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Jinsub Kim,Member, IEEE, Lang Tong,Fellow, IEEE, and Robert J. Thomas,Life Fellow, IEEE

Abstract—Data attacks on state estimation modify part of sys-
tem measurements such that the tempered measurements cause
incorrect system state estimates. Attack techniques proposed
in the literature often require detailed knowledge of system
parameters. Such information is difficult to acquire in practice.
The subspace methods presented in this paper, on the other
hand, learn the system operating subspace from measurements
and launch attacks accordingly. Conditions for the existence of
an unobservable subspace attack are obtained under the full
and partial measurement models. Using the estimated system
subspace, two attack strategies are presented. The first strategy
aims to affect the system state directly by hiding the attack vector
in the system subspace. The second strategy misleads the bad data
detection mechanism so that data not under attack are removed.
Performance of these attacks are evaluated using the IEEE 14-
bus network and the IEEE 118-bus network.

Index Terms—State estimation, subspace method, false data
injection, data framing attack, cyber physical system.

I. I NTRODUCTION

A Cyber physical system (CPS) [1] is a collection of
physical devices networked by a cyber infrastructure with

integrated sensing, communications, and control. A defining
feature of CPS is coordinated operations based on data col-
lected from sensors deployed throughout the system. Major
examples of CPS include power grids, intelligent transporta-
tion systems, and networked robotics.

An essential signal processing component of many CPSs
is real-time state estimation based on sensor measurements
[2]. The state estimate provides a CPS with the real-time
monitoring and control capability. For instance, the stateesti-
mate of a power grid facilitates real-time economic dispatch,
contingency analysis, and computation of real-time electricity
price [2].

The dependency of CPS on data communications makes it
vulnerable to cyber attacks where an adversary may break into
the network, collect unauthorized information, and intercept
and alter sensor data. Because measurements are collected
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over a wide geographical area by distributed data acquisition
systems, sometimes through wireless links, communications
networks that support modern CPSs have numerous points of
vulnerabilities [3], [4]. For critical infrastructures such as a
power grid, a well planned coordinated attack may lead to a
cascading failure and a regional blackout [5].

To assess vulnerability of CPS to possible cyber attacks, itis
important to study potential attack mechanisms. In this paper,
we consider an adversary who can modify certain sensor data
such that the corrupted data will mislead the CPS control with
a wrong state estimate. We refer to such a data attack on state
estimation as astate attack. A major challenge of state attack
is to avoid being detected and identified by the fusion center.

In the literature, successful state attacks on a CPS, in par-
ticular a power grid, have been reported. Liu, Ning, and Reiter
[6] presented the first state attack strategy, where an adversary
replaces part of “normal” sensor data with “malicious data.”
They showed that if an adversary can control a sufficiently
large number of sensor data, it can perturb the state estimate
by an arbitrary degree while avoiding detection at the control
center. Subsequent works along this line uncovered numerous
attack and protection mechanisms [7]–[14].

Most proposed attack schemes require considerably detailed
system information. In particular, the network topology and
physical system parameters are often required to construct
attacks. Although such information may be obtained by pen-
etrating the control center, security measures can make it
difficult in practice to access such information.

A. Summary of contributions

We consider the problem of data-driven attacks on state es-
timation, assuming that the adversary is capable of monitoring
a subset of system measurements without detailed knowledge
of the network topology and system parameters. The key
idea in the proposed approach is to exploit the subspace
structure of the measurements, in the same spirit of subspace
techniques in array processing [15], beamforming [16], and
system identification [17].

The main contribution of this paper is the development
of subspace techniques for designing a state attack. To this
end, we present two techniques with different characteristics.
First, we show a construction of an unobservable attack based
on the estimated subspace structure of measurements. We
show further that, in constructing the attack, under certain
conditions, monitoring only partial measurements may be
sufficient. In particular, we present a graph theoretic condition
for the existence of an unobservable attack under the partial
measurement model.
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The second subspace-based attack exploits current bad data
detection and removal mechanisms. In particular, the attack
purposely triggers the bad data detection mechanism, but it
is designed to mislead the fusion center to remove data that
have not been tampered by the adversary while retaining some
of the falsified data. After such data removal, although the
remaining data appear to be consistent with the system model,
the resulting state estimate may have an arbitrarily large error.
We refer to this type of attack asdata framing attackin
the sense that valid data are “framed” by the adversary and
removed incorrectly by the fusion center.

To demonstrate the effectiveness of these attacks, we con-
sider the problem of state estimation in a power system as a
practical example of CPS. To this end, we consider the IEEE
14-bus network and the IEEE 118-bus network [18].

An additional complexity of the power system is that the
system observation is a nonlinear function of the system state.
This raises the issue of whether attacks constructed from a
linear model is effective in a nonlinear system. While we do
not have theoretical guarantees, simulation results show that
the subspace-based data attacks perform well in the presence
of the nonlinearities in system equations.

B. Related work and organization

This paper extends some of the key results on state attacks
that assume that the system parameters and the network
topology are known to the attacker. We describe below some
of the relevant techniques.

There is a substantial literature on state attacks when the
system parameter and the network topology areknown. As
mentioned before, Liu, Ning, and Reiter [6] first introduced
an unobservable attackon power system state estimation,
which can perturb the state estimate without being detected
by the bad data detector at the fusion center. Following their
seminal work, the link between feasibility of an unobservable
attack and power system observability was made in [7],
[8], [19]. Consequently, classical power system observabil-
ity conditions [20] can be modified to check feasibility of
unobservable attacks and used to develop countermeasures
based on sensor data authentication [7]–[10], [12], [19], [21],
[22]. To assess the grid vulnerability against data attacks, the
minimum number of adversary-controlled sensors necessary
for an unobservable attack was suggested as thesecurity index
of the grid [8], [23]. The data framing attack, when the system
parameters are known, was first proposed in [24] to circumvent
the fundamental limit imposed by the security index.

There is limited work on state attacks without system
information or with partial system information. The use of
independent component analysis in [13] is the most relevant.
The authors of [13] proposed to identify a mixing matrix
from which to construct an unobservable attack. However,
such techniques require that loads are statistically indepen-
dent and non-Gaussian, and the techniques need full sensor
observations. Generating unobservable attacks using partial
parameter information was considered in [14]. The authors
in [14] showed that an adversary knowing impedance of
transmission lines in a cutset of the network topology can

construct an unobservable attack. However, how an adversary
can learn local parameters is nontrivial. In contrast to the
aforementioned approaches, our method requires no system
parameter information, and it can be launched with only partial
sensor observations. Furthermore, we identify the conditions
under which an attacker with partial sensor observations (with-
out other system information) may construct an unobservable
attack or a data framing attack. In contrast to the feasibility
conditions given in existing works in the literature [7], [8],
[19], where an omniscient adversary is assumed, our condi-
tions guarantee a successful attack design for an adversary
with limited knowledge and limited access to the system.

Attacks were also studied in the framework of a general dy-
namic CPS, under the assumption of an omniscient adversary.
For instance, an attack on a linear control system equipped
with a linear-quadratic-Gaussian controller was studied in [25].
Detectability and identifiability of attacks on general CPS
operations was characterized in [26]. The model considered
in these papers is more general than the static model studied
here. However, their assumption of an adversary with complete
system information is stronger than that in the present work.

The rest of this paper is organized as follows. Section II
introduces the measurement model, the mathematical model of
state estimation and bad data processing, and the attack model.
Section III presents the subspace methods of unobservable
attack, and Section IV presents the subspace methods of data
framing attack. In Section V, the results from simulations
with benchmark power grids are presented. Finally, SectionVI
provides concluding remarks.

II. M ATHEMATICAL MODELS

A. Notations

An upper case boldface letter (e.g., H) denotes a matrix,
a lower case boldface letter (e.g., x) denotes a vector, and a
script letter (e.g., A, S) denotes a set. The entry ofH at theith
row and thejth column is denoted byHij , and theith entry
of x is denoted byxi. In addition,R(H) andN(H) denote
the column space and the null space ofH respectively. And,
I denotes an identity matrix with an appropriate size.

B. Measurement model

Thesystem stateof a CPS is defined as a vector of variables
that characterize the current operating condition of the CPS.
We assume centralized state estimation at the fusion center.
For real-time estimation of the system statex ∈ R

n, the
fusion center collects measurements from sensors deployed
throughout the system. Generally, the sensor measurements
are related to the system statex in a nonlinear fashion, and
the relation can be described by the nonlinear measurement
model (e.g., the AC model for a power grid [27]):

z = h(x) + e, (1)

where z ∈ R
m is the measurement vector,h(·) is the

measurement function, ande is the Gaussian measurement
noise.
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If some sensors malfunction or an adversary injects mali-
cious data, the fusion center observes biased measurements,

z̄ = h(x) + e+ a, (2)

wherea represents a deterministic bias. In such a case, the data
are said to bebad, and the biased sensor entries are referred
to asbad data entries. The bad data vector is typically sparse,
and its support is unknown to the fusion center. Ifa is injected
by an adversary,a is constrained by its support.

In analyzing the attack effect on state estimation, we adopt
a linearization of (1) around a nominal statex0:

z = h(x0) +H(x− x0) + e, (3)

whereH ∈ R
m×n is the measurement matrix that relates the

system state to the measurement vector, ande is the Gaussian
measurement noise with a covariance matrixσ2I. Without loss
of generality, we assume that bothh(x0) and x0 are zero
vectors1 and employ the following model:

z = Hx+ e. (4)

A system is said to beobservable if the measurement
matrix H has full column rank (i.e., x can be uniquely
determined fromHx.) System observability is essential for
state estimation. In practice, sensors should be placed in the
network to satisfy observability. Hence, we assume that the
CPS of interest is observable,i.e., H has full column rank.

In practice, the nonlinear system and the nonlinear iterative
state estimation techniques have a certain mitigating effect on
attacks designed based on a linear model [28]. It is therefore
important to validate performance of an attack strategy based
on the nonlinear model (1) using a nonlinear state estimator.
Note that, while our attacks are constructed based on (4), our
numerical experiments validate their performance using the
original nonlinear system (1) with a nonlinear state estimator.

C. State estimation and bad data processing

This section introduces a popular approach to state estima-
tion and bad data processing [27], [29], which we assume to
be employed by the fusion center. The specific approach is a
widely used standard implementation in the power grid where
the number of states is in the order of 10,000, and the estimates
are made every few minutes.

Fig. 1 illustrates an iterative scheme for obtaining an esti-
matex̂ of the system state, which consists of three functional
blocks: state estimation, bad data detection, and bad data
identification.

The assumed state estimator is based on the maximum
likelihood principle and is implemented in a recursive manner.
Iterations begin with the initial measurement vectorz(1) , z

and the initial measurement functionh(1) , h where the
superscript denotes the index for the current iteration.

In the kth iteration, state estimation uses(z(k), h(k)) as an
input and calculates the least squares (LS) estimate of the

1For general cases, we can simply treatz1 , z−h(x0) andx1 , x−x0

as the measurement vector and the state vector and work withz1 = Hx1+e.

Bad Data
Identification
and Removal

State
Estimator

Bad Data
Detector

Fail

 Pass
z

x̂

x̂

Fig. 1. State estimation and bad data processing

system state and the corresponding residue vector:

x̂(k) , argminx
1

σ2
‖z(k) − h(k)(x)‖22,

r(k) , z(k) − h(k)(x̂(k)),
(5)

where‖ · ‖2 denotesl2 norm. In practice, the above nonlinear
LS estimate can be obtained by iteration of a linearized LS
estimation using Newton-Raphson or quasi-Newton methods
[27].

Bad data detection employs theJ(x̂)-test [27], [29]:










bad data if
1

σ2
‖r(k)‖22 > τ (k);

good data if
1

σ2
‖r(k)‖22 ≤ τ (k)

(6)

where τ (k) is a predetermined threshold. TheJ(x̂)-test is
widely used due to its simplicity and the fact that the test
statistic has aχ2 distribution if the data are good [29]. The
latter fact is used to set the thresholdτ (k) for a given false
alarm constraint.

If the bad data detector (6) declares that the data are good,
the algorithm returns the state estimatex̂(k) and terminates.
However, if the bad data detector declares that the data are
bad, bad data identification is invoked to identify and remove
onebad data entry from the measurement vector.

A widely used criterion for identifying a bad data entry is
the normalized residue [27], [29]: eachr(k)i is divided by its
standard deviation under the hypothesis thatz(k) contains no
bad data. Therefore, each normalized residue approximately
follows the standard normal distribution ifz(k) contains no
bad data. Specifically,

r̃(k) , Ω(k)r(k), (7)

whereΩ(k) is a diagonal matrix with

Ω
(k)
ii ,



















0
if removing i makes
the system unobservable2;

1
√

σ2W
(k)
ii

otherwise;
(8)

andW(k) is defined as

I−H(k)((H(k))TH(k))−1(H(k))
T

(9)

2If removing the sensori makes the system unobservable, its residue is
always equal to zero [27], and the corresponding diagonal entry of W(k) is
zero. For such a sensor, the normalizing factor is0 such that its normalized
residue is equal to0.
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with H(k) denoting the Jacobian ofh(k) at x̂(k) (see Appendix
of [29] for details.)

Once the normalized residuẽr(k) is calculated, the sensor
with the largest|r̃(k)i | is identified as a bad sensor. The row
of z(k) and the row ofh(k) that correspond to the bad sensor
are removed, and the updated measurement vectorz(k+1) and
measurement functionh(k+1) are used as the inputs for the
next iteration.

Using the linearized model (4), every step is the same as
using the nonlinear model, except that the nonlinear measure-
ment functionh(k)(x) is replaced with the linear function
H(k)x (so, the Jacobian is the same everywhere.) Note that
the LS state estimate (5) is replaced with a simple linear LS
solution:

x̂(k) = ((H(k))TH(k))−1(H(k))
T
z(k), (10)

and thus

r(k) = z(k) −H(k)x̂(k) = W(k)z(k). (11)

D. Adversary model

An adversary is assumed to be capable of modifying the data
from a subset of sensorsSA , referred to asadversary sensors.
The fusion center observes corrupted measurementsz̄ instead
of the real measurementsz. The adversarial modification is
mathematically modeled by:

z̄ = z+ a, a ∈ A, (12)

wherea is an attack vector, andA is the set of feasible attack
vectors defined as

A , {a ∈ R
m : ai = 0, ∀i /∈ SA}. (13)

Liu, Ning, and Reiter [6] presented anunobservable attack,
which is a powerful attack mechanism capable of perturbing
the state estimate without being detected. An unobservable
attack can be formally defined as follows.

Definition 2.1: Given a measurement vectorz correspond-
ing to a statex, i.e., z = Hx + e, a state attacka ∈ A

is unobservableif there exists a statēx 6= x such that
z+ a = Hx̄+ e.

The following Lemma shows the algebraic property of the
attack; it follows immediately from the definition.

Lemma 2.1:A state attack is unobservable if and only if
a 6= 0, anda ∈ R(H)∩A. Furthermore, ifa is unobservable,
so is γ · a for any nonzeroγ ∈ R, and‖x − x̄γ‖2 → ∞ as
γ → ∞, wherex̄γ denotes the state satisfyingHx+ γ · a =
Hx̄γ .

Lemma 2.1 implies that the feasibility of an unobservable
attack does not depend on the current operating statex. It only
depends onA, which is characterized by the set of adversary
sensors, and the subspaceR(H). The feasibility is also closely
related to the concept of system observability. In particular, the
following connection was found in [8].

Theorem 2.1 (Theorem 1, [8]):An unobservable attack is
feasible if and only if removing the adversary sensors makes

the grid unobservable (i.e., the measurement matrix does not
have full column rank.)

Proof: See Appendix A.

III. SUBSPACE METHODS FOR UNOBSERVABLE ATTACK

Most existing works on an unobservable attack assumed that
an adversary knows the measurement matrixH. In contrast,
this section presents a design of an unobservable attack based
on the system measurement subspace, without knowledge of
H. Employing the linearized measurement model (4), we will
present the conditions under which an unobservable attack
can be constructed based on the subspace information. We
also demonstrate a condition that guarantees the design of an
unobservable attack based on partial sensor measurements;for
an attack on a power grid, this condition is characterized asa
graph condition on the network topology.

A. Feasibility of an unobservable attack

Note that designing an unobservable attack is equivalent
to finding a nonzero vector inR(H) satisfying the sparsity
pattern defined byA. Therefore, an unobservable attack, if
feasible, can be launched by using a basis matrixU ∈ R

m×n

of R(H) without knowing H, as stated in the following
theorem. Formally, we refer toR(H) as the measurement
subspacebecause it is the subspace of all possible noiseless
measurements.

Theorem 3.1:Let U be any basis matrix ofR(H) andŪ a
submatrix ofU obtained by removing the rows corresponding
to the adversary sensors. Then, the following are true:

1) An unobservable attack is feasible if and only ifŪ does
not have full column rank.

2) When feasible, an unobservable attack can be con-
structed usingU: for a nonzero vectorv ∈ N(Ū),
a , Uv is an unobservable attack vector.

Proof: See Appendix B.

Theorem 3.1 states the feasibility condition in Theorem 2.1
(Theorem 1 of [8]; see also Theorem 5 of [21]) as asubspace
condition. Note that in constructing an unobservable attack
vectorUv, the adversary only needs to know a basis matrix
U of R(H).

B. Unobservable attack with partial measurements

In this section, we show that an unobservable attack can be
constructed using the subspace information ofpartial sensor
measurements. To formally state the result, we need the notion
of a critical set of sensors [27] and partial observability defined
as follows.

Definition 3.1: A set of sensors is called acritical set if
removing the set of sensors from the system renders the system
unobservable while removing any strict subset of it does not.
Let S andX denote a subset of sensors and a subset of state
variables respectively. The state variables inX are said to be
observable with respect toS if the state variables inX can be
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uniquely determined based on measurements fromS3. When
the state variables inX are observable with respect toS, a
subsetC of S is acritical set with respect to(S,X) if removing
C from S makes the state variables inX no longer observable
with respect toS while removing a strict subset ofC from S

does not.

Consider a subset of sensorsSo. Let Xo denote the set of
state variables whose values affect measurements from the
sensors inSo (i.e., the|So| by n submatrixHo of H, consisting
of the rows corresponding to the sensors inSo, has nonzero
columns exactly at the columns corresponding to the state
variables inXo.)

The following theorem provides the conditions under which
an unobservable attack can be constructed based on the sub-
space information of measurements fromSo. The conditions
roughly mean that (i) based on measurements fromSo, one can
uniquely identify the relevant state variables (i.e., the variables
in Xo,) and (ii)So contains a set of sensors, which, if controlled
by an adversary, is sufficient for launching an unobservable
attack and is also critical with respect to(So,Xo).

Theorem 3.2:Suppose that

1) the state variables inXo are observable with respect to
So,

2) C ⊂ So is a critical set with respect to(So,Xo), and
3) removingC makes the system unobservable.

Let Ho ∈ R
|So|×n denote the submatrix ofH obtained by

retaining only the rows corresponding to the sensors inSo.
Then, the following are true:

1) Let Ao denote the set of vectors inR(Ho) such that
b ∈ R(Ho) is in Ao if and only if the rows ofb
corresponding to the sensors inSo \C are equal to zero.
Then, the dimension ofAo is one.

2) For an arbitrarynonzeroao ∈ Ao, the attack that modi-
fies the sensor data fromC by adding the corresponding
entries inao to the real data is unobservable.

Proof: See Appendix C.

Note thatAo in Theorem 3.2 can be fully characterized
based on a basis matrix ofR(Ho). If the conditions of Theo-
rem 3.2 are met, an attacker knowing a basis matrix ofR(Ho)
can launch an unobservable attack. The following corollary
provides the detail of how an attack can be constructed from
a basis matrix ofR(Ho).

Corollary 3.2.1: Suppose that the conditions 1), 2), and 3)
of Theorem 3.2 hold. LetUo ∈ R

|So|×|Xo| denote a basis
matrix of R(Ho) andŪo denote a submatrix ofUo obtained
by removing the rows corresponding to the sensors inC. Then,
the following are true:

1) The dimension ofN(Ūo) is one.
2) For any nonzero vectorv ∈ N(Ūo), the attack that mod-

ifies the sensor data fromC by adding the corresponding
entries inUov to the real data is unobservable.

3In other words, every element ofN(Hs) has zero entries for the rows
corresponding to the state variables inX, where Hs ∈ R

|S|×n is the
submatrix ofH obtained by retaining only the rows corresponding to the
sensors inS.
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Fig. 2. A part of the IEEE 118-bus network: Rectangles represent the sensor
locations. Every bus has an injection sensor, and every linehas line flow
sensors for both directions.

The three conditions of Theorem 3.2 are all related to
system observability or partial observability. In case of apower
grid, system observability and partial observability can be
checked based onpartial information about the grid topol-
ogy and sensor locations. In particular, the graph-theoretical
observability criterion in [20] can be employed.

A power grid is a network of buses connected by transmis-
sion lines. Thetopologyof a grid is naturally defined as an
undirected graphG = (V,E) whereV is the set of buses, and
E is the set of connected transmission lines:{i, j} is in E if
and only if there exists a connected transmission line between
bus i and busj. We consider two types of legacy sensors:
line flow sensors and bus injection sensors. A line flow sensor
located on a line{i, j} measures the power flowing through
the line either from busi to busj or from busj to busi. A
bus injection sensor on busi measures the total power injected
into the network at busi (see Appendix F for the details of
the sensor measurements.)

The following corollary presents the graph conditions that
imply the conditions of Theorem 3.2 for an attack on a
power grid state estimation. Appendix F provides the details
of the graph-theoretical observability criterion in [20],which
directly results in the following corollary from Theorem 3.2.
To state the corollary, we need to introduce the concept of
a reduced power network. Given a subsetSo of sensors, the
reduced network consists of the sensors inSo and the topology
Ḡ = (V̄, Ē), where{i, j} is in Ē if and only if a line flow sensor
on {i, j} is in So, or an injection sensor at busi or busj is
in So, and V̄ consists of all the endpoints of the lines in̄E.
For instance, in the IEEE 118-bus network, Fig. 2 describes a
reduced network forSo consisting of the circled sensors. In this
example, the vertices and edges inside the dashed boundary
form Ḡ.

Corollary 3.2.2: Let So be a subset of sensors,Ḡ = (V̄, Ē)
the topology of the reduced network forSo, andC a subset of
So. Suppose that

1) There exists a cut of the grid topologyG such thatC
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consists of all line flow sensors on the cutset lines and
all injection sensors on the endpoints of the cutset lines.

2) For every sensors in C, there exists a way to assign
each injection sensor in(So \C)∪{s} to a line incident
to the bus where the sensor is located4 such that there
exists a spanning tree of̄G with at least one sensor in
(So \ C) ∪ {s} on every edge of the tree (either a line
flow or an assigned injection sensor.)

Then, the conditions of Theorem 3.2 hold, and thus the
statements in Theorem 3.2 and Corollary 3.2.1 hold.

Note that the conditions of Corollary 3.2.2 are related to
the topology and the sensor locations in the reduced network.
Therefore, an adversary can exploit partial information about
the topology and sensor locations to find an attack setting that
enables an unobservable attack with partial sensor observa-
tions. For instance, it can be easily checked that the example
in Fig. 2 with C consisting of the circled empty-rectangle
sensors satisfies the conditions. In particular, the first condition
is satisfied with the cut that isolates bus 115 from the rest of
the network.

C. Subspace attack algorithm

All the information that is necessary for a subspace attack
is the subspace information ofR(H) or R(Ho). Subspace
estimation based on measurement data has been actively
studied in the signal processing literature (e.g., [30], [31]),
and thus subspace methods naturally lead to a data-driven
algorithm for practical attack scenarios. Our focus in this
section is to demonstrate how (any) subspace estimator can
be used to generate a data-driven attack.

One of the simplest yet effective ways of estimating a basis
matrix is to use a sample covariance matrix. Letz1, . . . , zK
denote measurement vectors atK different sampling instances:

zi = Hxi + ei, i = 1, . . . , K. (14)

For simplicity, suppose that the noise vectorse1, . . . , eK are
independent and identically distributed (i.i.d.), the state vec-
tors x1, . . . , xK are i.i.d. with a positive definite covariance
matrix Σx, and the noise vectors and the state vectors are
uncorrelated. Then, the covariance matrix ofz is

Σz , E
[

(z1 − E[z1])(z1 − E[z1])
T
]

= HΣxH
T + σ2I.

(15)
Note thatHΣxH

T has rankn. Therefore, ifUΛVT is a
singular value decomposition (SVD) ofΣz, then columns of
U that correspond to then largest singular values form a basis
of R(HΣxH

T ). BecauseR(HΣxH
T ) is equivalent toR(H),

the same columns form a basis ofR(H).
Therefore, in practice, we can estimate a basis matrix of

R(H) by applying SVD to the sample covariance matrixΣ̂z:

Σ̂z ,
1

K − 1

K
∑

i=1

(zi − z)(zi − z)T , (16)

wherez denotes the sample mean.

4In other words, for an injection sensor located at busi, we assign the
injection sensor to one of the lines that are incident to busi. We do this for
each injection sensor in(So \ C) ∪ {s}.

Based on the above (or any other) subspace estimator and
Theorem 3.1, the data-driven attack withfull sensor observa-
tions operates as follows with the observations{z1, . . . , zK}
and the adversary sensor setSA as inputs:

1) Subspace estimation: Based on{z1, . . . , zK}, calculate
an estimateÛ ∈ R

m×n of a basis matrix ofR(H).
2) Null space estimation: ObtainÛ1 by removing the rows

of Û that correspond to the sensors inSA . Find an SVD
of Û1, Û1 = ŨΛ̃ṼT , and letv denote the column of̃V
that corresponds to the smallest singular value (v is an
estimate of a nonzero element ofN(Ū) in Theorem 3.1.)

3) Attack : Modify the sensor data fromSA by adding the
corresponding entries ofη · Ûv to them, whereη ∈ R

is a scaling factor to adjust the degree of perturbation.

The data-driven attack withpartial sensor observations
can be constructed in the same manner based on Corol-
lary 3.2.1. Specifically, the attack receives(Xo, So,C) and
{z̃1, . . . , z̃K}—the set of measurements from the sensors in
So at K different time instances—as inputs and executes the
following steps:

1) Subspace estimation: Based on{z̃1, . . . , z̃K}, calculate
an estimatêUo ∈ R

|So|×|Xo| of a basis matrix ofR(Ho).
2) Null space estimation: Obtain Ûc by removing the

rows of Ûo that correspond to the sensors inC. Find an
SVD of Ûc: Ûc = ŨΛ̃ṼT . Let v denote the column
of Ṽ that corresponds to the smallest singular value
(v is an estimate of a nonzero element ofN(Ūo) in
Corollary 3.2.1.)

3) Attack : Modify the sensor data fromC by adding the
corresponding entries ofη · Ûov to them, whereη ∈ R

is a scaling factor to adjust the degree of perturbation.

IV. SUBSPACE METHODS FOR DATA FRAMING ATTACK

The idea of a data framing attack based on full system pa-
rameter information was first presented in [24]. In this section,
we demonstrate data-driven approaches of data framing attack
by exploiting the subspace structure of sensor measurements.

A. Data framing attack

A data framing attack aims to enable an adversary to
perturb the state estimate by an arbitrary degree even when
an unobservable attack withSA does not exist. To this end,
a data framing attack frames some normally operating meters
as sources of bad data such that their data will be removed. A
critical parameter of data framing attack is the set of sensors to
be framed, denoted bySF. The framed sensor setSF is selected
such thatSF ∩ SA = ∅, and if the sensors inSF are removed
from the system, an unobservable attack withSA becomes
feasible. Under this selection rule, an adversary may design
an attack that becomes unobservable once the sensor data from
SF are removed by the bad data removal rule.

To successfully remove the data fromSF, one can use an
attack vector that maximizes the energy of the normalized
residues atSF in the first iteration of the bad data processing.
Such an attack design does not necessarily guarantee that all
data fromSF will be identified as bad. Nevertheless, this is a
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reasonable heuristic to circumvent the difficulty of analyzing
attack effect on normalized residues in all iterations.

To simplify notation, we drop the superscript that denotes
the first iteration of bad data processing: all the quantities
in this section are from the first iteration unless otherwise
specified. The attackdirection that maximizes the energy of
the normalized residues in the first iteration can be constructed
by solving the following optimization [24]:

maxa E
[
∑

i∈SF
(r̃i)

2
]

subj. ‖a‖22 = 1, a ∈ R(H1) ∩A,
(17)

whereH1 ∈ R
m×n is a matrix obtained fromH by replacing

the rows corresponding to the sensors inSF with zero row
vectors. The constrainta ∈ R(H1) holds if and only ifa is
unobservable after the framed sensor data are removed. This
constraint guarantees that once the data fromSF are removed,
the attack can have the same effect as an unobservable attack.

The following theorem states that a solution to (17) can be
obtained without knowingH if we know a basis matrix of
R(H).

Theorem 4.1:An adversary knowing a basis matrixU ∈
R

m×n of R(H) can find a solution of (17). Specifically, a
solution to the following quadratically constrained quadratic
programming (QCQP) is also a solution to (17), and vice versa:

maxa ‖ISFΩ̃W̃a‖22
subj. ‖a‖22 = 1, a ∈ R(U1) ∩A,

(18)

whereISF ∈ R
|SF|×m is the row selection operator that retains

only the rows corresponding to the sensors inSF out of m
rows,

W̃ , I−U(UTU)−1UT , (19)

Ω̃ ∈ R
m×m is a diagonal matrix with

Ω̃ii =

{

1/
√

W̃ii if W̃ii > 0;
0 if W̃ii = 0,

(20)

andU1 ∈ R
m×n is a matrix obtained fromU by replacing

the rows corresponding to the sensors inSF with zero row
vectors.

Proof: See Appendix D.

Note that addition of the attack vectora changes the mean
of the residue vector from0 to W̃a. And, ISFΩ̃W̃a/σ is the
resulting mean of the normalized residues of the data fromSF.

B. Sufficiency of partial measurements

Similar to sufficiency of partial measurements for an un-
observable attack (Theorem 3.2), data framing attack can
also be launched based on subspace information of partial
measurements, as stated formally in the following theorem.
Below, we use the notations defined in Section III-B for the
partial measurement case.

Theorem 4.2:Suppose that the conditions 1), 2), and 3) of
Theorem 3.2 hold forSo, Xo, and C. Let {C1, C2} denote
an arbitrary partition ofC. Let HA denote a submatrix ofH
consisting of the rows corresponding to the sensors inSo\C2,

UA ∈ R
|So\C2|×|Xo| denote a basis matrix ofR(HA), andŪA

denote a submatrix ofUA obtained by removing the rows
corresponding to the sensors inC1. Then, the following are
true:

1) The dimension ofN(ŪA) is one.
2) For a nonzero vectorv ∈ N(ŪA), the attack that modi-

fies the sensor data fromC1 by adding the corresponding
entries inUAv to the real data is equivalent to using
α · a∗ as an attack vector, whereα is a nonzero real
number, anda∗ is an optimal solution to (17) with
(SA , SF) = (C1,C2).

Proof: See Appendix E.

Theorem 4.2 implies that under certain conditions, knowl-
edge of a basis matrix ofR(HA)—the subspace of measure-
ments fromSo\C2—is sufficient for launching a data framing
attack with (SA , SF) = (C1,C2). Note that Theorem 4.2
requires the same conditions as Theorem 3.2. Therefore, foran
attack on a power grid, the graph conditions in Corollary 3.2.2
can replace the conditions of Theorem 4.2.

C. Subspace data framing attack algorithm

Theorem 4.1 and Theorem 4.2 guarantee the sufficiency
of subspace information in constructing data framing attacks.
Similar to the data-driven algorithms for unobservable attacks,
we can incorporate a subspace estimator and SVD to build a
data-driven algorithm for data framing attacks.

The data-driven framing attack withfull sensor observations
receives sensor observations{z1, . . . , zK} atK different time
instances and(SA , SF) as inputs, and it has two small positive
parametersǫ1 and ǫ2 for thresholding rules. Based on the
QCQP formulation (18), it works as follows:

1) Subspace estimation: Based on{z1, . . . , zK}, calculate
an estimateÛ ∈ R

m×n of a basis matrix ofR(H).
2) Null space estimation: ObtainÛ1 by removing the rows

of Û that correspond to the sensors inSA ∪ SF. Find an
SVD of Û1: Û1 = ŨΛ̃ṼT . Let V̂ denote the matrix
consisting of the columns of̃V whose corresponding
singular values are less thanǫ1. Let ÛA ∈ R

m×n

be the matrix obtained from̂U by replacing the rows
corresponding to the sensorsnot in SA with zero row
vectors. Then,̂UAV̂ is an estimate of a basis matrix of
R(U1) ∩A in (18)5.

3) QCQP parameter estimation: Calculate

Ŵ , I− Û(ÛT Û)−1ÛT (21)

and Ω̂ ∈ R
m×m, which is a diagonal matrix with

Ω̂ii =

{ √

1/Ŵii if Ŵii > ǫ2;

0 if Ŵii < ǫ2.
(22)

5A basis matrix ofR(U1) ∩ A in (18) can be found by noting that
a ∈ R(U1) ∩ A if and only if a = U1y for somey ∈ N(U2) where
U2 ∈ R

(m−|SA∪SF|)×n is a submatrix ofU obtained by removing the rows
corresponding to the sensors inSA ∪SF. In other words, given a basis matrix
B of N(U2), U1B is a basis matrix ofR(U1) ∩ A.
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4) QCQP: Solve maximizing‖ISFΩ̂ŴÛAV̂y‖22 subject to
‖ÛAV̂y‖22 = 1 andy ∈ R

k, wherek is the number of
columns ofV̂. Let y∗ denote the solution.

5) Attack : Modify the sensor data fromSA by adding the
corresponding entries ofη · ÛAV̂y∗ to them, whereη ∈
R is a scaling factor to adjust the degree of perturbation.

Based on Theorem 4.2, the data-driven framing attack
with partial sensor observations receives(Xo, So,C1,C2) and
{z̃1, . . . , z̃K}—the set of measurements from the sensors in
So \ C2 at K different time instances—as inputs and executes
the following steps:

1) Subspace estimation: Based on{z̃1, . . . , z̃K}, calculate
an estimateÛA ∈ R

|SO\C2|×|XO| of a basis matrix of
R(HA).

2) Null space estimation: ObtainÛc by removing the rows
of ÛA that correspond to the sensors inC1. Find an
SVD of Ûc: Ûc = ŨΛ̃ṼT . Let v denote the column
of Ṽ that corresponds to the smallest singular value
(v is an estimate of a nonzero element ofN(ŪA) in
Theorem 4.2.)

3) Attack : Modify the sensor data fromC1 by adding the
corresponding entries ofη · ÛAv to them, whereη ∈ R

is a scaling factor to adjust the degree of perturbation.

V. NUMERICAL RESULTS

In this section, simulations with benchmark power grids, the
IEEE 14-bus network and the IEEE 118-bus network, demon-
strate the performance of data-driven attacks. The nonlinear
measurement model (1) and the nonlinear state estimator were
employed to emulate practical power system state estimation.
The power system measurement model is briefly described in
Appendix F.

As an attack performance metric, we use thel2 norm of
the state estimation error,i.e., ‖x̂− x‖2, wherex̂ is the state
estimate, andx is the true state.

A. Simulation methods

In each Monte Carlo run, we used the nonlinear model (1)
to generate measurement vectors. State vectors at different
time points were assumed to be independent and identically
distributed Gaussian random vectors with the mean equal to
the operating states given in the IEEE 14-bus and 118-bus data
[18]. Both the 14-bus network and the 118-bus network were
assumed to be fully measured;i.e., all bus injections and all
line flows (in both directions for each line) were measured by
sensors.

In each simulation scenario, we compared performance
of three attack methods: an attack with full knowledge of
H, a data-driven attack with full sensor observations, and a
data-driven attack with partial sensor observations. For data-
driven attacks, 1,000 samples were used to estimate a basis
matrix of the subspace of (either full or partial) measurements
unless otherwise specified. Data-driven attacks employed the
subspace estimator based on the sample covariance matrix
which was described in Section III-C.

Once an attack vector was added to measurements, the
control center executed nonlinear state estimation and baddata

Fig. 3. IEEE 14-bus network: the circled redemptyrectangles represent the
adversary sensors (i.e., the sensors inSA ). The adversary with partial sensor
observations can observe all the circled sensors.

detection and removal, as described in Section II-C, on the
corrupted measurements. The thresholdτ (k) of the bad data
detector (i.e., theJ(x̂)-test) was set to satisfy the false alarm
constraint 0.04.

B. Data-driven unobservable attack

1) IEEE 14-bus test:In the IEEE 14-bus network, we
considered an adversary controlling data from(2̄), (3̄), (4̄),
(2, 3), (3, 2), (3, 4), and (4, 3), as illustrated in Fig. 3:(̄i)
denotes the injection sensor at busi, and(i, j) denotes the line
flow sensor measuring the power flow fromi to j. Theorem 2.1
and the spanning tree observability criterion [20] imply that
the adversary is capable of launching an unobservable attack
(see Appendix F.) In addition, the adversary sensor set is also
a critical set, and thus all possible unobservable attack vectors
are aligned along the same direction (i.e., the dimension of
A ∩ R(H) is one.)

An adversary with partial sensor observations was assumed
to observe data from(2̄), (3̄), (4̄), (2, 3), (3, 2), (3, 4), (4, 3),
(2, 1), (2, 4), (4, 5), (4, 7), and (4, 9). In this setting, it can
be easily verified that the conditions of Corollary 3.2.2 are
satisfied, and thus an adversary with partial observations can
construct an unobservable attack under the linearized model
assumption.

Fig. 4 shows the performance of unobservable attacks, espe-
cially the plot of thenormalizedstate estimation error versus
the relative attack magnitude (‖a‖1/‖z‖1). For normalization,
state estimation errors are divided by the mean estimation
error under the non-attack scenario. In the plot, each marked
point (circle, rectangle, or triangle) denotes the mean of a
normalized error caused by an attack, and the vertical bar on
the marked point is the confidence interval of the normalized
error with 90% confidence level (i.e., the normalized error
stayed in the interval with probability 0.9 in our simulations.)
Data-driven attacks, based on either full or partial sensor
observations, perform as well as the attack with full knowledge
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Fig. 4. Unobservable attacks on the 14-bus network: the sensor SNR is 46dB.
Attacks with the relative attack magnitudes 2, 4, 6, and 8% were tested. For
each scenario, 1,000 Monte Carlo runs are used.

of H. For all attacks, the resulting state estimate error scales
as the attack magnitude scales. The confidence intervals imply
that attacks are successful with high probability. The overall
results indicate that even in a practical nonlinear power system,
the data-driven attacks designed based on the linear model
can perform well, and partial sensor observations can provide
sufficient information for designing a successful attack.

The proposed subspace approaches approximate the non-
linear measurement model with a linearized model and con-
struct an attack vector based on the subspace structure of
the assumed linearized model. Thenonlinearity of the actual
measurement model poses a gap between the theory and prac-
tice, introducing the possibility that a data-driven unobservable
attack might be detectable in practice. Furthermore, even when
the actual measurement model is linear, the subspace estimate
will inevitably contain errors due to thelimited sample size.
Therefore, attacks designed based on the estimate cannot be
unobservable in a strict sense although they might approximate
unobservable attacks.

We examined the probability that an unobservable attack is
detected by bad data detection at the control center. Fig. 5
shows the detection probability for the unobservable attacks,
the setting and performance of which were described in Fig 4.
It turns out that when the attack amplitude is large, the attacks
are detected by bad data detection with high probability.
Considering that the attack with the perfect knowledge of
H and the data-driven attacks resulted in similar detection
probabilities, detectability seems to be attributed to nonlin-
earity of the actual measurement model rather than subspace
estimation error. Nevertheless, Fig. 5 also shows the mean
fraction of adversary-modified data that are identified as bad
by the bad data detection, which turns out to be very small.
The results imply that even though the control center notices
that some data are not trustworthy, bad data detection filters
out only a small fraction of adversary-controlled data thereby
leading to successful attack performance as shown in Fig 4.
Note that even when a number of adversary-controlled data are
filtered out, the performance of an unobservable attack (i.e.,
the resulting state estimate error) remains the same as long
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Fig. 5. Detection probability (solid lines) and the averagefraction of the
adversary data that are identified as bad (dashed lines). Attacks with the
relative attack magnitudes 0.5, 1, 2, 3, and 4% were tested. For each scenario,
1,000 Monte Carlo runs are used.

TABLE I
DETECTION PROBABILITY OF DATA-DRIVEN ATTACKS VERSUS THE

SAMPLE SIZE FOR SUBSPACE ESTIMATION: ‖a‖1/‖z‖1 WAS SET TO1%,
AND 1,000 MONTE CARLO RUNS WERE USED.

Sample size (K)
Attack type K = 250 K = 500 K = 750 K = 1000

Full Obs. 0.176 0.180 0.169 0.150
Partial Obs. 0.166 0.146 0.151 0.168

as some adversary-controlled data remains unremoved6. This
can be easily seen from the structure of an unobservable attack
described in Section II-D.

To further examine the effect of subspace estimation error
on the attack performance, we tried different sample sizes
for subspace estimation (especially, 250, 500, 750, 1000)
under the various attack scenarios. As the representative result
in Table I demonstrates, the sample size did not affect the
detection probability of data-driven attacks. Furthermore, the
resulting state estimation errors were barely affected by the
sample size for subspace estimation: for instance, when the
relative attack magnitude was set to1%, the mean normalized
errors from all data-driven attacks with different sample sizes
stayed between227% and238%. These results imply that the
effect of nonlinearity on attack performance dominates the
effect of subspace estimation errors.

However, we believe that the data-driven attacks are asymp-
totically unobservable if the measurement model islinear.
First of all, it is well known that the subspace estimate based
on the sample covariance converges in probability to a true
basis matrix of the subspace as the sample size grows (see
Theorem 1 in [32] or Lemma 3.1 in [15].) Second, in a data-
driven attack, the mapping from a subspace estimate to an
attack vector is continuous. Therefore, the continuous mapping
theorem (see Theorem 29.2 in [33]) implies that the data-

6An unobservable attacka is equal toHy for some nonzeroy. Suppose
that bad data detection identifies some adversary-controlled data as bad and
removes them. Let̄a and H̄ denote the attack vector and the measurement
matrix respectively after removing all the rows corresponding to the sensors
identified as bad by bad data detection. Then,ā, the remaining attack
modification, is equal tōHy, and thus̄a will perturb the state estimate byy.
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TABLE II
DETECTION PROBABILITY OF ATTACKS ON THE LINEAR MODEL:

‖a‖1/‖z‖1 WAS 4%, AND 4,000 MONTE CARLO RUNS WERE USED.

Sample size (K)
Attack type K = 8 K = 12 K = 16 K = 24 K = 40
Full Obs. 0.998 0.774 0.105 0.044 0.043

Partial Obs. 0.280 0.066 0.053 0.044 0.043
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Fig. 6. Unobservable attacks on the 118-bus network: the sensor SNR is
46dB. Attacks with the relative attack magnitudes 2, 4, and 6% were tested.
For each scenario, 200 Monte Carlo runs are used.

driven attack vector converges in probability7 to the attack
vector constructed based on the exact subspace information,
which is an unobservable attack. Subsequently, Slutsky’s the-
orem (see Theorem 1.11 in [34]) can be used to show that
the corrupted measurement vector under a data-driven attack
converges in distribution to a corrupted measurement vector
under an unobservable attack as the sample size grows. As
an experimental evidence, Table II provides the detection
probabilities of data-driven attacks when we used the linear
model (4) for measurement generation and employed the linear
state estimator instead of the nonlinear estimator. The results
show that the detection probability converges to the false alarm
constraint of the bad data detector as the sample size grows,
which means that the attack becomes unobservable as the
sample size grows.

2) IEEE 118-bus test:In the IEEE 118-bus simulation, we
considered unobservable attacks discussed in the example in
Fig. 2 of Section III-B. Fig. 6 shows the plots of the normal-
ized state estimation error versus the relative attack magnitude
and the confidence intervals with90% confidence level. Three
methods resulted in almost the same degree of perturbation
on the state estimate. In particular, the performance of data-
driven attacks with partial sensor observations demonstrates
that observing data from asmall fraction of sensors can be
sufficient for designing a successful attack on a large system;
only about 2 percent of sensors need to be observed.

7The continuous mapping theorem implies only the convergence in distri-
bution. However, the convergence in distribution to aconstant implies the
convergence in probability [33].
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Fig. 7. Data framing attacks on the 14-bus network: the sensorSNR is 46dB.
Attacks with the relative attack magnitudes 1, 2, 3, and 4% were tested. For
each scenario, 1,000 Monte Carlo runs are used.

C. Data-driven framing attack

1) IEEE 14-bus test:For data framing attacks, we con-
sidered an adversary who controls(2, 3), (3, 4), and (4, 3),
and frames(2̄), (3̄), (4̄), and (3, 2) as sources of bad data.
Under this setting, an adversary cannot launch an unobservable
attack. In attacks with partial observations, an adversarywas
assumed to observe data from(2, 3), (3, 4), (4, 3), (2, 1),
(2, 4), (4, 5), (4, 7), and (4, 9). This setting satisfies the
conditions of Corollary 3.2.2, and thus the conditions of
Theorem 4.2 are also satisfied. Hence, an adversary with
partial sensor observations is capable of designing a data
framing attack under the linearized model assumption.

Fig. 7 shows the plots of the normalized state estimation
error versus the relative attack magnitude and the confidence
intervals with90% confidence level. The results show that even
when an unobservable attack is not feasible, an adversary may
exploit the idea of data framing to perturb the state estimate
by an arbitrary degree. Furthermore, the results indicate that
data-driven attacks designed based on the linearized model
perform well on nonlinear power systems, and partial sensor
observations are sufficient for designing a data framing attack.

To investigate the effect of subspace estimation error on
attack performance, we tried different sample sizes (250,
500, 750, and 1,000) for subspace estimation in data framing
attacks. Similar to the case of unobservable attacks, the sample
size hardly affected the attack performance. This seems to
imply that the effect of nonlinearity on attack performance
dominates the effect of subspace estimation errors.

2) IEEE 118-bus test:We considered an adversary attack-
ing the part of the 118-bus network illustrated in Fig. 2.
The adversary was assumed to control(114, 115), (115, 114),
and (27, 115), and frame( ¯114), ( ¯115), (2̄7), and (115, 27)
as sources of bad data. An adversary with partial sensor
observations was assumed to observe data from the circled
sensors in Fig. 2 except( ¯114), ( ¯115), (2̄7), and (115, 27).
The graph conditions of Corollary 3.2.2 are satisfied, and thus
an adversary with partial observations is capable of launching
a data framing attack under the linearized model assumption.

Fig. 8 shows the plots of the normalized state estimation
error versus the relative attack magnitude and the confidence
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Fig. 8. Data framing attacks on the 118-bus network: the sensor SNR is
46dB. Attacks with the relative attack magnitudes 0.8, 1.6, and 2.4% were
tested. For each scenario, 200 Monte Carlo runs are used.

intervals with90% confidence level. The results demonstrate
the sufficiency of partial sensor observations for designing a
data framing attack in a large network.

VI. CONCLUSIONS

This paper presents subspace methods of data attacks on
state estimators of cyber physical systems. By exploiting the
fact that subspace information of measurements is sufficient
for designing attacks, we devised data-driven attacks that
can be launched based on partial sensor observations. The
numerical results demonstrated that the data-driven attacks are
as efficient as the attacks based on full system information.

Our results demonstrate that one should not presumably
underestimate the ability of an adversary even when system
information is secure from the adversary. Even a leak of a
small fraction of certain sensor measurements may provide
enough data, upon which state attacks can be constructed.

Most countermeasures in the literature focused on protecting
certain sensor data from adversarial modification via data au-
thentication, while assuming that system parameters are known
to adversaries (e.g., [7], [9], [12], [21]). In case that system
parameter information is kept secure, our results demonstrate
that not only the ability to modify data but also the ability
to observe data are critical to an adversary. Therefore, as a
countermeasure, on top of a data authentication strategy, one
can strategically enhance data encryption and access control
protocols to limit the set of data an adversary may eavesdrop.

Lastly, the successful performance of data framing at-
tacks suggests that current bad data detection and removal
mechanisms might not be the best in this day and age of
cyber security concerns. A bad data processing mechanism
based on dynamic state estimation or prior knowledge of
sensor qualities (e.g., a Bayesian approach) might be more
appropriate for defeating such attacks.

APPENDIX A
PROOF OFTHEOREM 2.1

Let H̄ denote the measurement matrix after the sensors in
SA are removed;i.e., H̄ is obtained fromH by removing the
rows corresponding to the adversary sensors. Then,Hy is in

A if and only if y is in N(H̄)—the null space ofH̄. This
implies that an unobservable attack is feasible if and only if
H̄ does not have full column rank (i.e., N(H̄) has a nonzero
dimension.)

APPENDIX B
PROOF OFTHEOREM 3.1

The columns ofŪ spanR(H̄). In addition, becausēU and
H̄ have the same number of columns,Ū does not have full
column rank if and only ifH̄ does not have full column rank.
Therefore, Theorem 2.1 implies that an unobservable attackis
feasible if and only ifŪ does not have full column rank.

Suppose that an unobservable attack is feasible. Then,Ū is
rank deficient, and we can find a nonzero vectorv ∈ N(Ū).
With a , Uv, a is in A becauseUv has zero entries for
the sensorsnot in SA (i.e., Ūv = 0). In addition, there exists
an invertible matrixB ∈ R

n×n such thatH = UB, and
U = HB−1, becauseH has full column rank. Therefore,
Uv = H(B−1v), and thusa is an unobservable attack vector.

APPENDIX C
PROOF OFTHEOREM 3.2

Let H̄ denote the submatrix ofH obtained by removing
the rows corresponding to the sensors inC. Then,N(H̄) is
not null due to the third assumption. Lety denote a nonzero
vector inN(H̄) andyo denote a subvector ofy obtained by
retaining only the rows corresponding to the state variables in
Xo. In addition, letHs denote a submatrix ofHo obtained by
retaining only the columns corresponding to the state variables
in Xo (note that all the other columns ofHo are zero vectors.)
And, H̄s denotes a submatrix ofHs obtained by removing the
rows corresponding to the sensors inC.

First, note thatao ∈ Ao if and only if ao = Hsp for some
p ∈ N(H̄s). In addition, becauseC is a critical set with respect
to (So,Xo), N(H̄s) has dimension one. Note that̄Hsyo = 0
whereasHsyo 6= 0. This implies thatyo 6= 0, and{yo} is a
basis ofN(H̄s). Therefore,{Hsyo} is a basis ofAo.

Therefore, for any nonzeroao ∈ Ao, there exists a nonzero
α ∈ R such thatao = α · Hsyo. Furthermore,Hsyo = Hoy

implies that
ao = α ·Hoy. (23)

In addition,H̄y = 0 implies that the attack that modifies the
data fromC by adding the corresponding entries ofao to the
actual data is equivalent to usingα ·Hy as an attack vector,
which is unobservable. So, the attack is unobservable.

APPENDIX D
PROOF OFTHEOREM 4.1

The normalized residues in the first iteration are affected by
the attacka as follows:

r̃ = ΩW(z+ a) = ΩWe+ΩWa, (24)

which can be derived from (7) and (11). Note that(ΩWe)i
follows a standard normal distribution (due to the normaliza-
tion) if {i} is not a critical set;(ΩWe)i is zero otherwise.
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Therefore,̃ri follows the normal distributionN ((ΩWa)i, 1)
if {i} is not a critical set; otherwise,̃ri is equal to(ΩWa)i.

Therefore, the expected energy of the normalized residues
at SF in the presence of the attacka is

E

[

∑

i∈SF

(r̃i)
2

]

=
∑

i∈SF

(ΩWa)2i +C = ‖ISFΩWa‖22+C, (25)

whereC is the number of sensors inSF that do not form a
single element critical set.

Consequently, a solution to (17) is also a solution to the
following problem, and vice versa:

maxa ‖ISFΩWa‖22
subj. ‖a‖22 = 1, a ∈ R(H1) ∩A,

(26)

The theorem statements follow from the following observa-
tions:W is equal toW̃ as both are orthogonal projections on
the same space, andR(H1) is equivalent toR(U1).

APPENDIX E
PROOF OFTHEOREM 4.2

Let H̄ denote the submatrix ofH obtained by removing the
rows corresponding to the sensors inC. First, from the proof
procedure of Theorem 3.2, one can derive that the dimension
of N(H̄) is one. This implies thatC contains exactly one
critical set. Because, if there were more than one critical sets
included inC, N(H̄) should have a dimension larger than one.

BecauseSA ∪ SF = C contains exactly one critical set, the
dimension ofR(H1) ∩ A in (17) is one. This can be seen
as follows. The dimension ofR(H1) ∩ A in (17) is equal to
the dimension ofN(H2) where H2 is the matrix obtained
from H by removing the rows corresponding to the sensors
in SA ∪ SF. And, the fact thatSA ∪ SF contains exactly one
critical set implies that the rank ofH2 is n− 1, and thus the
dimension ofN(H2) is 1.

Therefore, (17) has only two feasible points, and they give
the same objective function values. In particular, a solution to
(17) is the direction given byH1∆x where∆x is a nonzero
vector inN(H2) (see [24] for more detailed arguments.)

The first and second conditions of Theorem 3.2, which are
assumed to hold, imply that the dimension ofN(ŪA) is one.
In addition, it can be seen from Corollary 3.2.1 that the second
statement is true fora∗ = H1∆x and some nonzeroα.

APPENDIX F
POWER GRID MEASUREMENT MODEL AND OBSERVABILITY

In this section, we briefly describe the power system mea-
surement model and the spanning-tree observability criterion
in [20]. The spanning-tree observability criterion results in
Corollary 3.2.2 from Theorem 3.2. For more details about
power system models, see [27].

The power system state is defined as the vector of voltage
magnitudes and phase angles at all buses except a reference
bus, which is an arbitrary bus whose voltage phase angle is
set to zero:

x = [V1 V2 · · · Vn θ2 · · · θn]
T (27)

whereVi andθi denote the voltage magnitude and phase angle
at busi respectively, and bus 1 is set as the reference bus.

We consider two types of legacy sensors: line flow sensors
and bus injection sensors8. The line flow from busi to busj
is a complex quantity related to the system state by

Pij + j ·Qij = Vie
jθi ·

(

Vie
jθi − Vje

jθj

Zij

)∗

(28)

wherePij ∈ R and Qij ∈ R are real and imaginary parts
of the line flow respectively,Zij is the impedance of the line
{i, j}, andX∗ denotes the complex conjugate ofX. The bus
injection at busi is the sum of all outgoing line flows from
bus i.

For computational benefits, the above nonlinear relation is
often linearized at the nominal operating point where all bus
voltage magnitudes are equal to1 p.u., and all bus voltage
phase angles are equal to zero. This linearization decouples the
relation such that the real part of measurements depends only
on the voltage phase angles, and the imaginary part depends
only on the voltage magnitudes.

The linearized relation between the real part of mea-
surements and the voltage phase angles—the so-called DC
model—is often used to analyze power system observability.
In the DC model (4), the statex is defined as the vector of
voltage phase angles at all buses except the reference bus:

x = [θ2 θ3 · · · θn]
T . (29)

The measurement matrixH depends on the topology and line
impedance9.

The power system is observable if and only ifH has full
column rank [20]. Verifying this rank condition seems to re-
quire knowledge of the line impedance. However, Krumpholz
et al. [20] showed that system observability can be determined
purely based on the topology and sensor locations. In particu-
lar, Krumpholzet al. [20] showed that a system is observable
if and only if there exists a way to assign each injection sensor
to any of the lines that are incident to the bus where the sensor
is located such that there exists a spanning tree of the topology
having at least one sensor (an assigned injection or line flow
sensor) on each edge of the tree (see Corollary 2 in [20].)

The spanning tree criterion can also be used to check
whether the state variables inXo are observable with respect
to So (we use the notations in Section III-B.) Without loss of
generality, we assume thatSo contains an injection sensor on
the reference bus or a line flow sensor on a line incident to
the reference bus10. Then, we can simply apply the spanning
tree criterion to the reduced network forSo (see Section III-B
for the definition of a reduced network.) The state variables
in Xo are observable with respect toSo if and only if it is

8Other types of sensors (e.g., phasor measurement units) can also be
considered. We impose this restriction merely to facilitate clearer presentation.

9To describe the entries ofH, we consider a noiseless measurement vector
z = Hx for simplicity. Suppose that thekth entry of z is a measurement
from a line flow sensor measuring the line flow from busi to j. Then, if the
line is connected, zk = Bij(θi − θj), whereBij is the susceptance of the
line; if the line is not connected,zk = 0. In case thatzk corresponds to an
injection sensor at busi, zk is the sum of all the outgoing line flows from
bus i.

10Note that we can choose the reference bus such that this condition holds.
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possible to assign injection sensors inSo to their neighboring
lines such that a spanning tree of the reduced network with at
least one sensor inSo on every edge exists.
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[27] A. Abur and A. G. Exṕosito, Power System State Estimation: Theory
and Implementation. CRC, 2000.

[28] L. Jia, J. Kim, R. Thomas, and L. Tong, “Impact of data quality on real-
time locational marginal price,”IEEE Transactions on Power Systems,
vol. 29, no. 2, pp. 627–636, March 2014.

[29] E. Handschin, F. C. Schweppe, J. Kohlas, and A. Fiechter, “Bad
data analysis for power system state estimation,”IEEE Trans. Power
Apparatus and Systems, vol. PAS-94, no. 2, pp. 329–337, Mar/Apr 1975.

[30] A. Srivastava, “A Bayesian Approach to Geometric Subspace Estima-
tion,” IEEE Transactions on Signal Processing, vol. 48, no. 5, pp. 1390–
1400, May 2000.

[31] S. T. Smith, “Covariance, Subspace, and Intrinsic CramerRao Bounds,”
IEEE Transactions on Signal Processing, vol. 53, no. 5, pp. 1610–1630,
May 2005.

[32] T. W. Anderson, “Asymptotic theory for principal component analysis,”
Ann. Math. Statist., vol. 34, no. 1, pp. 122–148, 1963.

[33] P. Billingsley,Probability and Measure. Wiley, 1995.
[34] J. Shao,Mathematical Statistics. Springer, 2003.


