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Subspace Methods for Data Attack on State
Estimation: A Data Driven Approach

Jinsub Kim,Member, IEEE Lang Tong,Fellow, IEEE and Robert J. Thomasjfe Fellow, IEEE

Abstract—Data attacks on state estimation modify part of sys- over a wide geographical area by distributed data acourisiti
tem measurements such that the tempered measurements causesystems, sometimes through wireless links, communicgtion
incorrect system state estimates. Attack techniques proposed networks that support modern CPSs have numerous points of

in the literature often require detailed knowledge of system " -
parameters. Such information is difficult to acquire in practice. vulnerabilities [3], [4]. For critical infrastructures s as a

The subspace methods presented in this paper, on the otherPOwer grid, a well planned coordinated attack may lead to a
hand, learn the system operating subspace from measurementscascading failure and a regional blackout [5].
and launch attacks accordingly. Conditions for the existence of  To assess vulnerability of CPS to possible cyber attacks, it
an unobservable subspace attack are obtained under the full jhortant to study potential attack mechanisms. In thisepap
and partial measurement models. Using the estimated system id d h di tai dat
subspace, two attack strategies are presented. The first stegy we consider an aaversary w 0, Car_‘ modify certain sensor .a a
aims to affect the system state directly by hiding the attack vecto Such that the corrupted data will mislead the CPS contrdi wit
in the system subspace. The second strategy misleads the badalata wrong state estimate. We refer to such a data attack on state
detection mechanism so that data not under attack are removed. estimation as atate attackA major challenge of state attack
Eerforrr:ancke of d”;ﬁselé‘ggdl‘i saLe evaI;JateS using the IEEE 14-js {9 avoid being detected and identified by the fusion center
us network and the ~ous network. In the literature, successful state attacks on a CPS, in par-

Index Terms—State estimation, subspace method, false dataticular a power grid, have been reported. Liu, Ning, and &eit

injection, data framing attack, cyber physical system. [6] presented the first state attack strategy, where an samer
replaces part of “normal” sensor data with “malicious data.
. INTRODUCTION They showed that if an adversary can control a sufficiently

. . ) large number of sensor data, it can perturb the state estimat

Cybe_r phys!cal system (CPS) [1] IS a collection %y an arbitrary degree while avoiding detection at the adntr
/—\ physical devices networked by a cyber infrastructure witlpyter - sybsequent works along this line uncovered nurserou
integrated sensing, communications, _and control. A definino -k and protection mechanisms [7]-[14].
feature of CPS is coordinated operations based on data 9°|Most proposed attack schemes require considerably detaile
lected from sensors deployed throughout the system. Magjsierm information. In particular, the network topologydan
examples of CPS include power grids, intelligent transportyhysical system parameters are often required to construct
tion systems, and networked robotics. attacks. Although such information may be obtained by pen-
~ An essential signal processing component of many CP&§ating the control center, security measures can make it
is real-time state estimation based on sensor measuremefisit in practice to access such information.
[2]. The state estimate provides a CPS with the real-time
monitoring and control capability. For instance, the se#8- A Summary of contributions
mate of a power grid facilitates real-time economic dispatc

contingency analysis, and computation of real-time elstjr timation, assuming that the adversary is capable of mangor

price [2]. a subset of system measurements without detailed knowledge

The dependency of CPS on data communications make.%f’tthe network topology and system parameters. The key
vulnerable to cyber attacks where an adversary may break iff., in the proposed approach is to exploit the subspace

thed neliwork, coIIe(c:jt tuna;thonzed information, tand "‘wﬂil strtﬁture of the measurements, in the same spirit of subspac
and alter sensor data. Because measurements are colleglg nigues in array processing [15], beamforming [16], and

J. Kim is with the School of Electrical Engineering and Congp@cience at  System identification [17].
Oregon State University, Corvallis, OR 97331, and L. Tond BnJ. Thomas ~ The main contribution of this paper is the development

are with the School of Electrical and Computer Engineeringrn€ll Univer- ; inni i
sity, Ithaca, NY 14853, USA. Emaij:i nsub. ki m@r egonst at e. edu, of SUbSpace tEChmques fo.r dESIerlng .a state attack. TO this
I'tong@ce. cornel | . edu, rjtl@ornell.edu. Part of this work €nd, we present two techniques with different charactesist

was presented at the Asilomar Conference on Signals, SystemiComput-  First, we show a construction of an unobservable attackdbase

ers, Pacific Grove, CA, november, 2013. . on the estimated subspace structure of measurements. We
EDICS: SAM-APPL (Applications of sensor & array multichahmeo-

cessing), OTH-CPSY (Cyber-physical systems), SPE-DETGe(@en and SNOW further that, in constructing the attack, under certai
estimation in power grid), SPE-PS (Privacy and security iwguogrid), and conditions, monitoring only partial measurements may be

We consider the problem of data-driven attacks on state es-

SSP-IDEN (System identification). , _ , sufficient. In particular, we present a graph theoretic éoo
This work is supported in part by the National Science Fotindaunder f h . f b bl K d h .
Grant CNS-1135844. or the existence of an unobservable attack under the partia

measurement model.



The second subspace-based attack exploits current bad datastruct an unobservable attack. However, how an adyersar
detection and removal mechanisms. In particular, the lattacan learn local parameters is nontrivial. In contrast to the
purposely triggers the bad data detection mechanism, butifbrementioned approaches, our method requires no system
is designed to mislead the fusion center to remove data tipatrameter information, and it can be launched with onlyiglart
have not been tampered by the adversary while retaining sosemsor observations. Furthermore, we identify the camti
of the falsified data. After such data removal, although thender which an attacker with partial sensor observatiorith{w
remaining data appear to be consistent with the system modaelt other system information) may construct an unobseevabl
the resulting state estimate may have an arbitrarily larggr.e attack or a data framing attack. In contrast to the feasbili
We refer to this type of attack adata framing attackin conditions given in existing works in the literature [7],],[8
the sense that valid data are “framed” by the adversary afi®], where an omniscient adversary is assumed, our condi-
removed incorrectly by the fusion center. tions guarantee a successful attack design for an adversary

To demonstrate the effectiveness of these attacks, we cuiith limited knowledge and limited access to the system.
sider the problem of state estimation in a power system as &ttacks were also studied in the framework of a general dy-
practical example of CPS. To this end, we consider the IEEfamic CPS, under the assumption of an omniscient adversary.
14-bus network and the IEEE 118-bus network [18]. For instance, an attack on a linear control system equipped

An additional complexity of the power system is that thavith a linear-quadratic-Gaussian controller was studig@5].
system observation is a nonlinear function of the systee.staDetectability and identifiability of attacks on general CPS
This raises the issue of whether attacks constructed fronperations was characterized in [26]. The model considered
linear model is effective in a nonlinear system. While we dim these papers is more general than the static model studied
not have theoretical guarantees, simulation results shatv there. However, their assumption of an adversary with cotaple
the subspace-based data attacks perform well in the presesystem information is stronger than that in the present work
of the nonlinearities in system equations. The rest of this paper is organized as follows. Section ||
introduces the measurement model, the mathematical médel o
state estimation and bad data processing, and the attack.mod
Section Il presents the subspace methods of unobservable

This paper extends some of the key results on state attagig@ick, and Section IV presents the subspace methods of data
that assume that the system parameters and the netw@gning attack. In Section V, the results from simulations
topology are known to the attacker. We describe below sonigth benchmark power grids are presented. Finally, Sedfion

of the relevant techniques. provides concluding remarks.
There is a substantial literature on state attacks when the

system parameter and the network topology kmewn As
mentioned before, Liu, Ning, and Reiter [6] first introduced
an unobservable attaclon power system state estimationA. Notations
which can perturb the state esnmqte without being _detecte_dAn upper case boldface lettee.§, H) denotes a matrix,
by the bad data detector at the fusion center. Following thej

. : S a lower case boldface lettee.g, x) denotes a vector, and a
seminal work, the link between feasibility of an unobsetgab - )

o . cript letter €.9, A, 8) denotes a set. The entry BX at theith

attack and power system observability was made in [7j<jw and thejth column is denoted by, and theith entr
[8], [19]. Consequently, classical power system obsetvabi J W Y

ity conditions [20] can be modified to check feasibility on x Is denoted byr;. In addition, R(H) and N(H) denote

unobservable attacks and used to develop countermeasﬂr]esColumn space and the null spacerbirespectively. And,

based on sensor data authentication [7]-[10], [12], [121]] enotes an identity matrix with an appropriate size.
[22]. To assess the grid vulnerability against data attatties

minimum number of adversary-controlled sensors necess@y Measurement model

for an unobservable attack was suggested aseharity index
of the grid [8], [23]. The data framing attack, when the sygste

B. Related work and organization

Il. MATHEMATICAL MODELS

Thesystem statef a CPS is defined as a vector of variables

tHat characterize the current operating condition of th& CP

parameters are known, was first proposed in [24] to circurtnv%e assume centralized state estimation at the fusion center
the fundamental limit imposed by the security index. . . ;
P y y For real-time estimation of the system statec R™, the

There is limited work on state attacks without system .
rF.lSlon center collects measurements from sensors deployed

information or with partial system information. The use o
. o , roughout the system. Generally, the sensor measurements
independent component analysis in [13] is the most relevan . . :

-are related to the system statein a nonlinear fashion, and

The authors of [13] proposed to identify a mixing matrn%he relation can be described by the nonlinear measurement
from which to construct an unobservable attack. However

such techniques require that loads are statistically iedep riodel €.g, the AC model for a power grid [27]):

dent and non-Gaussian, and the techniques need full sensor z=h(x) +e, 1)
observations. Generating unobservable attacks usingalpart

parameter information was considered in [14]. The authorghere z € R™ is the measurement vectoh(-) is the

in [14] showed that an adversary knowing impedance afeasurement function, anel is the Gaussian measurement
transmission lines in a cutset of the network topology camise.



If some sensors malfunction or an adversary injects mali-

. . . Pass X ves
cious data, the fusion center observes biased measurements 7z —| St |, |BadDaa >
stimator . Detector
X
zZ =h(x)+e+a, 2 Fail
wherea represents a deterministic bias. In such a case, the data |deBri?ﬁ2:§ﬁm
are said to béad and the biased sensor entries are referred and Removal

to asbad data entriesThe bad data vector is typically sparse,
and its support is unknown to the fusion centen 6 injected
by an adversarya is constrained by its support.

In analyzing the attack effect on state estimation, we adopt
a linearization of (1) around a nominal statg:

Fig. 1. State estimation and bad data processing

system state and the corresponding residue vector:

z = h(xg) + H(x — x¢) + €, 3) 1
) b %) £ arg mine — 12 — A% (x) 3,
g

r(®) & z(k) _ pk)(x(R)),

whereH € R™*" is the measurement matrix that relates the ®)
system state to the measurement vector, aiglthe Gaussian

measurement noise with a covariance madfix. Without loss where|| - ||» denotes, norm. In practice, the above nonlinear
of generality, we assume that botl{x,) and x, are zero | g estimate can be obtained by iteration of a linearized LS

vectors and employ the following model: estimation using Newton-Raphson or quasi-Newton methods
_ [27].
a=Hx+e. @) Bad data detection employs thx)-test [27], [29]:
A system is said to beobservableif the measurement 1
matrix H has full column rank i(e, x can be uniquely bad data if;HP(k)H% > 7(k);
determined fromHx.) System observability is essential for 1 (6)
state estimation. In practice, sensors should be placebein t good data if;HP(k)H% < 7

network to satisfy observability. Hence, we assume that the
CPS of interest is observablee, H has full column rank. Where 7(*) is a predetermined threshold. Thix)-test is

In practice, the nonlinear system and the nonlinear itezatiWidely used due to its simplicity and the fact that the test
state estimation techniques have a certain mitigatingetie Statistic has a¢ distribution if the data are good [29]. The
attacks designed based on a linear model [28]. It is thezefditer fact is used to set the threshald for a given false
important to validate performance of an attack strategtas?larm constraint.
on the nonlinear model (1) using a nonlinear state estimator!f the bad data detector (6) declares that the data are good,
Note that, while our attacks are constructed based on (4), 4@€ algorithm retumns the state estimaté’) and terminates
numerical experiments validate their performance usirgy thiowever, if the bad data detector declares that the data are

original nonlinear system (1) with a nonlinear state estima Pad, bad data identification is invoked to identify and reenov
onebad data entry from the measurement vector.

A widely used criterion for identifying a bad data entry is
C. State estimation and bad data processing the normalized residue [27], [29]: eacfl” is divided by its
This section introduces a popular approach to state estinséandard deviation under the hypothesis #f4t contains no
tion and bad data processing [27], [29], which we assume ltgd data. Therefore, each normalized residue approximatel
be employed by the fusion center. The specific approach i¢clows the standard normal distribution #*) contains no
widely used standard implementation in the power grid wheb&d data. Specifically,
the number of states is in the order of 10,000, and the estgnat NORYNORO)

are made every few minutes. )
Fig. 1 illustrates an iterative scheme for obtaining an-estvhere Q¥ is a diagonal matrix with

matex of the system state, which consists of three functional ] o

blocks: state estimation, bad data detection, and bad data 0 if removing ¢ makes

identification. * & . the system unobservaBle @©
The assumed state estimator is based on the maximum * —————— otherwise;

likelihood principle and is implemented in a recursive mamnn 0‘2W£§)

Iterations begin with the initial measurement vectdY = z

and the initial measurement functiof?) 2 h where the andW®) is defined as

superscript denotes the index for the current iteration. I H("’)((H("’))TH(k’))‘l(H(’“))T ©)

In the kth iteration, state estimation usés*), h(*)) as an
Input and calculates the least squares (LS) estimate of thgf removing the sensoi makes the system unobservable, its residue is

always equal to zero [27], and the corresponding diagonay ef W (%) is
1For general cases, we can simply treat2 z — h(xp) andx; £ x—xo  zero. For such a sensor, the normalizing factod such that its normalized
as the measurement vector and the state vector and workewith Hx; +e.  residue is equal to.



with H(®) denoting the Jacobian &f*) atx(*) (see Appendix the grid unobservabld.€., the measurement matrix does not
of [29] for details.) have full column rank.)

Once the normalized residué”) is calculated, the sensor
with the Iargest|f§k)| is identified as a bad sensor. The row
of z(*) and the row ofh(*) that correspond to the bad sensor
are removed, and the updated measurement vettor) and [1l. SUBSPACE METHODS FOR UNOBSERVABLE ATTACK
measurement functioh*t1) are used as the inputs for the
next iteration.

Using the linearized model (4), every step is the same
using the nonlinear model, except that the nonlinear measuy .
ment function »(¥)(x) is replaced with the linear function
H®x (so, the Jacobian is the same everywhere.) Note t
the LS state estimate (5) is replaced with a simple linear LC

Proof: See Appendix A. [ ]

Most existing works on an unobservable attack assumed that
an adversary knows the measurement makixIn contrast,

s section presents a design of an unobservable attaekl bas
the system measurement subspace, without knowledge of
H. Employing the linearized measurement model (4), we will
Esent the conditions under which an unobservable attack
n be constructed based on the subspace information. We

solution: also demonstrate a condition that guarantees the desigm of a
x®) — ((H(k))TH(k))—l(H(k))TZ(k), (10) unobservable attack based on partial sensor measurerfeents;
an attack on a power grid, this condition is characterized as
and thus graph condition on the network topology.
r(0) — k) _ )5 (k) — k), (k) (11)

A. Feasibility of an unobservable attack
D. Adversary model Note that designing an unobservable attack is equivalent

An adversary is assumed to be capable of modifying the d4afinding a nonzero vector ik(H) satisfying the sparsity
from a subset of sensoa, referred to amdversary sensors pattern defined byA. Therefore, an unobservable attack, if
1 H 1 1 mXn
The fusion center observes corrupted measureneintstead feasible, can be launched by using a basis matrix R

of the real measurements The adversarial modification is ©f R(H) without knowing H, as stated in the following
mathematically modeled by: theorem. Formally, we refer t®R(H) as the measurement

subspacebecause it is the subspace of all possible noiseless
Z=z+a, acAh, (12) measurements.

wherea is an attack vector, and is the set of feasible attack Theorem 3.1:Let U be any basis matrix dR(H) andU a
vectors defined as submatrix ofU obtained by removing the rows corresponding

a . ) to the adversary sensors. Then, the following are true:
AZ{ae€R™: ai=0, Vi g Sa} (13) 1) An unobservable attack is feasible if and onlyUifdoes
Liu, Ning, and Reiter [6] presented amobservable attack not have full column rank.
which is a powerful attack mechanism capable of perturbing2) When feasible, an unobservable attack can be con-

the state estimate without being detected. An unobservable structed usingU: for a nonzero vectov € N(U),
attack can be formally defined as follows. a = Uv is an unobservable attack vector.

Definition 2.1: Given a measurement vectarcorrespond- Proof: See Appendix B. [ ]
ing to a statex, i.e, z = Hx + e, a state attacla € A
is unobservableif there exists a statex # x such that
z+a=Hx+e.

Theorem 3.1 states the feasibility condition in Theorem 2.1
(Theorem 1 of [8]; see also Theorem 5 of [21]) asudspace
condition. Note that in constructing an unobservable httac

The following Lemma shows the algebraic property of thgector Uv, the adversary only needs to know a basis matrix
attack; it follows immediately from the definition. U of R(H).

Lemma 2.1:A state attack is unobservable if and only if

a # 0, anda € R(H) NA. Furthermore, ifa is unobservable, B. Unobservable attack with partial measurements
so is+y - a for any nonzeroy € R, and||x — X,[|2 — oo as

7 — o0, wherex, denotes the state satisfyiddx +v-a =, cted using the subspace informatiorpatial sensor
Hx,. measurements. To formally state the result, we need themoti
Lemma 2.1 implies that the feasibility of an unobservablef a critical set of sensors [27] and partial observabiligficed

attack does not depend on the current operating stdteonly  as follows.

depends ond, which is characterized by t_he _set of adversary Definition 3.1: A set of sensors is called eritical set if
sensors, and the subspak@H). The feasibility is also closely
related to the concept of system observability. In paréicihe
following connection was found in [8].

In this section, we show that an unobservable attack can be

removing the set of sensors from the system renders thensyste
unobservable while removing any strict subset of it does not
Let 8 and X denote a subset of sensors and a subset of state
Theorem 2.1 (Theorem 1, [8])An unobservable attack is variables respectively. The state variablesXirare said to be
feasible if and only if removing the adversary sensors makebservable with respect to if the state variables i can be



uniquely determined based on measurements B8mNhen
the state variables i are observable with respect & a
subsefC of § is acritical set with respect t¢S, X) if removing
€ from 8 makes the state variables Jhno longer observable
with respect taS while removing a strict subset @ from §
does not.

Consider a subset of sensdig Let X, denote the set of
state variables whose values affect measurements from the
sensors ird, (i.e., the|S,| by n submatrixH, of H, consisting
of the rows corresponding to the sensorsSi has nonzero
columns exactly at the columns corresponding to the state
variables inX,.)

The following theorem provides the conditions under which
an unobservable attack can be constructed based on the sub-
space information of measurements frég The conditions
roughly mean that (i) based on measurements fignone can _

. . . . . . Fig. 2. A part of the IEEE 118-bus network: Rectangles regmethe sensor
uniquely identify the relevant state variablég( the variables |,cations. Every bus has an injection sensor, and every Hae line flow
in Xo,) and (ii) 8, contains a set of sensors, which, if controlledensors for both directions.
by an adversary, is sufficient for launching an unobservable
attack and is also critical with respect (8., Xo).

_ The three conditions of Theorem 3.2 are all related to
Theorem 3.2.Suppose .that _ system observability or partial observability. In case pbaver
1) the state variables i, are observable with respect togrid, system observability and partial observability cam b

So, _ - _ checked based opartial information about the grid topol-
2) €C 8, is a critical set with respect t(5,, Xo), and ogy and sensor locations. In particular, the graph-thaalet
3) removingC makes the system unobservable. observability criterion in [20] can be employed.

Let H, € RIS/x" denote the submatrix cH obtained by A power grid is a network of buses connected by transmis-
retaining only the rows corresponding to the sensor§q.n sion lines. Thetopologyof a grid is naturally defined as an
Then, the following are true: undirected graply = (V, ) whereV is the set of buses, and

1) Let -AO denote the set of vectors lﬁ(Ho) such that & is the set of connected transmission ||néﬁ]} is in & if
b € R(H,) is in A, if and only if the rows ofb and only if there exists a connected transmission line berwe

corresponding to the sensorsdp)\ € are equal to zero. bus i and bus;j. We consider two types of legacy sensors:
Then, the dimension ofl, is one. line flow sensors and bus injection sensors. A line flow sensor
2) For an arbitranynonzeroa, € A,, the attack that modi- !0cated on a ling{i, j} measures the power flowing through

fies the sensor data frotby adding the correspondingthe line either from bus to bus;j or from bus; to busi. A
entries ina, to the real data is unobservable. bus injection sensor on busneasures the total power injected

into the network at bus (see Appendix F for the details of
the sensor measurements.)

Note that.A, in Theorem 3.2 can be fully characterized The following corollary presents the graph conditions that
based on a basis matrix 6f(H,). If the conditions of Theo- imply the conditions of Theorem 3.2 for an attack on a
rem 3.2 are met, an attacker knowing a basis matriR(@,) power grid state estimation. Appendix F provides the detail
can launch an unobservable attack. The following corollagf the graph-theoretical observability criterion in [28fhich
provides the detail of how an attack can be constructed frafirectly results in the following corollary from Theorem?23.

a basis matrix ofR(Ho). To state the corollary, we need to introduce the concept of
reduced power networkGiven a subse§, of sensors, the

educed network consists of the sensor§jmand the topology

G = (V, &), where{i, j}isin & if and only if a line flow sensor

on {i,7} is in 8, Or an injection sensor at busor busj is

in 8, andV consists of all the endpoints of the lines én

) ) _ For instance, in the IEEE 118-bus network, Fig. 2 describes a

1) The dimension ofN(Uy) is one. reduced network fo8, consisting of the circled sensors. In this

2) For any nonzero vectar € N(U,), the attack that mod- gyample, the vertices and edges inside the dashed boundary
ifies the sensor data fro@ by adding the correspondingoym G.

entries inU,v to the real data is unobservable.

Proof: See Appendix C.

Corollary 3.2.1: Suppose that the conditions 1), 2), and 3
of Theorem 3.2 hold. LelU, € R!So[xI%el denote a basis
matrix of R(H,) and U, denote a submatrix dfJ, obtained
by removing the rows corresponding to the sensof. ifhen,
the following are true:

Corollary 3.2.2: Let 8, be a subset of sensor$,= (V, &)

%In other words, every element 0f(Hs) has zero entries for the rows the topology of the reduced network 8¢, andC a subset of
corresponding to the state variables 1) where Hs € RISIX" is the So. Suppose that
submatrix of H obtained by retaining only the rows corresponding to the
sensors irs. 1) There exists a cut of the grid topology such thatC



consists of all line flow sensors on the cutset lines andBased on the above (or any other) subspace estimator and
all injection sensors on the endpoints of the cutset lineBheorem 3.1, the data-driven attack withl sensor observa-
2) For every sensog in C, there exists a way to assigntions operates as follows with the observatidas, ..., zx }

each injection sensor i§, \ €) U {s} to a line incident and the adversary sensor $gt as inputs:

to the bus where the sensor is locdtedich that there 1) Subspace estimationBased onz1, ..., zx }, calculate

exists a spanning tree ¢ with at least one sensor in an estimatéJ € R™*" of a basis matrix ofR(H).

(8o \ €) U {s} on every edge of the tree (either a line 2) Null space estimation ObtainU, by removing the rows

flow or an assigned injection sensor.) of U that correspond to the sensorsSig. Find an SVD
Then, the conditions of Theorem 3.2 hold, and thus the of U;, U; = UAV7, and letv denote the column o¥
statements in Theorem 3.2 and Corollary 3.2.1 hold. that corresponds to the smallest singular valaes(an
estimate of a nonzero elementXsfU) in Theorem 3.1.)

Note that the conditions of Corollary 3.2.2 are related to X X
3) Attack: Modify the sensor data frorfis by adding the

the topology and the sensor locations in the reduced network X ; by
Therefore, an adversary can exploit partial informationuib corresponding entries of - Uv to them, where; € R
the topology and sensor locations to find an attack settiag th 'S & Scaling factor to adjust the degree of perturbation.
enables an unobservable attack with partial sensor observalhe data-driven attack witlpartial sensor observations
tions. For instance, it can be easily checked that the examp@n be constructed in the same manner based on Corol-
in Fig. 2 with C consisting of the circled empty-rectangldary 3.2.1. Specifically, the attack receivé¥,, 8o, C) and
sensors satisfies the conditions. In particular, the fistlitmn ~ {Z1. . .., Zx }—the set of measurements from the sensors in
is satisfied with the cut that isolates bus 115 from the rest & at K different time instances—as inputs and executes the
the network. following steps:

1) Subspace estimationBased oz, ..., zx }, calculate
C. Subspace attack algorithm an estimatdJ, € RISI*|Xel of a basis matrix ofR(H,).

All the information that is necessary for a subspace attack?) Null space estimation Obtain Uc by removing the
is the subspace information 6f(H) or R(H,). Subspace rows of U, that corr~es~p9r:1rd to the sensorstnFind an
estimation based on measurement data has been actively SVDP Of Ue Uc = UAVT. Let v denote the column
studied in the signal processing literatueeg(, [30], [31]), of V that cqrresponds to the smallest smg_ular.value
and thus subspace methods naturally lead to a data-driven (v IS an estimate of a nonzero element¥tUo) in
algorithm for practical attack scenarios. Our focus in this Corollary 3'2_'1') )
section is to demonstrate how (any) subspace estimator caff) Attack: Modify the sensor data fron® by adding the
be used to generate a data-driven attack. corresponding entries of - Uov to them, where; ¢ R
One of the simplest yet effective ways of estimating a basis IS @ scaling factor to adjust the degree of perturbation.
matrix is to use a sample covariance matrix. kef. .., zx
denote measurement vectorgatifferent sampling instances: 1V. SUBSPACE METHODS FOR DATA FRAMING ATTACK

z;=Hx;, +e;, i=1,..., K. (14) The idea of a data framing attack based on full system pa-
o ) rameter information was first presented in [24]. In this et
For simplicity, suppose that the noise vecters. .., ex are e demonstrate data-driven approaches of data framingkatta

independent and identically distributed (i.i.d.), thetstaec- py exploiting the subspace structure of sensor measurement
tors x1,..., xx are i.i.d. with a positive definite covariance

matrix X, and the noise vectors and the state vectors are

uncorrelated. Then, the covariance matrixzos A. Data framing attack
A data framing attack aims to enable an adversary to
A _ _ T _ T, 2
%, £E[(1 ~Efm))(z1 - Elz])'] = HEH' 40 {15) perturb the state estimate by an arbitrary degree even when

Note thatHS, H” has rankn. Therefore, ifUAVT is a an unobseryable attack with, does not exist. To thls end,
a data framing attack frames some normally operating meters

singular value decomposition (SV.D) ol then columns of . as sources of bad data such that their data will be removed. A
U that correspond to the largest singular values form a baSIScriticaI arameter of data framing attack is the set of S
of R(HX,HT). BecauseR(HX, HT) is equivalent taR (H), P g

the same columns form a basis BH). be framed, denoted B¢. The framed sensor sét is selected

Therefore, in practice, we can estimate a basis matrix Slf'Ch thatSe 1 84 = 0, and if the sensors i are removed

. . fom the system, an unobservable attack with becomes
R(H) by applying SVD to the sample covariance matky; feasible. Under this selection rule, an adversary may desig

| K T an attack that becomes unobservable once the sensor data fro
2= 1 (zi —2)(z —2)7, (16) 8¢ are removed by the bad data removal rule.
=1 To successfully remove the data fro$g, one can use an
wherez denotes the sample mean. attack vector that maximizes the energy of the normalized

4 N ‘ _ residues ab in thefirst iteration of the bad data processing.

In other words, for an injection sensor located at busve assign the Such k desi d il kh |
injection sensor to one of the lines that are incident to &/ do this for uch an attac_ eS|.gn oes not necessarily guarante? X at a
each injection sensor ifSo \ C) U {s}. data from8g will be identified as bad. Nevertheless, this is a



reasonable heuristic to circumvent the difficulty of analgz U, € RIS0\C2xI%| denote a basis matrix 8(Ha), and U,

attack effect on normalized residues in all iterations. denote a submatrix olU, obtained by removing the rows
To simplify notation, we drop the superscript that denoterresponding to the sensors @. Then, the following are

the first iteration of bad data processing: all the quamstiti¢rue:

in this section are from the first iteration unless otherwise 1) The dimension ofN(Uy) is one.

specified. The attacklirection that maximizes the energy of 2y For a nonzero vector € N(Uy), the attack that modi-

the normalized residues in the first iteration can be coottcl fies the sensor data frofy by adding the corresponding

by solving the following optimization [24]: entries inUav to the real data is equivalent to using
maxa E [, (7)?] an a-a* as an a}ktta.tck vector, wlheraﬁ is a nonzero re_arll
subj. a2 =1, ae R(H;)NA, number, anda* is an optimal solution to (17) wit

. . . , (8a,8¢) = (C1, Ca).
whereH; € R™*™ is a matrix obtained fronH by replacing _
the rows corresponding to the sensorsSiwith zero row Proof: See Appendix E. [

vectors. The constraint € R(H,) holds if and only ifa i Thegrem 4.2 implies that under certain conditions, knowl-
unobservable after the framed sensor data are removed. TéHﬁe of a basis matrix dR(Ex)—the subspace of measure-
constraint guarantees that once the data fégnare removed, ments fromS, \ Ca—is sufficient for launching a data framing
the attack can have the same effect as an unobservable. attgﬁgck with (Sa,8¢) = (C1,€,). Note that Theorem 4.2
The following theorem states that a solution to (17) can Bgqyires the same conditions as Theorem 3.2. Thereforanfor
obtained without knowingH if we know a basis matrix of 4itack on a power grid, the graph conditions in Corollary3.2
R(H). can replace the conditions of Theorem 4.2.
Theorem 4.1:An adversary knowing a basis matri¥ €
R™*" of R(H) can find a solution of (17). Specifically, a , )
solution to the following quadratically constrained quetitr C. Subspace data framing attack algorithm
programming (QCQP) is also a solution to (17), and vice versa Theorem 4.1 and Theorem 4.2 guarantee the sufficiency
maxa T QWaHQ of sgbspace informat_ion in constructing data framing &tac
subj ”a”F2 _ 2a€ R(UL) N A (18) Similar to the data-driven algorithms for unobservablacks,
' 2 ’ ’ we can incorporate a subspace estimator and SVD to build a
wherels,_ € RISFX™ is the row selection operator that retainglata-driven algorithm for data framing attacks.
only the rows corresponding to the sensorsSigout of m The data-driven framing attack withll sensor observations

rows, receives sensor observatiofws,, ...,z } at K different time
w21-uUuTu)-tu?, (19) instances andSa,Sg) as inputs, and it has two small positive
- ) . o parameterss; and e; for thresholding rules. Based on the
2 ¢ R™*™ is a diagonal matrix with QCQP formulation (18), it works as follows:
O B EAT A 5 R W By oo
0 if W, =0, ) . A . '

2) Null space estimation ObtainU; by removing the rows
andU; € R™*™ is a matrix obtained fronlJ by replacing of U that correspond to the sensorsSpU Sg. Find an
the rows corresponding to the sensorsSiwith zero row SVD of U;: U; = UAVT, Let V denote the matrix
vectors. consisting of the columns oV whose corresponding

singular values are less than. Let Un € R™*n

Proof: Appendix D. . . - X
oof: See Append " be the matrix obtained frontJ by replacing the rows
Note that addition of the attack vectarchanges the mean corresponding to the sensomst in 85 with zero row
of the residue vector frord to Wa. And, Is.QWa/o is the vectors. ThenUAV is an estimate of a basis matrix of
resulting mean of the normalized residues of the data $pm R(U;)NA in (18).

3) QCQP parameter estimation Calculate

B. Sufficiency of partial measurements WaT_ IAJ([AJT[AJ)*lIAjT 21)
Similar to sufficiency of partial measurements for an un- R

observable attack (Theorem 3.2), data framing attack can andQ € R™*™, which is a diagonal matrix with
also be launched based on subspace information of partial
measurements, as stated formally in the following theorem. - ,/1/\5\7.. if W > e

) : . ; Q“ — % A (1 ’ (22)
Below, we use the notations defined in Section IlI-B for the 0 if W,; < e
partial measurement case.

Theorem 4.2:Suppose that the conditions 1), 2), and 3) of °A basis matrix of R(U1) N A in (18) can be found by noting that
Theorem 3.2 hold foS,, X,, and €. Let {C;, C;} denote 2 € X(Ur) 01A if and only if a = Usy for somey € N(Us) where

bi i £ Let Ha d ’b i G U, € R(m—I8aUSE)xn s a submatrix ofU obtained by removing the rows

an arbitrary partition otc. Let Ha denote a submatrix corresponding to the sensorsSp U Sg. In other words, given a basis matrix

consisting of the rows corresponding to the senso, inC2, B of N(U»), U1 B is a basis matrix oR(U1) N A.



4) QCQP: Solve maximizinquSFQWfJAVyH% SUbjECt to THREE  WINDING

I
TRANSFORMER EOUWALENT

[UaVy|2 =1 andy € R*, wherek is the number of (© cenenarons
columns of V. Let y* denote the solution. © srcxmonous
5) Attack: Modify the sensor. data froria by adding the
corresponding entries af- UAVy to them, where) €
R is a scaling factor to adjust the degree of perturbation
Based on Theorem 4.2, the data-driven framing attac
with partial sensor observations receives,, So, C1, C2) and
{z1,..., zg }—the set of measurements from the sensors il
8o\ C2 at K different time instances—as inputs and execute:
the following steps:

1) Subspace estimationBased orzy,..., zk }, calculate
an estimateU, € RISo\C21x|Xol of g baS|s matrix of
R(Ha).

2) Null space estimation ObtainU, by removing the rows
of U, that corresppqdjo the sensors @q. Find an

SVD of Ug: U = UAVT. Let v denote the column

of V that corresponds to the smallest singular valugd. 3. |EEE 14-bus network: the circled redhptyrectangles represent the

adversary sensoré €. the sensors i85 ). The adversary with partial sensor
(v is an estimate of a nonzero element NtUA) observations can observe all the circled sensors.
Theorem 4.2))

3) Attack: Modify the sensor data fror@;, by adding the
corresponding entries of - Uav to them, where) € R detection and removal, as described in Section 1I-C, on the
is a scaling factor to adjust the degree of perturbatiorcorrupted measurements. The thresholf) of the bad data
detector {.e, the J(x)-test) was set to satisfy the false alarm
V. NUMERICAL RESULTS constraint 0.04.

In this section, simulations with benchmark power grids, th
IEEE 14-bus network and the IEEE 118-bus network, demoB- Data-driven unobservable attack
strate the performance of data-driven attacks. The naamline 1) IEEE 14-bus testIn the IEEE 14-bus network, we

measurement model (1) and the nonlinear state estimater Wgéns,ldered an adversary controlling data fredy, (3), (4)
employed to emulate practical power system state est|mat|?2 3) .4), and (4,3), as illustrated in Fig. 3@’

The power system measurement model is briefly descr'bedo‘gnotes the |n]ect|on sensor at huand(i, j) denotes the line

Appendix F. . flow sensor measuring the power flow fraro j. Theorem 2.1

As an atta}ck performance Ametrlc, we useA t_benorm of and the spanning tree observability criterion [20] implatth
the_ state est|m_at|on erare,, ||x — x|z, wherex is the state the adversary is capable of launching an unobservablekattac
estimate, andk is the true state. (see Appendix F.) In addition, the adversary sensor ses al

a critical set, and thus all possible unobservable attactove

A. Simulation methods are aligned along the same directidre( the dimension of

In each Monte Carlo run, we used the nonlinear model (¥ N R(H) is one.)
to generate measurement vectors. State vectors at differenAn adversary with partial sensor observations was assumed
time points were assumed to be independent and identicatyobserve data fron2), (3), (4), (2,3), (3,2), (3,4), (4,3),
distributed Gaussian random vectors with the mean equal(f1), (2,4), (4,5), (4,7), and (4,9). In this setting, it can
the operating states given in the IEEE 14-bus and 118-buas da¢ easily verified that the conditions of Corollary 3.2.2 are
[18]. Both the 14-bus network and the 118-bus network wesatisfied, and thus an adversary with partial observatians c
assumed to be fully measureicg., all bus injections and all construct an unobservable attack under the linearized imode
line flows (in both directions for each line) were measured ssumption.
Sensors. Fig. 4 shows the performance of unobservable attacks, espe-

In each simulation scenario, we compared performancilly the plot of thenormalizedstate estimation error versus
of three attack methods: an attack with full knowledge dhe relative attack magnitudé«||/||z||1). For normalization,
H, a data-driven attack with full sensor observations, andstate estimation errors are divided by the mean estimation
data-driven attack with partial sensor observations. Fda-d error under the non-attack scenario. In the plot, each ndarke
driven attacks, 1,000 samples were used to estimate a basigt (circle, rectangle, or triangle) denotes the mean of a
matrix of the subspace of (either full or partial) measuretse normalized error caused by an attack, and the vertical bar on
unless otherwise specified. Data-driven attacks emplolyed the marked point is the confidence interval of the normalized
subspace estimator based on the sample covariance magrior with 90% confidence levelife., the normalized error
which was described in Section IlI-C. stayed in the interval with probability 0.9 in our simulat®)

Once an attack vector was added to measurements, [ea-driven attacks, based on either full or partial sensor
control center executed nonlinear state estimation andlatgd observations, perform as well as the attack with full knalgle



Normalized state estimate error. False alarm rate = 0.04. Detection Probability and Fraction of Identified Adversary Data
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ladh/ e % Fig. 5. Detection probability (solid lines) and the averdgection of the

adversary data that are identified as bad (dashed linesacksttwith the
Fig. 4. Unobservable attacks on the 14-bus network: theos&18R is 46dB. relative attack magnitudes 0.5, 1, 2, 3, afd were tested. For each scenario,
Attacks with the relative attack magnitudes 2, 4, 6, afié\Bere tested. For 1,000 Monte Carlo runs are used.
each scenario, 1,000 Monte Carlo runs are used.

TABLE |
DETECTION PROBABILITY OF DATA-DRIVEN ATTACKS VERSUS THE
SAMPLE SIZE FOR SUBSPACE ESTIMATION||a||1/||z||1 WAS SET T01%,

of H. For all attacks, the resulting state estimate error scales AND 1,000 MONTE CARLO RUNS WERE USED
as the attack magnitude scales. The confidence intervalg imp .
that attacks are successful with high probability. The aler Sample size K)

Its indicate that even in a practical nonlinear pows Attack type | K =250 | K =500 | K =750 | K = 1000
resu _ P POWBIESY, i Gbs, || 0.176 0.180 0.169 0.150
the data-driven attacks designed based on the linear modelszriarops. [ 0.166 0.146 0151 0.168

can perform well, and partial sensor observations can geovi
sufficient information for designing a successful attack.

The proposed subspace approaches approximate the non-
linear measurement model with a linearized model and coiS some adversary-controlled data remains unrenfodéds
struct an attack vector based on the subspace structurec®f be easily seen from the structure of an unobservablekatta
the assumed linearized model. Thenlinearity of the actual described in Section II-D.
measurement model poses a gap between the theory and prago further examine the effect of subspace estimation error
tice, introducing the possibility that a data-driven urevable on the attack performance, we tried different sample sizes
attack might be detectable in practice. Furthermore, eveernw for subspace estimation (especially, 250, 500, 750, 1000)
the actual measurement model is linear, the subspace &stinwder the various attack scenarios. As the representatbegtr
will inevitably contain errors due to thimited sample size in Table | demonstrates, the sample size did not affect the
Therefore, attacks designed based on the estimate cannoti@@ction probability of data-driven attacks. Furtherenahe
unobservable in a strict sense although they might apprateimresulting state estimation errors were barely affectedHay t
unobservable attacks. sample size for subspace estimation: for instance, when the

We examined the probability that an unobservable attackrf‘agat've attack magmtu@e was setlt%., the- mean normghzed
egrors from all data-driven attacks with different samples

detected by bad data detection at the control center. Fig g .
shows the detection probability for the unobservable k$#tac stayed betwegﬁQ?% and238%. These results imply .that the
the setting and performance of which were described in Fig e4ffect of nonlinearity on gttack performance dominates the
It turns out that when the attack amplitude is large, thecktta effect of subspace estimation errors.

are detected by bad data detection with high probability. However, we believe that the data-driven attacks are asymp-
Considering that the attack with the perfect knowledge &tically unobservable if the measurement modeliear.

H and the data-driven attacks resulted in similar detectidrst of all, it is well known that the subspace estimate Hase
probabilities, detectability seems to be attributed tolimen ©ON the sample covariance converges in probability to a true
earity of the actual measurement model rather than subsph@gis matrix of the subspace as the sample size grows (see
estimation error. Nevertheless, Fig. 5 also shows the meBeorem 1in [32] or Lemma 3.1 in [15].) Second, in a data-
fraction of adversary-modified data that are identified a$ bgriven attack, the mapping from a subspace estimate to an
by the bad data detection, which turns out to be very smalittack vector is continuous. Therefore, the continuousingp

The results imply that even though the control center nsticBeorem (see Theorem 29.2 in [33]) implies that the data-
that some data are not trustworthy, bad data detectionsfilter

out only a small fraction of adversary-controlled data égr 6An unobservable attack is equal toHy for some nonzergy. Suppose
leading to successful attack performance as shown in Figt4at bad data detection identifies some adversary-cordrdiia as bad and
Note that even when a number of adversary-controlled data &moves them. Lea and H denote the attack vector and the measurement
filtered out, the performance of an unobservable attaek ( matrix respectively after removing all the rows correspogdim the sensors

. ) ! identified as bad by bad data detection. Than,the remaining attack
the resulting state estimate error) remains the same as lemgification, is equal tdy, and thusa will perturb the state estimate by



10

TABLE I
DETECTION PROBABILITY OF ATTACKS ON THE LINEAR MODEL
llall1/||lz||1 wAs 4%, AND 4,000 MONTE CARLO RUNS WERE USED

Normalized state estimate error. False alarm rate = 0.04.
T T T

O Hknown

O Full Obs.
< 14901 A Partial obs. H,l

1200

i

800~

i l bh

Sample size K)

Attack type || K =8 | K=12 | K=16 | K =24 | K =40
Full Obs. 0.998 0.774 0.105 0.044 0.043

Partial Obs.|| 0.280 0.066 0.053 0.044 0.043

Normalized state estimate error. False alarm rate = 0.04.
1000 T T T

Normalized state est. error (%

O H known 200+
900H 2 Full Obs. 4

—~ Partial Obs. i i I
= goof — ¢ LR . % 2 3 4
5 [lally/1l=l1(%)
E 700
7 o0 IR | Fig. 7. Data framing attacks on the 14-bus network: the seBiit is 46dB.
£ s00- 1 Attacks with the relative attack magnitudes 1, 2, 3, afitl were tested. For
fg 200k , each scenario, 1,000 Monte Carlo runs are used.
1]
g 300[- i i
S 200f . .
Z . C. Data-driven framing attack

0 ‘ ‘ ‘ 1) IEEE 14-bus test:For data framing attacks, we con-

0 2 6

all /1 (%) sidered an adversary who contrdl®, 3), (3,4), and (4,3),

and frames(2), (3), (4), and (3,2) as sources of bad data.
Fig. 6. Unobservable attacks on the 118-bus network: thecseBNR is  Under this setting, an adversary cannot launch an unokderva
éGdB. Attacks with the relative attack magnitudes 2, 4, aidvéere tested. attack. In attacks with partial observations, an adversmy
or each scenario, 200 Monte Carlo runs are used.
assumed to observe data fro(®,3), (3,4), (4,3), (2,1),
(2,4), (4,5), (4,7), and (4,9). This setting satisfies the
conditions of Corollary 3.2.2, and thus the conditions of
driven attack vector converges in probabflitto the attack Theorem 4.2 are also satisfied. Hence, an adversary with
vector constructed based on the exact subspace informatioartial sensor observations is capable of designing a data
which is an unobservable attack. Subsequently, Slutskygs t framing attack under the linearized model assumption.
orem (see Theorem 1.11 in [34]) can be used to show thatFig. 7 shows the plots of the normalized state estimation
the corrupted measurement vector under a data-driverkattagror versus the relative attack magnitude and the confeenc
converges in distribution to a corrupted measurement vecintervals with90% confidence level. The results show that even
under an unobservable attack as the sample size grows.wsen an unobservable attack is not feasible, an adversayy ma
an experimental evidence, Table Il provides the detecti@xploit the idea of data framing to perturb the state esémat
probabilities of data-driven attacks when we used the finelay an arbitrary degree. Furthermore, the results indidaae t
model (4) for measurement generation and employed therlingata-driven attacks designed based on the linearized model
state estimator instead of the nonlinear estimator. Thaltees perform well on nonlinear power systems, and partial sensor
show that the detection probability converges to the fdlsera observations are sufficient for designing a data framirachtt
constraint of the bad data detector as the sample size grows[o investigate the effect of subspace estimation error on
which means that the attack becomes unobservable as ditack performance, we tried different sample sizes (250,
sample size grows. 500, 750, and 1,000) for subspace estimation in data framing
2) IEEE 118-bus testin the IEEE 118-bus simulation, Wea.ttacks. Similar to the case of unobservable attack;, thelsa
considered unobservable attacks discussed in the exampl§'fe hardly affected the attack performance. This seems to
Fig. 2 of Section Ill-B. Fig. 6 shows the plots of the normal'—mply that the effect of nonlinearity on a!ttack performance
ized state estimation error versus the relative attack inaggn dominates the effect of subspace estimation errors.
and the confidence intervals wiftt% confidence level. Three 2) |EEE 118-bus testWe considered an adversary attack-
methods resulted in almost the same degree of perturbatipfl the part of the 118-bus network illustrated in Fig. 2.
on the state estimate. In particular, the performance d-daf N€ adversary was assumed to confidld, 115), (115, 114),
driven attacks with partial sensor observations dematestra®d (27, 115), and frame(114), (115), (27), and (115,27)
that observing data from amall fraction of sensors can be @ Sources of bad data. An adversary with partial sensor
sufficient for designing a successful attack on a large systeOPServations was assumed to observe data from the circled
only about 2 percent of sensors need to be observed. ~ SENsors in Fig. 2 excepill4), (115), (27), and (115,27).
The graph conditions of Corollary 3.2.2 are satisfied, and th
an adversary with partial observations is capable of laimgch
; ) ) o __adata framing attack under the linearized model assumption
The continuous mapping theorem implies only the convergemaksiri- . . . .
bution. However, the convergence in distribution t@@nstantimplies the Fig. 8 shows the plots of the normalized state estimation
convergence in probability [33]. error versus the relative attack magnitude and the confadenc
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Nox~lnaliz?d state estimate crro‘r, False alarm !'ato:‘0.04. A |f and Only |f y |S |n N(I:I)_the nu” Space OE:I Thls
[—— | implies that an unobservable attack is feasible if and ohly i
| Parial Obs. pik | H does not have full column rank.¢., N(H) has a nonzero
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400 il PROOF OFTHEOREM 3.1

¢4 | The columns ofU spanR(H). In addition, becaus® and
] H have the same number of columdg, does not have full
1001 ‘ 1 column rank if and only iff does not have full column rank.
o o3 e 27 Therefore, Theorem 2.1 implies that an unobservable attack
llalla /112112 (%) feasible if and only ifU does not have full column rank.
Fig. 8. Data framing attacks on the 118-bus network: the 3e88tR is Suppo_s_e that an unObserV.able aftack is feasible. T'D:GB'
46dB. Attacks with the relative attack magnitudes 0.8, 1r6i a.4% were ank deficient, and we can find a nonzero veotoe N(U).
tested. For each scenario, 200 Monte Carlo runs are used. With a £ Uv, a is in A becauseUv has zero entries for
the sensorsiotin Sa (i.e, Uv = 0). In addition, there exists
an invertible matrixB € R™"*"™ such thatH = UB, and
intervals with90% confidence level. The results demonstratgy — HB-!, becauseH has full column rank. Therefore,

the sufficiency of partial sensor observations for desigrin v — H(B~1v), and thusa is an unobservable attack vector.

Normalized state est. error

data framing attack in a large network. n
VI. CONCLUSIONS APPENDIXC
This paper presents subspace methods of data attacks on PROOF OFTHEOREM 3.2

state estimators of cyber physical systems. By exploith® t | et ;T denote the submatrix ol obtained by removing
fact that subspace information of measurements is suffici§Re rows corresponding to the sensorsGinThen, N(H) is
for designing attacks, we devised data-driven attacks thadi null due to the third assumption. Lgtdenote a nonzero

can be launched based on partial sensor observations. VBgtor inN(H) andy, denote a subvector of obtained by

as efficient as the attacks based on full system informationy | addition, letHs denote a submatrix dfl, obtained by
Our results demonstrate that one should not presumab¥(aining only the columns corresponding to the state ke
underestimate the ability of an adversary even when systginy  (note that all the other columns &1, are zero vectors.)

information is secure from the adversary. Even a leak of ghq i denotes a submatrix & obtained by removing the
small fraction of certain sensor measurements may Proviggys corresponding to the sensors@n

enough data, upon which state attacks can be constructed. First, note that, € A, if and only if a, = Hep for some
Most countermeasures in the literature focused on protgcti, - N(Hs). In addition, because is a critical set with respect
certain sensor data from adversarial modification via data gg (S0, Xo), N(Hs) has dimension one. Note thifsy, = 0
thentication, while assuming that system parameters @en \yhereasHsy, + 0. This implies thaty, # 0, and {yo} is a
to adversariese(g, [7], [9], [12], [21]). In case that system pggis of N(Hs). Therefore {Hgy,! is a basis ofA,.
parameter information is kept secure, our results dematestr Therefore, for any nonzera, € Ao, there exists a nonzero

that not only the ability to modify data but also the ability, ¢ R such thata, = « - Hey,. FurthermoreHsyo = Hoy
to observe data are critical to an adversary. Therefore, agfies that

countermeasure, on top of a data authentication strategy, o a0 = o - Hyy. (23)

can strategically enhance data encryption and accessotontr B

protocols to limit the set of data an adversary may eavesdrdp addition, Hy = 0 implies that the attack that modifies the
Lastly, the successful performance of data framing a#ata from€ by adding the corresponding entriesaf to the

tacks suggests that current bad data detection and remdgital data is equivalent to using- Hy as an attack vector,

mechanisms might not be the best in this day and age Wfich is unobservable. So, the attack is unobservable.m

cyber security concerns. A bad data processing mechanism

based on dynamic state estimation or prior knowledge of APPENDIXD
sensor qualitiese(g, a Bayesian approach) might be more PROOF OFTHEOREM4.1
appropriate for defeating such attacks. The normalized residues in the first iteration are affected b
the attacka as follows:
APPENDIXA
PROOF OFTHEOREM 2.1 r=0W(z+a) = QWe + QWa, (24)

Let H denote the measurement matrix after the sensorsviich can be derived from (7) and (11). Note ti{&2We);
Sa are removedi.e., H is obtained fromH by removing the follows a standard normal distribution (due to the nornaliz
rows corresponding to the adversary sensors. THEn s in  tion) if {i} is not a critical set;(2We); is zero otherwise.
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Therefore,r; follows the normal distributionV'((2Wa);, 1) whereV; and6; denote the voltage magnitude and phase angle
if {i} is not a critical set; otherwise, is equal to(2Wa),. at busi respectively, and bus 1 is set as the reference bus.
Therefore, the expected energy of the normalized residuedVe consider two types of legacy sensors: line flow sensors

at 8r in the presence of the attaekis and bus injection sensétsThe line flow from busi to bus;
is a complex quantity related to the system state by
E Z(mﬂ = Z(QWa)§+cz |TIs. QWal|3+C, (25) . , Vielfs — Vielfs\ *
iESE iESE Pij +J- Qij - V;‘ejei . (Z]> (28)

where C' is the number of sensors 8k that do not form a where P, € R and Q;; € R are real and imaginary parts

single element critical set. ) , of the line flow respectivelyZ;; is the impedance of the line
Coqsequently, a solutlion to (17) is also a solution to thﬁ,j}, and X* denotes the complex conjugate &t The bus
following problem, and vice versa: injection at busi is the sum of all outgoing line flows from
max, || Is,QWa|[3 bus.
subj. Jlal|2=1, acRH)NA, (26) For computational benefits, the above nonlinear relation is

) often linearized at the nominal operating point where a bu
The theorem statements follow from the following observastage magnitudes are equal top.u., and all bus voltage

tions: W is equal toW as both are orthogonal projections ofynase angles are equal to zero. This linearization decotimie

the same space, as{H, ) is equivalent taR(Uy,). B relation such that the real part of measurements depensis onl
on the voltage phase angles, and the imaginary part depends
APPENDIXE only on the voltage magnitudes.
PROOF OFTHEOREM 4.2 The linearized relation between the real part of mea-

Let H denote the submatrix & obtained by removing the surements and the voltage phase angles—the so-called DC
rows corresponding to the sensors@nFirst, from the proof model—is often used to analyze power system observability.

procedure of Theorem 3.2, one can derive that the dimenstfythe DC model (4), the state is defined as the vector of )
of N(H) is one. This implies that contains exactly one voltage phase angles at all buses except the reference bus:

critical set. Because, if there were more than one critie& s x=1[0y 05 - 0,]7. (29)
included in€, N(H) should have a dimension larger than one.

BecauseSa U Sg = € contains exactly one critical set, thel he measurement matrld depends on the topology and line
dimension of R(H;) N A in (17) is one. This can be seenimpedance _ _
as follows. The dimension dR(H;) N A in (17) is equal to ~ The power system is observable if and onlyHf has full
the dimension ofN(H,) where H, is the matrix obtained column rank [20]. Verifying this rank condition seems to re-
from H by removing the rows corresponding to the sensofglire knowledge of the line impedance. However, Krumpholz
in Sa U Sg. And, the fact thaiSa U Sg contains exactly one €t al.[20] showed that system observability can be determined
critical set implies that the rank dfl, is n — 1, and thus the Purely based on the topology and sensor locations. In partic
dimension ofN(Hs) is 1. lar, Krumpholzet al. [20] showed that a system is observable

Therefore, (17) has only two feasible points, and they gikand only if there exists a way to assign each injection eens
the same objective function values. In particular, a sotuto {0 any of the lines that are incident to the bus where the senso
(17) is the direction given bfl; Ax where Ax is a nonzero is chated such that there exists a sp_anning tree of thec@gpol
vector inN(Hy) (see [24] for more detailed arguments.) having at least one sensor (an assigned injection or line flow

The first and second conditions of Theorem 3.2, which af€nsor) on each edge of the tree (see Corollary 2 in [20].)
assumed to hold, imply that the dimension26fUs,) is one. The spanning tree criterion can also be used to check

In addition, it can be seen from Corollary 3.2.1 that the secoWhether the state variables ¥, are observable with respect
statement is true foa* = H,;Ax and some nonzera. m !0 8o (We use the notations in Section IlI-B.) Without loss of

generality, we assume th&g contains an injection sensor on
the reference bus or a line flow sensor on a line incident to
the reference bd& Then, we can simply apply the spanning
tree criterion to the reduced network 8 (see Section III-B

In this section, we briefly describe the power system metor the definition of a reduced network.) The state variables
surement model and the spanning-tree observability miter in X, are observable with respect & if and only if it is
in [20]. The spanning-tree observability criterion resuih

Corollary 3.2.2 from Theorem 3.2. For more details aboutsoﬁgef Ctjyr\JAelS_Of Sensrc]{rseo, phasor melasurfem_tl?r;;;nits) can also be
considered. We impose this restriction merely to facilit I@©r presentation.
power system models, see [27]. : Impose this restrict y fo fachl P '

. . 9To describe the entries &, we consider a noiseless measurement vector
The power system state is defined as the vector of voltage- Hx for simplicity. Suppose that théth entry of z is a measurement

magnitudes and phase angles at all buses except a referelf;!mea line flow dseﬂsor meéigsuring ;he Ene flow fromh bue j. Then, if tfheh
. . . ing is connectedz, = B;;(0; — 0;), where B;; is the susceptance of the
bus, which is an arbltrary bus whose VOItage phase angleliﬁg; if the line isnot connectedz;, = 0. In case that; corresponds to an
set to zero: injection sensor at bug zj is the sum of all the outgoing line flows from
bus.
x=WV Vs -V, 05 --- Gn]T 27) 10Note that we can choose the reference bus such that thisticontolds.

APPENDIXF
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possible to assign injection sensorsSinto their neighboring [22] J. Kim and L. Tong, “On topology attack of a smart grid: etettable
lines such that a spanning tree of the reduced network with at

least one sensor i§, on every edge exists.
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