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S U M M A R Y  
Most nonlinear inverse problems can be cast into the form of determining the minimum of a 
misfit functional of model parameters. This functional determines the misfit between 
observations and the corresponding theoretical predictions, subject to some regularization 
conditions on the form of the model. When there is only one type of parameter in the model, 
methods based on gradient techniques work well, especially when information on rate of 
change of gradients is included. 

In the case of problems depending on multiparameter classes, simple gradient methods mix 
parameters of different character and physical dimensionality. This may lead to rather poor 
convergence and strong dependence on the scaling of the different parameter types. These 
difficulties can be overcome by replacing a gradient step by a local minimization in a subspace 
spanned by a limited number of vectors in model space. The basis vectors for the subspace 
should be chosen in the directions determined by the variation of the misfit functional with 
respect to each of the parameter types, with supplementation if required by additional vectors 
representing the rate of change of the gradient partitions. The construction of the 
perturbation requires the inversion of a matrix with the dimensions of the subspace which is 
easily accomplished. 

Such a subspace scheme takes into account the different functional dependences on the 
various parameter types in a balanced way. The update to the current model does not depend 
on the scaling of the individual parameter classes. The subspace method is flexible and can be 
adapted to a wide range of choices of misfit criterion and modes of representation of the 
parameter classes. This style of iterative subspace procedure is well adapted to nonlinear 
problems with dependence on many parameters and can be successfully applied in a variety of 
problems, e.g. seismic reflection tomography, the simultaneous nonlinear determination of 
earthquake locations and velocity fields and in the inversion of full seismic waveforms. 

Key words: Inverse problems, subspace methods, seismic tomography, waveform inversion 

1 I N T R O D U C T I O N  

In many geophysical problems the observable data depend 
on parameters of different types with varying character or 
physical dimensions. For example, the free oscillation 
frequencies for the Earth depend on the density and the P ,  
S wavespeed distributions in an isotropic representation and 
even more parameters are introduced in an anisotropic 
model. 

However, when an attempt is made to invert for a 
physical model comprising such a suite of parameter types, 
most inversion algorithms do not take the differences in the 
characters of the parameters into account. This is generally 
unimportant for small linear problems where generalized 
inverse methods are applicable. Poor conditioning of the 
matrices can usually be improved by numerical manipula- 
tion, e.g. column normalization. However, inappropriate 
relative scaling of different parameter types may adversely 

affect the inversion path in model space for problems which 
are large enough, or sufficiently non-linear, to require 
iterative schemes. This can retard convergence and may well 
result in a biased answer. A more severe problem arises 
with gradient methods in nonlinear inversion schemes. 

Commonly, where data are not abundant, only those 
parameters which are expected to be most significant (or 
achievable) are determined in the inversion and the 
remainder are assumed known. Such a procedure has the 
disadvantage that a bias can be introduced into the inversion 
by imperfections in the representations of the fixed 
parameter types. An alternative strategy is to adopt a 
hierarchical approach to inversion and to determine 
parameter distributions sequentially in order of assumed 
importance. This procedure requires the different types of 
parameter to be essentially independent in their contribu- 
tions to the observed data, and has the disadvantage of 
allowing build up of error in the successive inversions. 
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Unfortunately, there is frequently cross-dependence be- 
tween two parameter types with consequent trade-offs in the 
character of the inversion depending on the precise 
sequence of operations. Such sequential inversions can be 
useful in the initial exploration of the character of a problem 
and where computational capacity is limited. The worst 
features can be avoided if the whole process is iterated, with 
only a partial inversion for each parameter type attempted 
at each step. 

In this paper we present an approach which resolves the 
question of the weighting of the changes in different 
parameters in what seems to us to be a natural fashion. We 
formulate the inversion procedure as an optimisation 
problem requiring the minimum of a functional of the model 
parameters which assesses the concordance between 
observed and computed data values, and includes some 
regularization term, incorporating available zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori 
information, to prevent extravagant behaviour. The 
procedure is iterative and represents a hybrid between 
descent and matrix methods. 

At each current model, we evaluate the gradient vector 
for the misfit functional and split it up into components, 
each involving a different parameter type. We then obtain 
an updated estimate of the model by minimizing the misfit 
functional within the subspace defined by the corresponding 
'descent' vectors. Thus the weighting between parameters is 
determined solely by the misfit functional and corresponds 
in that sense to the best possible relative scaling. The 
computation required additional to that of a basic descents 
algorithm is small as it requires only the establishment and 
solution of a system of equations of the dimensionality of 
the subspace. At each step we need to solve a linearized 
problem involving the projection of the full Hessian onto 
the subspace. This approach is a particular application of a 
Subspace method in model space, such techniques have 
recently been found to be very effective in solving 
large-scale nonlinear inverse problems (Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& William- 
son 1987). 

We illustrate the method by showing how it can be 
adapted to a number of geophysical inversion problems 
involving a number of parameter types, specifically seismic 
reflection tomography, the simultaneous estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
hypocentre parameters and the velocity distribution from 
earthquake travel times, and the problem of the inversion of 
full seismic waveforms. In seismic reflection tomography, 
both the shape of a reflector and the velocity field above it 
are to be estimated from the travel times of waves reflected 
from the interface. For the earthquake location and velocity 
estimation problem there are dimensional differences 
between the origin times and the spatial hypocentre 
coordinates and also differences in character between the P 
and S wavespeed distributions. These can be all be taken 
into account by a suitable choice of subspace. For full 
waveform inversion both the P and S wavespeed 
distributions as well as the density need to be found so that 
at least three parameter classes have to be found during the 
inversion. 

2 INVERSION SCHEME 

For simplicity and clarity we will confine our attention to 
discrete inverse problems, but the procedures we will 

describe can be readily adapted to the case of continuous 
parameter distributions (Sambridge et al. 1988). 

We suppose that we are presented with a set of 
observations &{do,, r = 1, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM }  and wish to use those 
observations to determine a discrete set of parameters m 
{mk, k = 1, . . . , N } .  Since we are interested in the situation 
where the model is built up from a number of parameter 
types, we assume that we can partition the model into a 
number of subsets of parameters, with one for each type, so 
that we will set 

m = [mA, mB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm,, . . . I ,  (2.1) 

with a total of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP parameter classes. The dimensionality of 
the subsets mA, m, etc. will vary according to the nature of 
the problem. Within each subset, the parameters may 
describe the model directly or may be the coefficients in an 
expansion in terms of orthonormal functions (Nolet 1987a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r=1 

where the basis functions h, satisfy 

1 d"x h,(x)h,(x) = d,, 

over a region R of dimensionality D.  
Corresponding to each of the observed data values do, we 

have to calculate the predicted value g,(m) which will be 
some functional of the model parameters. We will use a data 
misfit function @(do,g(m)) to assess the level of 
disagreement between observed and calculated data values, 
the choice of the function depends on the nature of the 
problem and the error statistics of the data. If it is 
reasonable to assume Gaussian statistics then we can adopt 

a(&, d) = (& - d)'c,'(& - d), (2.2) 

where the data uncertainties are introduced by the data 
covariance matrix Cd. We will assume that any precon- 
ditioning to reduce the nonlinearity of the problem has been 
absorbed into the definitions of d and g(m) (see, e.g. 
Chapman & Orcutt 1985). In order to constrain the 
behaviour of the model parameters, we introduce a 
regularisation function Y(m, m,) in terms of some starting 
model m,; commonly this would be related to a norm on the 
model. For example, we may choose the quadratic form 

Y(m, m,) = (m - m,)'C,'(m - ms), 

where Cm is the model covariance matrix whose properties 
should be chosen to fit what is known about the situation. 
For the case with a number of parameter types 

where we may need to introduce off-diagonal blocks to 
allow for trade-offs between different types of parameters. 
For example, in seismic model estimation we may expect 
correlation between the P -  and S-wave velocities, and also 
with the density. The individual parameter covariance 
matrices CAA etc. may also need off-diagonal contributions, 
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e.g. in tomographic work there are advantages in allowing 
some degree of nearest neighbour interaction between cells 
(Williamson 1986). 

We now seek to minimise the discrepancy between 
observed and calculated data values whilst maintaining 
constraints on the character of the parameter distribution. 
We can do this by minimizing 

F(m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= @(do, g(m)) + Y(m, m,), (2.5) 

with respect to the model m: explicitly we have with 
quadratic forms for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 

F(m) = ( g ( 4  - 4)TC,1(g(m) - do) 
+ (m - ms)TC;'(m - ms). (2.6) 

For perfect data we would aim for the global minimum of F, 
but with observed data one practical termination criterion is 
to stop once the data misfit term @ is reduced below a 
preassigned threshold. Other possible termination criteria 
are discussed in Kennett (1988). 

With many model parameters a direct search for the 
minimum is out of the question and so we aim to exploit the 
local behaviour of F to guide us to the desired minimum. If 
F is a smooth function of the model parameters we can 
make a locally quadratic approximation about some current 
model m, by truncating the Taylors series for F 

FQ(mc + 6m) = F(m,) 

+ V,,,,F(m,) - 6m + 112 6m * VmV,,,F(mc). 6m, 

= F(m,) + p . 6m + 112 6mH6m, (2.7) 

in terms of the gradient p and the Hessian matrix 8. The 
gradient lies in a dual of the model space defined by our 
choice of the norm on the model space. If we adopt the 
quadratic norm Y'", the equivalent vector in model space 
(the direction of steepest ascent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  is related by the action 
of the model covariance matrix (Tarantola 1987) 

y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcmp. (2.8) 

p = GTC-l( d d m )  - + C;l(m - ms)? (2.9) 

H = GTCilG + V,,,GTC;'(g(m) - 4) + C;'. (2.10) 

With our assumed form for F, the gradient 

where G,) = agl/dml and the Hessian matrix 

The Frechet derivative G,) can often be found in an 
analytical form. However, in many circumstances, the 
second derivative term VmG = V,,,Vmg is difficult to 
calculate, but since it appears with the data misfit its 
significance should diminish as minimization proceeds and it 
is often neglected at the outset. 

2.1 Subspace methods 

A class of very effective algorithms can be developed by 
restricting the local minimization of the quadratic 
approximation to the misfit functional FQ to a relatively 
small n-dimensional subspace of model parameter space 
(Kennett & Williamson 1987). 

We introduce n basis vectors {a(')} and a projection 
matrix A composed of the components of these vectors 

A,=a!" i = l ,  . . . ,  N ,  j = 1 ,  . . . ,  n. (2.11) 

We now construct a perturbation to the current model in 
space spanned by the {a")}, 

n 

am = C yja'j). (2.12) 
j = 1  

The coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy are to be determined by minimizing FQ 
for this class of perturbation for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

yjip * a") + 112 c " n n  

FQ = F(m,) + p .  /pk a(k)THa(i), 
j =  1 j = l  k = l  

(2.13) 

and minimizing with respect to y j  we require aFQ/8yj = 0, 
so that 

n 

(2.14) 

We may now rewrite (2.14) in terms of the projection matrix 
A as 

~ ~ i p  + A ~ H A ~  = 0. 

The perturbation coefficients can thus be determined from 
the projection of the gradient and the Hessian matrix onto 
the subspace in the form 

p = - ( ~ ~ i h - l ~ ~ p .  (2.15) 

The projected Hessian is a small n X n matrix, which is 
generally well conditioned with sensible choices for the basis 
vectors {a(')}. 

The model perturbation 6m can be recovered by 
projecting back into the full model space, and for the choice 
of misfit functional F (2.6) can be represented as 

6m = - AIA'(Ho + C&')A]-'A'f, (2.16) 

where is the Hessian of the data-fit term ( V,,,V,,,@). The 
structure of (2.16) is reminiscent of a projected Marquardt 
algorithm though C;' need not be diagonal. 

The basis vectors a(') will normally be related to the 
ascent vector y and its rate of change and so (2.16) normally 
combines to some extent gradient and matrix techniques for 
minimizing FQ. Once the local model update estimate 6m is 
constructed from (2.16), a new current model is created and 
used to generate a further local quadratic approximation to 
the behaviour of F. The cycle of estimating 6m and model 
construction is then iterated until a suitable termination 
criterion for the minimization of F is activated. 

2.2 Subspace techniques for many parameter types 

The subspace method we have just introduced is quite 
general and can be applied to a set of parameters of the 
same type, or to parameters of a number of different types, 
by appropriate choice of the basis vectors {a(')}. 

When we have different types of parameters, model space 
becomes a product space M = MA X M, X M, X . . . , and 
we are faced with a scaling problem; as we change the 
relative sizes of the units for the different parameter classes 
the direction of gradient vector changes. A similar effect 
arises when working with dimensionless parameters under 
change of the choice of reference values. Further, to derive 
the ascent vectors in model space we need to invoke the 
action of the covariance matrix C,,, on the gradients, and so 
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this matrix also has considerable significance. Often, our 
quantitative knowledge of a suitable choice for C, is 
inadequate and a poor set of estimates for the entries may 
well slow convergence or introduce bias if an early 
termination is forced. 

The subspace method provides a natural way in which to 
exploit the dependence of the objective function F on each 
parameter class. We partition the gradient vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 into the 
contributions for each parameter type, so that 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ ? A ?  P B ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfc?. . (2.17) 

where, e.g. PA = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdF/dmA, and it should be recalled that the 
partitions are not necessarily of equal dimensionality. In the 
interests of brevity we will write column vectors in a 
horizontal format as in (2.17). 

Now, by the choice (2.12) of the form of possible model 
perturbations we have assumed that the basis vectors {a(')} 
lie in model space, but the gradient p lies in the dual 
(gradient) space. If we concentrate on one class of model 
parameter at a time, we can construct the corresponding 
ascent vector in model space by the action of the model 
covariance matrix on just the gradient components 
corresponding to the particular parameter type. Thus we 
define for parameter type I 

yr = C,[. . . , 0, P I ,  0, . . .]. (2.18) 

With the form of model covariance matrix introduced above 
in (2.4) 

(2.19) 

. . . .  
and the off-diagonal blocks in the model covariance allow 
for specific cross-coupling between parameter classes when 
this is a desirable feature of the problem. We now adopt the 
set of P ascent vectors as the directions of the set of basis 
vectors so that 

a"' = I I ~ ~ I I - ~ ~ ~ ,  a(') = IIyBll-'yB?. . . (2.20) 

where we have normalized the basis vectors using the 
assumed quadratic norm (2.3) in model space. Thus 

IIYII' = YC,'Y = PC,P> 

and so 

112 
llyAll =(PICAAyA) ' 

Where cross-coupling exists between parameter sets-as in 
(2.19)-it is desirable to avoid linear dependence between 
the different a('). This can be achieved by orthogonalizing 
the basis vectors, and so we should modify the second vector 
to 

(2.21) 

which will then need to be normalized. By this means we are 
able to build a P dimensional set of basis vectors, with each 
one corresponding to the variation of the data-misfit 
functional F with a particular parameter type. 

The benefits of this adaptation of the subspace method 

are shown in Fig. 1. The plane defined by yo and yb in a 
problem with two parameter types (a, b) is shown, under the 
assumption of no off-diagonal blocks in C,. The contours of 
FQ, the quadratic approximation to the objective functional 
at the current model m, are superimposed. The dashed 
arrow denotes a typical descents direction so that the vector 
is perpendicular to a contour, the minimum value of FQ 
along this path is reached at A , .  The solid arrow indicates 
the step prescribed by the subspace method using y, and yb 
as basis vectors which arrives at Aopt. The improvement 
over the descent step is readily apparent. 

If the number of parameter classes P is greater than 4, the 
descent vectors derived from the gradients of the objective 
functional F will normally be a sufficient basis set. However, 
for a small number of parameter classes it is feasible to 
incorporate a further P2 basis vectors representing the rate 
of change of the ascent vectors. We will illustrate the 
process by the example of two parameter classes. We 
partition the Hessian matrix into blocks by the dependence 
on parameter type 

(2.22) 

and then look at the rate of change of yA and yB with 
respect to both parameters. This generates four new vectors 

in the dual (gradient) space, which then have to be 
transfered back to model space by the action of the 
covariance matrix C,. They also have to be orthonormal- 
ized before addition to the basis set. 

yb 
Figure 1. Elliptical contours of the local quadratic approximation to 
the objective functional FQ projected onto the two dimensional 
subspace formed by partition of the gradient components. Note that 
the steepest descent direction is non-optimal within the subspace 
defined by its components: a step in the steepest descent direction 
arrives at A ,  whereas the 2-D subspace scheme arrives at Aopt. 
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Once we have set up the basis vectors {a(')}, we have 

established the framework for using the subspace approach. 
With the local quadratic approximation for the mifist 
functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,  the perturbation to the current model should 
be estimated from (2.16) 

Sm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - AIA'(Ho + C,')A]-'A'?, (2.16) 

where A,, is the projection matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a!"} .  If the second 
derivative term in the Hessian ( 0, V,g) can be neglected we 
need to evaluate terms like 

K = a(')TIGTC,lG + C,']a('), (2.24) 

where the derivative G is evaluated at the current model. 
There is no need to construct the matrix CTCdlG since we 
can recast K into the form 

K = b(t)TC;1b(l) + a(')TC,la(/) (2.25) 

where b(') = Ga'", so only a single vector multiplication is 
required. When the basis vectors are just the P ascent 
vectors associated with the variations of the individual 
parameter classes, the vector b(" can be found directly from 
the action of a small change in the Zth parameter class on F. 

If the model perturbation derived from (2.16) is so large 
as to move outside the likely range of the quadratic 
approximation for F, it is possible to regard (2.16) as 
defining a search direction and then only move partway 
towards the quadratic minimum by taking the update as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m, + vSm with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY < 1. However a preferable procedure is to 
modify the definition of F by adding a term E* IIm - mC1l2, 
where m, is the current model. This does not affect the 
gradient but adds &'I to the Hessian and so decreases the 
step length in a way which will follow the true descents path 
as accurately as possible. 

The subspace method essentially performs a least-squares 
inversion within the subspace, spanned by vectors which 
reflect the dependence on all the parameter classes. The 
model step generated is independent of the scaling of the 
particular parameter types (Williamson 1986). The weight- 
ing accorded to the different model types is determined 
solely by the behaviour of the objective functional. As a 
result we remove any bias that might be introduced by 
combining disparate parameter types in a single descent 
vector and achieve a effective balance between the 
information in the data (through @) and the a priori 
constraints imposed through Y. 

Where information additional to the ascent directions for 
the individual parameter classes is desired it is preferable to 
generate this directly within the step, rather than to rely on 
information from previous iterations which may well not be 
relevant to the neighbourhood of the current model. 

2.3 Comparison with gradient methods 

From a current model m,, the simplest approach to 
updating the model in order to minimize the misfit 
functional F is to look for a model perturbation related to 
the descent vector in model space, so that 

Sm = p@(mc) with @ = S,y(m,). (2.26) 

The use of a matrix So differing from the unit matrix is 
termed 'pre-conditioning' by Tarantola (1987); he advocates 

an approximation to the initial curvature 

So = [I + C,GT(ms)C~lG(ms)]-'. 

The parameter ,u is to be chosen so that F(m, + Sm) is a 
minimum along the step direction. Within a local quadratic 
approximation, this is essentially a 1-D subspace approach 
and so 

p = - @ T j q y T H @ ) .  (2.27) 

The disadvantage of such a scheme with many parameter 
classes is clearly demonstrated by recalling that y = C I  y I ,  
with summation over all the P parameter types. All the 
parameters are being treated the same way with differences 
in character ignored. The resulting direction and step will be 
affected by any rescaling of individual parameter classes. 

The convergence of the steepest descents type of 
algorithm is comparatively slow and can be improved by 
using a conjugate gradient technique as employed by Mora 
(1987). In this case the search vector is built up from the 
gradient and the previous search directions. At the rth 
iteration 

and so there are contributions from the previous r descent 
directions. This should give an improved choice of direction 
in which to look for a minimum. The actual minimization is 
however, once again, 1-D with comparable disadvantages to 
the steepest descent approach in terms of dependence on 
different parameter classes. 

An alternative approach is to build up the total model 
perturbation as a sum of contributions corresponding to 
variations of one parameter at a time (cf. Tarantola 1986). 
We take 

(2.28) 

with summation over parameter class. The weighting factors 
determined by minimization along the descent vector for 
each parameter class are 

(2.29) 

Such an approach does begin to take account of the 
dependence of the misfit functional F on the different 
parameter classes and allows the update to each parameter 
type to be determined by its own gradient. However, this 
representation cannot take into account interactions 
between parameters and involves nearly as much computa- 
tion as the subspace method. 

The subspace method, on the other hand, makes full use 
of the information on the local dependence of F on the 
different parameter types and can allow for interdependence 
of parameter classes. The subspace method thus offers an 
effective and affordable means of handling inversion for 
multiple parameter types. 

3 EXAMPLES OF THE USE OF SUBSPACE 
METHODS 

We will describe three cases where the subspace method we 
have introduced in section 2.2 provides an effective 
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approach to the solution of an inverse problem. All of the 
examples are for seismological problems because these 
commonly involve parameters of different types; but the 
approach can certainly be used for a wide range of other 
geophysical inverse problems. 

3.1 Simultaneous estimation of hypocentral parameters 
and velocity distributions fkom arrival times of earthquake 
phases 

With a network of seismic stations, the times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof arrival of 
various seismic phases can be estimated for an individual 
earthquake. But, before this information can be exploited to 
define the velocity structure in the neighbourhood of the 
network, the earthquake has to be located in space and 
time. Ideally, we should aim to locate earthquakes and 
determine the velocity structure simultaneously by making 
use of the data coverage from many events. The parameters 
required from the inversion clearly divide into two groups: 
the first consisting of the hypocentral parameters for all the 
events and the second consisting of those parameters needed 
to define the velocity distribution. This separation has been 
exploited in slightly different ways by Pavlis & Booker 
(1980) and Spencer & Gubbins (1980) in methods for 
linearized simultaneous inversion. 

Within the context of the subspace approach, we could 
therefore envisage setting up two major parameter classes: h 
including all the hypocentral parameters and v for the 
velocity field. We can then partition the model as 

m = [h, v] 

and exploit the 2-D subspace approach described in section 
2.2. Such an approach can be made to work, but requires 
careful manipulation of the model covariance matrix to try 
to equalise the sensitivity of the misfit functional F to the 
parameters within each of the major groupings. 

By treating the hypocentral parameters as a unit, we have 
implicitly mixed parameter dimensions by combining the 
spatial coordinates of the events with their origin times. The 
net result is that the shifts in the spatial coordinates are 
dominated by the adjustments to the origin times, since 
these have the largest gradient components. For a local 
velocity model for southeastern Australia, an upweighting of 
the spatial shifts by a factor of ten or more is needed to get 
flexibility in the inversion. A preferable solution is to 
recognize the distinction between the two types of 
hypocentral parameters and partition h into spatial and 
temporal parts, 

h, then contains the spatial coordinates of all the events and 
h, their origin times. 

A similar problem arises for the velocity distribution 
parameters. The basic recorded times include both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- and 
S-wave phases and so the model representation must include 
both velocity fields. In addition, the position of a major 
interface, such as the Moho in regional work, can affect the 
travel times. It is therefore appropriate to split up the 
parameter set v into parts v,, vs associated with the P- and 
S-wave distributions and vz arising from interfaces. Thus we 

should take 

v = [v,, vp, vz]. (3.3) 

With the partitions of h and v as in (3.2), (3.3) the total 
model in the terminology of section 2 is 

m = [hx, hr; vmp vp, vz]. (3.4) 

The corresponding subspace development would then be at 
least 5-D. Such a subspace development avoids the 
complications of having to worry about the relative sizes of 
the contributions from the different parameter types. It also 
means that at each iterative step, the dependance of the 
misfit functional F on all the different types of parameters 
have been treated in the same way in the estimate of the 
changes which have to be made to the current values. One 
may also wish to further subdivide v, and vs to segregate 
different parts of the model, e.g. crustal and mantle 
velocities, and this would further increase the dimensionality 
of the subspace. 

We will illustrate the merits of the subspace techniques by 
application to a study of the 3-D velocity structure of the 
southeastern corner of Australia, using earthquake and 
explosive sources (Fig. 2). Over 4200 travel times from 312 
earthquakes were combined with 700 travel times from 
well-timed quarry blasts and refraction shots. The region 
was divided into cells of size one half a degree by one half a 
degree over the zone with adequate data coverage indicated 
by the heavy outline in Fig. 2. Separate P-wave distributions 
were taken for the crust and mantle, but the character of the 
S-wave readings precluded estimating S-wave mantle 
velocities, the depth of the crust/mantle interface was alsa 
allowed to vary. This leads to a total of 512 structural 
parameters of four different types and 1248 hypocentral 
parameters and the present analysis was based on a 
linearized treatment using a fixed set of ray paths based on a 
simple 1-D model for the region, as a preliminary study for 
a full nonlinear inversion with 3-D ray tracing. 

In Fig. 3 we summarize the convergence behaviour of 
three different algorithms for this simultaneous hypocentre 
and structural inversion. In each case we attempt to 
minimize a data misfit functional of the form (2.2). The 
chain dotted curve (SD) shows the result of a steepest 
descent algorithm, i.e. a 1-D minimization along the 
steepest descent direction at each iteration. Such an 
approach makes no distinction between the different 
parameter types. The dashed curve (2D) is the result of 
using the 2-D subspace scheme described above, where the 
model parameters and split into hypocentral and structural 
sets. The basis vectors for the subspace are derived from the 
partitioned gradient vector as in (2.20). Convergence is both 
more rapid and smoother than for the simplest case. The 
solid curve (6D) shows the results of a 6-D subspace 
approach where the hypocentral parameters are divided into 
spatial and temporal components and the structural 
parameters comprise crustal and mantle P-wave speeds, 
crustal S-wave speeds and interface terms. The convergence 
per iteration is much more rapid than before with only a 
modest increase in computation time. Thus as the dimension 
of the subspace increases, the efficiency of the inversion 
algorithm per iteration is much improved. This is due to the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/9
4
/2

/2
3
7
/5

7
3
2
7
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Subspace methods for multiparameter inversion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA243 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Relocation Vectors 

S 

33. 

34. 

QI 35. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 

37. 

38. 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I /  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

E 146. 147. 148. 149. 150. 151. 

Longitude 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Distribution of earthquakes and recording stations used in the 3-D inversion for the southeast Australian region. The stations are 
shown by solid triangles and the earthquakes by open hexagons. The relocation vectors for the epicentres, determined from the 6-D subspace 
inversion, are indicated with a exaggerated scaling ( X 15) in order to enhance the visibility of the smaller shifts. 
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Figure 4(a) shows the crustal S-wave velocity distribution 
recovered from an inversion with the two-dimensional 
subspace scheme. Outside the region containing the most 
significant anomaly to the NE, the inferred velocities are 
only slightly perturbed from their starting values (indicated 

Figure 3. Comparison of convergence of different methods for 
solving the simultaneous hypocentre and velocity estimation 
problem. A simple descents scheme (SD) with no distinction 
between parameter types gives very slow convergence, whereas 
partitioning into a 2-D subspace scheme (2-D) with separation of 
the hypocentres and structural information results in much faster 
convergence. Further partitioning to separate each parameter class 

4 8 12 16 20 and so generate a 6-D subspace scheme (6-D) improves the rate of 

L - - ~ - - L ~ - ~ - - ~ ~ ~  

Iteration convergence even further. 
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Figure 4. (a) Crustal S velocity pattern determined by inversion using a 2-D subspace scheme. Because the partial derivatives for S are 
downweighted relative to P there is a tendency for very little movement away from the reference value 3.61 km s-' to occur. (b) Crustal S 
velocity pattern determined by inversion using a 6-D subspace scheme. Now with each parameter type allowed to vary independently the 
S-wave variations are no longer downweighted by the dominant P information and more complex velocity structure is inferred with a much 
better fit of the travel times to the original data. 

by the white background). Indeed one can observe the 
cellular nature of the inversion in the contoured plot. The 
reason for this behaviour is that in the 2-D scheme we have 
lumped together all structural information into the same 
class and the contributions of the S-velocity parameters to 
the structural partition of the gradient vector are swamped 
by the much larger contributions from the crustal and 
mantle P velocities. The problem is avoided in the 6-D 
scheme, since the adjustments of the S-wave parameters are 
now independent of the relative sizes of the P- and S-wave 
gradient partitions. Fig. 4(b) shows the resulting crustal 
S-velocity map for the 6-D scheme, the size of the variations 
is much larger than before and more detail has been 
recovered in an inversion which gives a significantly better 
fit to the original data. 

A similar downweighting effect was found to occur with 
the interface parameters and the epicentral coordinates of 
the earthquakes. In the 2-D subspace scheme, the origin 
times dominate the hypocentral shift to such an extent that 
no appreciable spatial movement was observed. Similarly 

the interface parameters were dominated by P-wave 
velocities and after inversion did not move far from their 
initial values. Only by adjusting the relative sizes of the 
entries in the model covariance matrix corresponding to 
different parameter types can the situation be improved 
within the 2-D subspace scheme. However, moving to the 
6-D subspace scheme removes the problems and allows 
variation to occur for each of the different parameter types. 
The resulting epicentral shifts are illustrated in Fig. 2. 

3.2 Seismic reflection tomography 

Whereas the standard tomographic techniques used in 
seismic work are based on transmission problems (Nolet 
1987a), in seismic reflection work it is necessary to use the 
times of arrival of reflected wave packets to infer the nature 
of the subsurface. In particular the nature of the near 
surface zone has a substantial effect on the character of the 
seismic records returned from depth. The reflection 
tomography problem is therefore to try to reconstruct the 
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Figure 4. (See previous page) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

shape of the first major reflector and the velocity field above 
the reflector. The seismic parameters required from the 
inversion therefore divide into two classes, (i) positional 
parameters describing the shape of the reflecting interface 
and (ii) velocity parameters for a cellular (or similar) 
partition of the velocity field. 

It is very difficult in this highly nonlinear case to get 
satisfactory results using steepest descent methods (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5).  However, a subspace approach using the ascent 
directions for the two classes of parameters, supplemented 
by four vectors representing the rate of change of those 
vectors, can help to give good results with far superior 
convergence (Williamson 1986). This 6-D subspace ap- 
proach requires more work per iteration than a simple 
descent scheme but the improvement in the data fit per step 
is much greater. 

The nature of this nonlinear problem is such that it is easy 
for the minimization of the function F to be waylaid by the 
existence of local minima with rather different character to 
the true solution. Such apparent solutions may well be 
regarded as within acceptable levels of data when inverting 
for noisy data. These variant models are associated with a 
strong trade-off between the velocity close to the reflector 
and its position. Decreasing the velocity above the reflector 

36110 

or making it deeper will have similar effects on the reflected 
wave travel times, so that there can be a tradeoff between 
these two types of parameters which will depend on the 
starting model. This effect is illustrated in Fig. 5 ,  where it 
has proved possible to achieve quite a good fit to the travel 
time data with a 6-D scheme but without a adequate 
recovery of the original model. 

A partial cure can be provided for the local problem by 
modifying the scale of parametrization as the iteration 
proceeds (Williamson 1986). Initially a relatively coarse 
level of parameterization is employed and as the data fit 
improves a finer parameterization is introduced. Fig. 5 
shows a successful application of this approach. However, 
even with this variable parametrization multiple inversions 
from different starting models may be needed to explore the 
character of acceptable solutions. 

3.3 Inversion of seismic waveforms 

A further class of problems in which there is a dependance 
on a number of different types of parameters arises in the 
inversion of seismic waveforms (Tarantola 1986; Nolet 
1987b). For a complex isotropic region the complete 
waveforms recorded at a number of discrete receivers will 
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Original Model Descents 40 Iterations .30ms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6D subspace .18ms 60 subspace VP .10ms 

s/ km 
0.375 0.425 

Figure 5. Comparisons of different inversions for the reflection tomography problem with unknown slowness field and reflector shape. The 
descents inversion uses rescaling of the model parameters by reference values and is only moderately successful. An application of the 6-D 
subspace approach with a fine parameterization gives a good fit to the data, but not a good recovery of the original model (‘a local minimum’). 
The 6-D subspace method combined with variable parameterization, indicated by VP, gives very good recovery of the original model. The 
figures indicate the r.m.s. misfit in milliseconds between the original travel times and those computed for the postulated models. 

depend on the P- and S-wave velocity and density representation of the field parameters is as continuous 
distributions. In addition, the actual source character is distributions and Sambridge, Tarantola & Kennett (1988) 
often unknown so that a full inversion will require the describe how the subspace method can be adapted to deal 
estimation of four different aspects of the total model m. We with this case. 
can write therefore 

m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ v m ,  vs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv p ,  fl, (3.5) 4 DISCUSSION 

where the partitions vm, vs, vp represent the parameters 
describing the P, S and density fields and f the source 
parameters. This would then establish a 4-D subspace within 
which to set up the inversion procedure. 

Tarantola (1986) has shown how the gradient terms can 
be evaluated by cross-correlating, at each point, the 
wavefield predicted for the current model with the back 
projections of the discrepancy between the observed and 
calculated waveforms at the receivers. For the case of 
reflection seismograms in a 2-D model, Tarantola also 
advocates working with P- and S-wave impedance rather 
than velocity, in order to try to improve the independence 
of the different sets of parameters. Such independence is 
essential for the sequential inversion scheme proposed by 
Tarantola (1986). For the waveform problem, a convenient 

The subspace method provides an algorithm for nonlinear 
inverse problems, with many parameter types, that can take 
into account the different functional dependencies in an 
equitable way. By associating at least one basis vector of the 
subspace with each parameter type, the solution for the 
update to the current model is produced in a way that does 
not depend on the scaling of the different parameter classes 
and thus the choice of covariance matrix relating model and 
dual space. 

The mode of solution can be regarded as a cross between 
a gradient and a matrix approach. The model perturbation is 
built up from the local gradients of the nonlinear misfit 
functional with respect to each parameter type by a 
least-squares treatment in a subspace of small dimension. 
The dimensionality will typically be of the order of the 
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number of parameter types, although for two or three 
different classes, it may be worth bringing in additional 
information associated with the rates of change of the 
gradients. All the information needed is generated locally, 
and so is not dependent on bringing forward information 
from former models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, the subspace approach is 
effective in many nonlinear problems. However, as for all 
nonlinear minimization routines, it cannot be guaranteed 
that the global minimum of the measure of data misfit can 
be found. 

Throughout this paper we have illustrated the action of 
the subspace method with quadratic representations for the 
data misfit and regularization terms. Both of these forms are 
appropriate to the assumption of Gaussian statistics. When 
detailed information on the character of the error statistics 
are known the appropriate probability distributions should 
be employed in the construction of the data misfit or 
regularization terms, and the subspace method can be 
readily adapted to these new definitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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