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Abstract

The high feature-dimension and low sample-size problem is one of the major challenges in the 

study of computer-aided Alzheimer’s Disease (AD) diagnosis. To circumvent this problem, feature 

selection and subspace learning have been playing core roles in literature. Generally, feature 

selection methods are preferable in clinical applications due to their ease for interpretation, but 

subspace learning methods can usually achieve more promising results. In this paper, we combine 

two different methodological approaches to discriminative feature selection in a unified 

framework. Specifically, we utilize two subspace learning methods, namely, Linear Discriminant 

Analysis (LDA) and Locality Preserving Projection (LPP), which have proven their effectiveness 

in a variety of fields, to select class-discriminative and noise-resistant features. Unlike previous 

methods in neuroimaging studies that mostly focused on a binary classification, the proposed 

feature selection method is further applicable for multi-class classification in AD diagnosis. 

Extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show 

the effectiveness of the proposed method over other state-of-the-art methods.
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I. Introduction

Recently, neurodegenerative diseases, such as Alzheimer’s Disease (AD), Parkinson’s 

disease and Huntington’s disease, have become highly prevalent within societies. Among 

these neurodegenerative diseases, AD is the most prevalent and was reported to be the sixth 

leading cause of death in the United States [1]. Hence, many research groups have devoted 

their efforts to understand underlying biological or physiological mechanisms behind AD.

Since neuroimaging tools, such as Magnetic Resonance Imaging (MRI) and Positron 

Emission Topography (PET), have been successfully applied to investigate 

neurophysiological characteristics of AD, machine learning techniques have also been 

greatly devised for analyzing neuroimaging data for AD diagnosis [2], [3], [4], [5], [6], [7], 

[8]. For example, Cuingnet et al. devised a general Supprot Vector Machine (SVM) 

framework for the study of AD [9], and Wang et al. proposed a sparse Bayesian multi-task 

learning algorithm for improving the prediction performance of AD diagnosis [10].

In AD studies, the feature dimensionality is high in nature [11], [12], [4], [13]. Thus, 

dimensionality reduction (such as subspace learning [14], [15] and feature selection [16], 

[17], [18], [19], [20]) has become one of the core steps in the field of machine learning. For 

example, Salas-Gonzalez et al. employed the statistical t-test method to select voxels of 

interest for AD diagnosis [17], while Zhou et al. combined Least Absolute Shrinkage and 

Selection Operator (LASSO) [21] and group sparse LASSO [22] to predict AD status [23], 

[24]. Feature selection methods, such as statistical t-test and sparse linear regression, find the 

informative feature subset from the original feature set [5], [6], [23], [25], [26], while 

subspace learning methods, such as Fisher’s Linear Discriminant Analysis (LDA) [27] and 

Locality Preserving Projection (LPP) [28], transform original features into a low-

dimensional space [29]. In regards to the interpretability of the results, feature selection 

methods are preferable compared to subspace learning methods, particularly in 

neuroimaging studies, as selected features directly link anatomical structures and thus 

provide an intuitive understanding. Meanwhile, subspace learning methods have recently 

presented promising performances in various applications [30], [15], [31], [32], [33]. For 

example, Sui et al. applied a number of subspace learning methods, such as Independent 

Component Analysis (ICA) [34], Canonical Correlation Analysis (CCA) [35], [36], and 

Partial Least Squares (PLS) [37], [38] for medical image analysis [33]. Liu et al. employed 

Local Linear Embedding (LLE) [39] to reduce feature dimensionality of multivariate MRI 

data to show that subspace learning methods are superior to feature selection methods, such 

as t-test and Chi-squared, in AD classification [15].

From a clinical standpoint, a model for AD/MCI diagnosis should be interpretable and able 

to accurately identify the disease status of a subject; therefore, it is reasonable to combine 

feature selection and subspace learning in a systematic manner. One intuitive way to do this 

is to design a two-stage method, i.e., subspace learning before feature selection or subspace 

learning preceded by feature selection. However, because these approaches perform the 

methods individually, the results are likely to be suboptimal. It may be interesting to 

integrate them in a unified framework, where we can complement the limitations of each 

method.

Zhu et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this paper, we propose a novel feature selection method1 to select class-discriminative and 

noise-resistant features from the original feature set by utilizing characteristics of subspace 

learning methods. Specifically, we inject two subspace learning methods (such as LDA [27] 

and LPP [28]) into a sparse least square regression framework. The rationale of using both 

LDA and LPP in our formulation is that LDA considers both the global information inherent 

in the observations and the class label information, with the goal of selecting class-

discriminative features [27], [34], [41], while LPP preserves the neighborhood structure of 

each sample to reduce the adverse effect of noises or outliers [28], [36]. Mathematically, it is 

very similar to conduct feature selection by the sparse feature selection framework, except 

that the original data gets “adjusted” by the incorporation of the global information (i.e., 

LDA) and local information (i.e., LPP). Both LDA and LPP enable the proposed framework 

(with an intuitive and easy way) to select class-discriminative and noise-resistant features.

II. Materials and Image Preprocessing

In this work, we used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset for 

performance evaluation. The ADNI was launched in 2003 by the National Institute on Aging 

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 

and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, with a $60 million 5-year publicprivate partnership. The primary goal of 

ADNI was to demonstrate whether MRI, PET, other biological markers, and clinical and 

neuropsychological assessment could be combined to measure the progression of MCI and 

early AD. As a result, approximately 800 adults, aged 55 to 90, participated in this research.

A. Subjects

We describe the general inclusion/exclusion criteria of the subjects as follows: First, the 

MMSE (Mini-Mental State Examination) score of each NC subject is between 24 and 30 

with Clinical Dementia Rating (CDR) of 0. Moreover, the NC subject is non-depressed, non 

MCI, and non-demented. Second, the MMSE score of each MCI subject is between 24 and 

30 with CDR of 0.5. Moreover, each MCI subject is an absence of significant level of 

impairment in other cognitive domains, essentially preserved activities of daily living, and 

an absence of dementia. Last, the MMSE score of each Mild AD subject is between 20 and 

26 with the CDR of 0.5 or 1.0.

We used baseline MRI and PET images obtained from 202 subjects, which included 51 AD 

subjects, 52 Normal Control (NC) subjects, and 99 MCI subjects. Moreover, 99 MCI 

subjects included 43 MCI Converters (MCI-C) and 56 MCI Non-Converters (MCI-NC). The 

detailed demographic information is summarized in Table I.

B. Image Preprocessing

We conducted image preprocessing separately for MRI and PET images of the selected 202 

subjects. We downloaded raw Digital Imaging and COmmunications in Medicine (DICOM) 

MRI scans from the ADNI website2. All structural MR images used in this paper were 

1This work focuses on multi-class classification of AD diagnosis with either single-modality data or multi-modality data, different 
from our previous work [40], which focused on joint regression and classification with only multimodality data.
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acquired from 1.5T scanners. These MR images were already reviewed for quality, and 

automatically corrected for spatial distortion caused by gradient nonlinearity and B1 field 

inhomogeneity. All PET images were collected across a variety of scanners with protocols 

individualized for each scanner. We used 18-Fluoro-DeoxyGlucose (FDG) PET images. 

Also, we removed cerebellum in our preprocessing pipeline, as we mainly focused on brain 

regions in cerebrum for this study. These PET images were first acquired 30–60 minutes 

post-injection, and were then averaged, spatially aligned, interpolated to a standard voxel 

size, intensity normalized, followed by smoothing to a common resolution of 8mm full 

width at half maximum. Specifically, the image processing was conducted by the following 

steps: First, we performed anterior commissure-posterior commissure correction using 

MIPAV software3 for all images, and then used the N3 algorithm [42] to correct the intensity 

inhomogeneity. Second, we extracted a brain on all structural MR images using a robust 

skull-stripping method [43], and then conducted manual edition and intensity inhomogeneity 

correction (if necessary). Third, we removed cerebellum based on registration and intensity 

inhomogeneity correction by repeating N3 for three times, and then we used the FAST 

algorithm in the FSL package [44] to segment structural MR images into three different 

tissues: Gray Matter (GM), White Matter (WM), and CerebroSpinal Fluid (CSF). Next, we 

used HAMMER [45] for registration and then dissected images into 93 Regions-Of-Interest 

(ROIs) by labeling them based on the Jacob template [46]. After that, for each of all 93 ROIs 

in the labeled image of a subject, we computed the GM tissue volumes as features. For each 

subject, we aligned the PET images to their respective MR T1 images using affine 

registration and then computed the average intensity of each ROI as a feature. So, we 

extracted 93 features from MRI and 93 features from PET for each subject.

III. Method

A. Notations

Throughout this paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its 

i-th row and j-th column are denoted as xi and xj, respectively. Also, we denote the 

Frobenius norm and ℓ2,1-norm of a matrix X as  and 

, respectively. We further denote the transpose operator, 

the trace operator, and the inverse of a matrix X as XT, tr (X), and X−1, respectively.

B. Sparse Multi-Task Learning with Subspace Regularization

Let X ∈ ℝd×n denote a feature matrix, where d and n are, respectively, the numbers of 

feature variables and subjects, and Y ∈ ℝc×n denote a class indicator matrix with 0–1 

encoding, where c is the number of classes. As for the feature selection, we use a sparse 

regression model, which has been successfully used in various applications [47], [48], [5], 

[10]. However, since the class indicator matrix Y includes multiple response variables, a 

2http://www.loni.usc.edu/ADNI
3http://mipav.cit.nih.gov/clickwrap.php.
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regression model would find a regression coefficient vector for each response variable 

individually. In this regard, we regularize a least square regression model with an ℓ2,1-norm 

to find the features commonly used across the regression tasks as follows:

(1)

whereW ∈ ℝd×c is a regression coefficient matrix and λ is a sparsity control parameter. The 

ℓ2,1-norm ‖W‖2,1 penalizes the coefficients in the same row of W together for joint selection 

or unselection in regressing the response variables in Y. In Eq. (1), the optimal solution 

assigns a relatively large weight to the informative features and zero or a small weight to 

uninformative or less informative features [47], [49]. By viewing the regression of each 

response variable as one task, we call Eq. (1) as multi-task learning, and Argyriou et al. have 

shown that Eq. (1) successfully utilizes the correlation of different classes [47].

It is shown that LDA exploits the distributional characteristics that help find a generalized 

solution (i.e., small bias), whereas LPP alleviates the sensitivity of the solution to noises or 

outliers in the training samples (i.e., small variance) [27], [50]. However, in its current form, 

i.e., Eq. (1), we cannot guarantee the class-discriminative power of selected features and the 

preservation of the neighborhood structure of data points, which are important 

characteristics to enhance classification performance. To resolve this drawback, we propose 

a novel sparse multi-task learning method by combining the methods of discriminant 

analysis and topological structure preservation jointly in a sparse regression framework. 

Specifically, we utilize a Fisher’s LDA [34] that considers the global sample distributions by 

means of the ratio between within-class-variance and between-class-variance in a supervised 

manner. We also use an LPP [28] by constructing a Laplacian matrix to efficiently use the 

local topological relation among samples in an unsupervised manner.

In regards to Fisher’s criterion for discriminative feature selection, a straightforward 

approach can penalize the objective function of Eq. (1) with the Fisher’s ratio defined as 

follows:

(2)

where Σw and Σb denote, respectively, the within-class covariance and the between-class 

covariance matrices. However, due to the non-convexity of Eq. (2), it is not trivial to find an 

optimal solution of the corresponding objective function. Interestingly, we can reformulate 

this multi-class LDA in a linear regression framework by replacing the original label 

indicator matrix Y with a specific class indicator matrix Ŷ = [ŷik] defined as follows:

(3)

where l(xi) denotes the class label of xi and nk is the number of training samples of the class 

k4. That is, using a class indicator matrix Ŷ defined in Eq. (3), we can naturally incorporate 

Zhu et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the multivariate discriminant analysis of an embedding method to the sparse regression 

framework [51]. It is noteworthy that unlike the conventional LDA that projects features into 

an embedding space, in which it is generally difficult to interpret or investigate the results, 

we still work in the the original input space.

With respect to topological relation among samples, i.e., local structural information, we use 

a graph Laplacian by defining a similarity matrix S = [sij] ∈ ℝn×n between every pair of 

sample points xi and xj with a heat kernel5 and define a regularization term as follows:

(4)

where L = D − S and D ∈ ℝn×n is a diagonal matrix with its diagonal elements defined as dii 

= ∑j sij.

By using the newly defined class indicator matrix Ŷ in Eq. (3) as the target response values 

and the locality preserving constraint in Eq. (4), we formulate our objective function as 

follows:

(5)

where λ1 and λ2 are the regularization tuning parameters. Here, we should note that Eq. (5) 

efficiently combines the subspace learning methods, i.e., LDA and LPP, and a sparse 

regression-based feature selection method in a unified framework. Concretely, LDA utilizes 

class label information for discriminative feature selection, while LPP preserves the 

relationship between a sample and its neighborhood, which helps increase the robustness to 

noise.

Our method can be discriminated from the previous methods: (1) Unlike the previous sparse 

linear regression-based feature selection methods [48], [6], the proposed method finds the 

class-discriminative (via Fisher’s criterion) and noise-resistant regression (via graph 

Laplacian), based on which we select informative features. (2) Compared to subspace 

learning methods, such as Principal Component Analysis (PCA) [52], LDA [34], and LPP 

[28], which all have an interpretational limitation, the proposed method selects features in 

the original space and thus allows intuitive investigation of the results. (3) Furthermore, 

while the conventional LDA finds at most (c − 1)-dimension features for a c-class 

classification task, e.g., 2-dimension features in a 3-class classification task, Eq. (5) can 

theoretically select at most d (in general, d ≫ c in the AD study) number of features.

4k ≥ 3. For the case of k = 2, it follows that ŷi ∈ {−2n2/n, 2n1/n} and , where n1 and n2 denote the numbers of subjects 
from the negative and positive subjects, respectively [27], [34], [51].

5 , where σ ∈ ℝ+ defines a kernel width. For simplicity, we set σ = 1 in our experiments.
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C. Optimization

Eq. (5) is a convex but non-smooth function. In this work, we solve it by designing a new 

accelerated proximal gradient method [53]. We first conduct the proximal gradient method 

on Eq. (5) by defining

(6)

f(W) is convex and differentiable, while λ2‖W‖2,1 is convex but non-smooth [53]. To 

optimize W with the proximal gradient method, we iteratively update it with the following 

rule:

(7)

where 

, 

∇f(W(t)) = (XXT + λ1XLXT)W(t) − XŶT, 〈·, ·〉 is an inner product operator, η(t) is 

determined by the line search (refer to [49] for detailed description), and W(t) is the value of 

W obtained at the t-iteration.

By ignoring the terms independent of W in Eq. (7), we can rewrite it as

(8)

where  and πη(t)(W(t)) is the Euclidean projection of W(t) 

onto the convex set η(t), and  denotes a stepsize at the t-iteration. Thanks to the 

separability of W(t + 1) on each row, i.e., wi(t + 1), we can update the weights for each row 

individually:

(9)

where . In Eq. (9), wi(t + 1) takes a closed form solution [49] 

as follows:

(10)

Zhu et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1

Pseudo code of solving Eq. (5).

Input: η(0) = 1, α(1) = 1, γ = 0.2, λ1, λ2;

Output: W;

1 Initialize t = 1;

2 Initialize W(1) as a random diagonal matrix;

3 repeat

4 while L(W(t)) > Gη(t−1)(πη(t−1)(W(t)), W(t)) do

5 Set η(t − 1) = γη(t − 1) /* γ is a

predefined constant (For details,

refer to Appendix A) */;

6 end

7 Set η(t) = η(t − 1);

8

Compute ;

9

Compute ;

10 Compute Eq. (11);

11 until Eq. (5) converges;

Meanwhile, in order to accelerate the proximal gradient method in Eq. (7), we further 

introduce an auxiliary variable V(t + 1) as follows:

(11)

where the coefficient α(t + 1) is usually set as  [53].

We summarize the pseudo code for the proposed sparse multi-task learning with subspace 

regularization in Algorithm 1 and prove the convergence of Algorithm 1 in Appendix A.

D. Feature Selection and Multi-Class Classification

Because we use an ℓ2,1-norm regularizer in our objective function, after finding the optimal 

solution with Algorithm 1, we have some zero row vectors in W. Thus, we discard the 

features, whose regression coefficient vectors are zero, by regarding them as being 

uninformative in representing the target response variables, i.e., class labels.

After conducting feature selection, we build a multi-class classifier with a Support Vector 

Machines (SVM) [54]. There are two approaches for multi-class classification [55], [6], such 

as one-against-rest and one-against-one. The one-against-rest method builds c binary 

classifiers (here c is the number of classes) with each binary classifier κi (i = 1, …, c) built 
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between the i-th class and the other (c − 1) classes, while the one-against-one method builds 

 binary classifiers, with each binary classifier κi,j (j = 1, …, c) built between the i-th 

class and the j-th class (i ≠ j). In terms of computational efficiency and the training cost, we 

choose to use the one-against-one approach, which classifies a test sample xte with the 

following rule:

(12)

IV. Experimental Results

A. Experimental Settings

We conducted performance evaluation on a subset of the ADNI dataset by including 51 AD, 

43 MCI-C, 56 MCI-NC6, and 52 NC subjects. We considered two multi-class classification 

problems: (1) AD vs. MCI vs. NC (3-class) and (2) AD vs. MCI-C vs. MCI-NC vs. NC (4-

class). In the 3-class classification, we included both MCI-C and MCI-NC as MCI. For the 

modality fusion of MRI and PET (MRI+PET), we concatenated their features into a long 

vector of 186 features. We employed the metrics of classification ACCuracy (ACC) to 

evaluate the performance of all competing methods.

We compared the proposed method with Fisher Score (FS) [27], LPP [28], standard LDA 

[34], and PCA [52]. FS is a feature selection method that selects features based on the score 

ranking in the original feature space. Meanwhile, LPP, LDA, and PCA are the subspace 

learning methods, which are used to consider local topological structures, global structures, 

and maximal variance of the samples, respectively. For these four methods, we solved them 

with a generalized eigen-decomposition method and determined dimensions based on their 

respective eigenvalues. We also compared the proposed method with other state-of-the-art 

feature selection methods, namely, Sparse Joint Classification and Regression (SJCR) [5] 

and Multi-Modal Multi-Task (M3T) [6]. SJCR uses a logistic loss function and a least 

square loss function simultaneously, along with an ℓ2,1-norm for multi-task feature selection. 

It has been used to conduct multi-class feature selection. M3T uses multi-task learning with 

an ℓ2,1-norm to select a common set of features for tasks of regression and binary 

classification. In order to show the validity of feature selection strategies, we also conducted 

a classification task without feature selection, i.e., using all features (denoted as ‘Original’).

We used a 10-fold cross-validation technique because of the limited number of samples. 

Specifically, we first randomly partitioned the whole dataset into 10 subsets and then 

selected one subset for testing and used the remaining 9 subsets for training. We repeated the 

whole process 10 times to avoid any possible bias during dataset partitioning for cross-

validation. The final result was computed by averaging the results from all of the 

experiments. We used an LIBSVM toolbox [56] for SVM training. For the model selection, 

6In this paper, MCI-C and MCI-NC denote the conversion status from MCI to AD in 18 months of follow-up. Specially, MCI-C 
indicated the subjects converted from MCI to AD in 36 months, while MCI-NC subjects were not converted to AD in both 18 months 
and 36 months. The remaining MCI subjects were partitioned into a group not converted in 18 months but converted in 36 months and 
another group with observation information in baseline but missing information in 18 months.
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i.e., tuning parameters7 in Eq. (5) and the soft margin parameter8 in SVM, we further split 

the training dataset into 5 subsets for 5-fold inner cross-validation. The parameters that 

showed the best performance in the inner cross-validation were used in testing9.

B. Classification Accuracy

Table II summarizes the classification accuracy of all competing methods for two multi-class 

classification problems. The proposed method outperformed all competing methods in all 

experiments. For example, in the 3-class classification problem, our method improved the 

classification accuracy by 4.29% (MRI), 4.01% (PET), and 5.44% (MRI+PET), respectively, 

compared to the best performances among the competing methods with the respective 

modality. Meanwhile, in the 4-class classification problem, the classification improvements 

were even higher than the best with as much as 7.61% (MRI), 4.44% (PET), and 5.08% 

(MRI+PET), respectively. Based on these results, we argue that the proposed discriminative 

and noise-resistant feature selection method helped enhance classification performances.

It is noticeable from Table II that all feature selection methods (except for LDA) 

outperformed the method of exploiting full features (i.e., Original), which implies the 

effectiveness of feature selection in solving the high-dimension and small sample size 

problem in classification. We found that LDA achieved the lowest classification accuracies 

among the competing methods. The main reason was that LDA projected the original high 

dimensional feature space into only two or three dimensional subspace, respectively. In such 

low-dimensional space, the performance was very limited. On the other hand, the subspace 

learning methods, except for LDA, outperformed the feature selection method of FS. This 

verified the conclusion that subspace learning methods outperform feature selection methods 

[36]. Thus, it is reasonable to integrate subspace learning into the feature selection 

framework, which aims at enhancing the classification power of the proposed feature 

selection model in the multi-class AD diagnosis. Moreover, the proposed method was able to 

outperform both the conventional feature selection and subspace learning methods by 

combining the two approaches.

Fig. 1 presents the parameters’ sensitivity by changing values of C in SVM and (λ1, λ2) in 

Eq. (5). The results show that our method was sensitive to the parameters within only a small 

range, and the best parameter combination was always found in our experiments, such as λ1 

= 103, λ2 = 10, and C = 3 for the 3-class classification task with MRI+PET data in Fig. 1.(c).

Finally, we also conducted three binary classification tasks by following the definition of 

response variables in [27], [34], [51] (Please see the detail in Footnote 4) and reported 

respective results in Table III. Similarly, the proposed method achieved the best results, 

outperforming all the competing methods.

7λ1 ∈ {10−5, …, 102} and λ2 ∈ {10−5, …, 102}
8C ∈ {2−5, …, 25}
9We also conducted 10-fold cross-validation technique ten times on all competing methods and then reported the averaging results of 
all experiments. It is worth noting that, for fair comparison, we optimize parameter values for each competing method. Specifically, 
for all subspace methods such as FS, LPP, PCA and LDA, we determine their optimal dimensionality based on their respective 
eignevalues computed by the generalized eigen-decomposition method, according to [13], [27], [28], [34], [52]. For sparse learning 
methods such as SJCR and M3T, we optimize their sparsity parameter by cross-validating its value in the ranges of {10−5, …, 1, …, 
105} (as in [5]) and {10−5, …, 102}, respectively.
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V. Discussion

A. Role of LDA and LPP in the Proposed Method

In this section, we justify the rationale of applying both LPP and LDA in the proposed 

framework. To this end, we further consider the LDA Sparse Regression (LDA-SR) as Eq. 

(5) without the LPP regularization term and also the LPP Sparse Regerssion (LPP-SR) as 

Eq. (5) replacing Ŷ with the 0–1 encoding method for representing class labels. Table IV 

summarizes the classification performance of both LDA-SR and LPP-SR on two 

classification tasks. Obviously, LDA-SR utilizes the discriminative information of the data 

compared to M3T [6] but does not have the graph Laplacian regularization term compared to 

our method, while LPP-SR exploits the graph Laplacian regularization term compared to 

M3T but does not have the LDA parts compared to our methods.

When comparing the performances summarized in Table II and Table IV, we find that LDA-

SR, on average, improved by 0.99% more than M3T. The results support the efficacy of 

applying discriminant analysis in the sparse linear regression model. We also observe that 

LPP-SR improved by 2.89% more than M3T. This indicates the effectiveness in adding local 

information into the sparse linear regression model, while also verifying that the LPP 

regularization term could successfully characterize local topological structures of the data in 

the least square regression [57]. Furthermore, LDA-SR and LPP-SR, on average, improved 

by 1.38% and 2.37%, respectively, compared to SJCR.

Recent studies have indicated that LDA was able to capture the global distributional 

characteristics of the training samples, while LPP was able to preserve the local topological 

structures of the data [27], [57], [50]. In real applications, since the inherent structure of data 

is often complex and a single characterization (either global or local) may not be able to 

sufficiently represent underlying patterns. Lastly, we have found that LDA-SR and LPP-SR 

were worse than our method as much as 4.76% and 2.86%, respectively. This indicates that 

combining both LDA and LPP in a unified framework can help find a more generalized 

solution (i.e., small bias) via LDA and alleviate the sensitivity of the classifier to noises or 

outliers (i.e., small variance) via LPP.

B. Effects of Dimensionality on Classification Accuracy

We investigated the performance changes of the four competing feature selection methods, 

i.e., FS, SJCR, M3T, and the proposed method. We plotted the performance changes in Fig. 

2 by varying the dimensionality from 10 to 90 with an increment of 10 for MRI and PET, 

and from 20 to 180 with an increment of 20 for MRI+PET, respectively. It is noteworthy that 

the proposed method consistently showed the best performance over the varying dimensions. 

For the 3-class classification problem, the proposed method reported performance 

improvements on average of 4.92% (MRI), 4.58% (PET), and 5.35% (MRI+PET) compared 

to FS, by 4.04% (MRI), 3.19% (PET), and 3.24% (MRI+PET) compared to SJCR, and by 

5.01% (MRI), 4.18% (PET), and 5.34% (MRI+PET) compared to M3T. For the 4-class 

classification problem, the proposed method improved on average by 4.61% (MRI), 3.03% 

(PET), and 8.27% (MRI+PET) compared to FS, by 4.17% (MRI), 2.04% (PET), and 4.42% 
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(MRI+PET) compared to SJCR, and by 7.85% (MRI), 5.38% (PET), and 6.59% (MRI+PET) 

compared to M3T.

Interestingly, the classification accuracies of the feature selection methods began to decrease 

after a certain dimensionality, from which we believe that the intrinsic class-discriminative 

feature dimensionality for the classification is low [58].

C. Most Discriminative Brain Regions

We also investigated the potential of brain regions as biomarkers in AD diagnosis based on 

the selected frequency of the ROIs and also compared the results among the feature selection 

methods10 with MRI+PET. Fig. 3 shows the frequency of the ROIs selected by the proposed 

method in two multi-class classification problems. We also visualized the 10 most frequently 

selected ROIs by the proposed method in Fig. 4 and Fig. 5. We compared the 10 most 

frequently selected ROIs by different feature selection methods in Table V and Table VI.

From Fig. 3, Table V and Table VI, we can see that the commonly selected regions in two 

multi-class classification tasks were uncus right (22)11, hippocampal formation right (30), 

uncus left (46), middle temporal gyrus left (48), hippocampal formation left (69), amygdala 

left (76), middle temporal gyrus right (80), and amygdala right (83) from MRI; precuneus 

right (26), precuneus left (41), and angular gyrus left (87) from PET. These regions were 

also selected by the proposed method and the competing methods with MRI+PET. 

Moreover, these discriminative brain regions have been pointed out in the previous 

literatures on binary classification [6] and have been also shown to be highly related to AD 

and MCI in clinical diagnosis [59], [60], [61], [62]. In this regard, we can say that these 

regions can be the potential biomarkers for AD/MCI diagnosis.

Our method selected, on average, 50.5 and 34.3 features for MRI+PET (186 dimensional 

features) for the 3-class classification task and the 4-class classification task, respectively. It 

is interesting that the smaller number of features was selected in a 4-class classification tasks 

rather than in a 3-class classification task, whereas the larger number of features was 

selected from MRI rather than from PET in both 3-class and 4-class classification problems. 

Furthermore, from Table II, we can see that MRI-based methods achieved better 

performance than the PET-based methods. Based on these observations, it is likely that the 

structural MR image provides more discriminative information in identifying the clinical 

status related to AD, compared to the functional PET image.

Here, we should mention that most of the methods selected similar features from the top 10 

brain regions, but our method selected them with the highest frequency12. For example, in 

the 3-class classification task with MRI+PET, M3T selected the brain regions of middle 

temporal gyrus right (80) and amygdala right (83) from MRI (see the last column of Table 

V), which are ranked top 6 and top 8 with the frequency of 95% and 92%, respectively, 

10Note that the methods (such as PCA, LPP, and LDA) do not conduct feature selection, so they cannot output the selected regions.
11The number in the parentheses represents an index of an ROI. Please refer to Table IX for the full name of the respective ROI.
12In our experiments, we conducted 10-fold cross-validation ten times to obtain 100 groups of reduced feature sets, we define the term 

‘Frequency’ as .
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while our method selected them with the frequency of 99% and 99% for MRI, respectively, 

but ranked them in top 11 and top 12, due to the high frequency (100%) of all other top 10 

regions (7 for MRI and 3 for PET). On the other hand, most of the methods also selected 

other brain regions (different from the aforementioned potential biomarkers) as the top ones 

in our experiments, such as parahippocampal gyrus left (17), temporal pole left (63), and 

entorhinal cortex left (64) from MRI, and globus palladus right (11) and anterior limb of 

internal capsule right (79) from PET. These regions may also be potential biomarkers for 

multi-class AD diagnosis.

D. Large MRI Dataset from ADNI

We further evaluate performance on a large MRI dataset from the ADNI cohort, including 

186 AD, 118 MCI-C, 124 MCI-NC, and 226 NC. We used the same setting as in Section IV-

A. The experimental results are reported in Tables VII and VIII, as well as Figures 6, 7, and 

8. Again, the proposed method achieved the best results, outperforming all the competing 

methods. The feature selection strategies were also helpful in enhancing classification 

accuracy, compared to the ‘Original’ method.

VI. Conclusion

In this paper, we focused on the high feature-dimension problem for multi-class 

classification in AD diagnosis. Specifically, we proposed a novel feature selection method 

by integrating subspace learning, which utilized both the global and the local topological 

information inherent in the data, in a sparse linear regression framework. In our 

experimental results on the ADNI dataset, we validated the efficacy of the proposed method 

by enhancing classification accuracies in multi-class classification problems. In our future 

works, we will extend the proposed linear feature selection model to the nonlinear model via 

kernel functions to capture complex patterns between brain images and the corresponding 

AD status.
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Appendix

Regarding the convergence of the optimization, we can use the following theorem proved in 

[53]:

Theorem 1

[53] Let {W(t)} be the sequence generated by Algorithm 1, then for ∀ t ≥ 1, the following 

holds
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where γ > 0 is a predefined constant, ϑ is the Lipschitz constant of the gradient of f (W) in 

Eq. (6), and .

Theorem 1 shows that the convergence rate of the proposed accelerated proximal gradient 

method is , where t denotes an iteration number.
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Fig. 1. 

Classification accuracy on different parameters’ setting, i.e., C ∈ [−5 : 5] (upward), λ1 ∈ 

{10−5, …, 10−2} (rightward), and λ2 ∈ {10−5, …, 10−2} (leftward).
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Fig. 2. 

Classification ACCuracy (ACC) of using different number of features in four feature 

selection methods, on a 3-class classification task (top) and a 4-class classification task 

(bottom), respectively. Note that the horizontal axis represents different number of features 

selected by various feature selection methods.
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Fig. 3. 

Frequency of the selected ROIs by the proposed method with MRI+PET in a 3-class 

classification task (top) and a 4-class classification task (bottom), respectively. For example, 

Frenquency22 = 100 in the upper left sub-figure means that the 22nd ROI was selected 100 

times over 100 repeats by the proposed method.
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Fig. 4. 

Top 10 selected regions in the 3-class classification task with MRI/PET.
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Fig. 5. 

Top 10 selected regions in the 4-class classification task with MRI/PET.
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Fig. 6. 

Accuracy changes in four methods with MRI on a 3-class classification task (left) and a 4-

class classification task (right), respectively.
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Fig. 7. 

Frequency of the selected ROIs by the proposed method on a large MRI dataset in a 3-class 

classification task (left) and a 4-class classification task (right), respectively.
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Fig. 8. 

Classification accuracy on different parameters’ setting, i.e., C ∈ [−5 : 5] (upward), λ1 ∈ 

{10−5, …, 10−2} (rightward), and λ2 ∈ {10−5, …, 10−2} (leftward).
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TABLE I

Demographic information of the subjects. (MMSE: Mini-Mental State Examination; ADAS-Cog: Alzheimer’s 

Disease Assessment Scale-Cognitive subscale; MCI-C: MCI Converters; MCI-NC: MCI Non-Converters)

AD NC MCI-C MCI-NC

Female/male 18/33 18/34 15/28 17/39

Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1

Education 14.7 ± 3.6 15.8 ± 3.2 16.1 ± 2.6 15.8 ± 3.2

MMSE 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4 ± 1.7

ADAS-Cog 18.3 ± 6.0 7.3 ± 3.2 12.9 ± 3.9 10.2 ± 4.3
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TABLE V

Top 10 selected ROIs by feature selection methods on the 3-class classification task. Note that in the last 

column, the values on the left-side of the semicolon denote the regions selected from MRI, while the values 

next to the semicolon indicate the regions selected from PET. Please refer to Table IX for the full names of the 

ROIs.

Method MRI PET MRI+PET

FS 17,30,46,48,63,69,76,80,83,84 11,12,18,26,41,48,62,79,83,90 30,46,48,69,76,80,83; 26,41,87

SJCR 22,30,46,63,64,69,76,79,80,83 11,12,16,18,26,29,62,64,79,87 22,30,46,48,62,76,83; 16,41,87

M3T 17,22,30,46,48,61,64,69,76,83 11,18,26,29,35,41,48,64,79,87 25,30,46,62,76,80,83; 16,26,87

Proposed 17,22,30,46,48,61,63,64,69,83 11,12,26,29,35,41,62,64,79,87 22,30,46,48,61,69,76; 26,41,87
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TABLE VI

Top 10 selected ROIs by feature selection methods on the 4-class classification task. Note that in the last 

column, the values on the left-side of the semicolon denote the regions selected from MRI, while the values 

next to the semicolon indicate the regions selected from PET. Please refer to Table IX for the full names of the 

ROIs.

Method MRI PET MRI+PET

FS 17,30,46,48,61,69,76,80,83,84 12,18,26,38,41,47,48,62,86,87 30,46,48,69,76 80,83 ; 26,41,87

SJCR 30,43,48,56,63,64,76,80,83,84 12,16,18,26,35,55,41,62,79,87 22,46,48,64,69,76,90 ; 26,41,87

M3T 22,30,46,56,58,64,69,76,83,90 11,16,18,26,29,35,41,55,64,79 30,46,48,61,64,69,83 ; 26,41,87

Proposed 17,30,43,46,48,63,64,69,76,83 11,12,18,26,29,35,41,62,64,79 22,30,46,64,69,76,83 ; 26,41,87
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TABLE VII

Comparison of classification accuracy ((mean±standard deviation)%) for two multi-class classification tasks 

with MRI. The boldface denotes the best performance in each classification task. The values in the parentheses 

indicated the average number of selected features by all the methods in total 100 runs.

Method AD/MCI/NC AD/MCI-C/MCI-NC/NC

Orignal 61.98±2.51 (93.0) 48.01±1.73 (93.0)

FS 62.56±1.79 (43.2) 50.80±1.09 (36.6)

PCA 64.76±1.61 (36.5) 51.49±1.58 (32.1)

LPP 64.32±1.49 (31.5) 55.84±1.64 (29.3)

LDA 49.13±1.65 (2.00) 45.71±2.16 (3.00)

SJCR 64.87±1.78 (42.6) 53.98±1.57 (39.2)

M3T 64.75±1.16 (31.2) 52.32±1.34 (28.6)

LDA-SR 64.88±1.52 (35.8) 56.34±1.78 (24.8)

LPP-SR 65.13±0.76 (32.2) 57.19±1.67 (26.8)

Proposed 68.49±0.89 (29.3) 61.86±1.22 (23.2)
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TABLE VIII

Top 10 selected ROIs by feature selection methods on a 3-class classification task (second column) and a 4-

class classification task (third column), respectively, on a large MRI dataset. Refer to Table IX for the full 

names of the ROIs.

Method AD/MCI/NC AD/MCI-C/MCI-NC/NC

FS 17,30,46,48,63,69,76,79,83,84 17,22,46,48,61,69,76,80,83,90

SJCR 17,30,46,63,64,69,76,79,80,83 17,43,48,56,61,64,76,80,83,84

M3T 17,22,30,46,48,61,76,79,83,84 22,30,46,56,58,64,69,76,83,84

Proposed 17,30,46,48,61,63,64,69,76,83 17,30,46,56,61,63,64,69,76,83
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TABLE IX

The names of the selected ROIs in this work.

Index ROI Name Index ROI Name

5 precentral gyrus right 10 superior frontal gyrus right

11 globus palladus right 12 globus palladus left

15 putamen right 16 frontal lobe WM right

17 parahippocampal gyrus left 18 angular gyrus right

19 temporal pole right 20 subtdalamic nucleus right

22 uncus right 25 frontal lobe WM left

26 precuneus right 29 posterior limb of internal capsule right

30 hippocampal formation right 35 anterior limb of internal capsule left

36 occipital lobe WM right 41 precuneus left

42 parietal lobe WM left 43 temporal lobe WM right

46 uncus left 47 middle occipital gyrus right

48 middle temporal gyrus left 53 postcentral gyrus left

55 precentral gyrus left 56 temporal lobe WM left

57 medial front-orbital gyrus left 61 perirhinal cortex left

62 inferior temporal gyrus left 63 temporal pole left

64 entorhinal cortex left 69 hippocampal formation left

73 postcentral gyrus right 76 amygdala left

79 anterior limb of internal capsule right 80 middle temporal gyrus right

82 corpus callosum 83 amygdala right

84 inferior temporal gyrus right 87 angular gyrus left

90 lateral occipitotemporal gyrus left
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