tree.  

- Camouflage: A person walks in front of a monitor, 

which has rolling interference bars on the screen. The 

bars include similar color to the person’s clothing. 

- Bootstrapping: The image sequence shows a busy 

cafeteria and each frame contains people. 

- Foreground Aperture: A person with uniformly 

colored shirt wakes up and begins to move slowly. 

 

7.2 Experiments and results 

The Table 6 shows the performance in term of FP, FN and 

TE for each algorithm. The corresponding results are 

shown in Table 7. The Fig. (6). shows the performance in 

term of FP and FN for each algorithm. 

 
7.2.1 Gaussians models versus subspace learning models 

 

From Table 7, we can see that the Gaussian models give 

the biggest total errors with TE>20 000 instead of the 

subspace learning models with TE<20 000. The 

performance of the Gaussian models is due to their poor 

results on the sequence Light Switch.  This is confirmed by 

the Fig. (7). which shows the performance without the 

sequence Light Switch. In this case, the best results are 

given by the MOG and the KDE which are better for 

multimodal backgrounds as shown for the sequence 

Waving Trees in Table 6. 



  

   

Table 6. Results on the Wallflower dataset 
 

 

Sequence Moved  

Objects 

Time of  

Day 

Light  

Switch 

Waving  

Trees  

Camou 

-flage 

Boot 

-strap 

Foreg. 

Aperture 

Test image 

       
Ground truth 

       
SG 
Wren et al. [18] 

       
MOG 
Stauffer et al. [12] 

       
KDE 
Elgammal et al. [19] 

       
SL-PCA 
Oliver et al. [1] 

       
SL-ICA 
Tsai and Lai [46] 

       
SL-INMF 
Bucak et al. [31] 

       
SL-IRT 
Li et al. [32] 

       
 

 
Table 7. Performance Evaluation on the Wallflower dataset 
 

    Problem Type       

  Error Moved Time of Light Waving Camou- Bootstrap Foreground Total TE TE 

Algorithm Type Object Day Switch Trees flage   Aperture Errors without LS without C 

SG FN 0 949 1857 3110 4101 2215 3464       

Wren et al. 

[18] FP 0 535 15123 357 2040 92 1290 35133 18153 28992 

MOG FN 0 1008 1633 1323 398 1874 2442       

Stauffer et al. 

[12] FP 0 20 14169 341 3098 217 530 27053 11251 23557 

KDE FN 0 1298 760 170 238 1755 2413       

Elgammal et 

al. [19]  FP 0 125 14153 589 3392 933 624 26450 11537 22175 

SL-PCA FN 0 879 962 1027 350 304 2441       

Oliver et al. 

[1] FP 

1065 16 362 2057 1548 6129 537 

17677 16353 15779 

SL-ICA FN 0 1199 1557 3372 3054 2560 2721       

Tsai and Lai 

[46] FP 0 0 210 148 43 16 428 15308 13541 12211 

SL-INMF FN 0 724 1593 3317 6626 1401 3412       

Bucak et al 

[31]. FP 0 481 303 652 234 190 165 19098 17202 12238 

SL-IRT FN 0 1282 2822 4525 1491 1734 2438       

Li et al [47]. FP 0 159 389 7 114 2080 12 17053 13842 15448 

 
 
 

 
 
 



Fig. (6). Overall performance 
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Fig. (7). Overall performance without Light Switch 
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7.2.2 Subspace learning models 
 
The subspace learning algorithms have different 

performances in term of TE. From Table 7, we can see that 

the SL-ICA gives the smallest TE followed by the SL-IRT, 

SL-PCA and SL-INMF. This ranking has to be taken with 

precaution because a poor performance on one video 

influences the TE and then modifies the rank. The main 

interpretation is that some of them are more or less adapted 

for specific situations. For example, only the SL-PCA gives 

FP in the sequence Moved Objects due the fact that the 

model is not update overtime. In the same way, the SL-

INMF gives the biggest total error due to its results on the 

sequence Camouflage.  This is confirmed by the Fig. (8). 

which shows the performance without this sequence 

Camouflage. In this case, the SL-INMF is the second in term 

of performance. Furthermore, the SL-INMF is more robust 

than the SL-IPCA [37] in the case of illumination changes 

(see [31, 47]). The SL-ICA has globally good performance 

except for the sequence Booststrap by giving less true 

detection. The SL-IRT seems to be more efficient in the case 

of camouflage. The SL-PCA gives less FN than FP. For the 

SL-ICA, SL-INMF and SL-IRT, it is the contrary. We can 

remark that the SL-ICA provides very less FP than FN. It is 

interesting in video-surveillance because it decreases false 

alarms. 

 
Fig. (8). Overall performance without Camouflage 
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In resume, the actual subspace learning methods which are 

used in background modeling outperform the state-of-art 

algorithms in the case of illumination changes but can’t deal 

with multimodal backgrounds. So, it will be interesting to 

investigate how to take into account robustly the 

multimodality with a subspace learning methods. 

 

CURRENT & FUTURE DEVELOPMENTS 

In this paper, we have attempted to provide a 

complete survey on background modeling methods based on 

subspace learning.  Thus, we have proposed a classification 

of improvements and variants of the PCA algorithm 

proposed by Oliver et al. [1]. This survey has shown that 

subspace learning via PCA and its improvements are the 

most used. ICA, INMF and IRT have proved their efficiency 

in the case of illumination changes. The performance 

evaluation has shown that subspace learning models 

outperform some state-of art algorithms in the case of 

illumination changes.  

For future investigations, discriminative subspace 

learning methods like LDA and CCA seem to be very 

interesting approaches. For example, LDA exists in several 

incremental versions as incremental LDA using maximum 

margin criterion [63] or using fixed point method [64] or 

sufficient spanning set approximations [65]. In the same way, 

Partial Least Squares (PLS) methods [66] give a nice 

perspective to model robustly the background. 
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