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SUMMARY

This paper reviews the theoretical principles of subspace system identification as applied to the problem of
estimating black-box state-space models of support-excited structures (e.g., structures exposed to earthquakes).
The work distinguishes itself from past studies by providing readers with a powerful geometric interpretation of
subspace operations that relates directly to theoretical structural dynamics. To validate the performance of
subspace system identification, a series of experiments are conducted on a multistory steel frame structure
exposed to moderate seismic ground motions; structural response data is used off-line to estimate black-box
state-space models. Ground motions and structural response measurements are used by the subspace system
identification method to derive a complete input–output state-space model of the steel frame system. The modal
parameters of the structure are extracted from the estimated input–output state-space model. With the use of
only structural response data, output-only state-space models of the system are also estimated by subspace
system identification. The paper concludes with a comparison study of the modal parameters extracted from
the input–output and output-only state-space models in order to quantify the uncertainties present in modal
parameters extracted from output-only models. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Output-only system identification using ambient vibrations is a popular practice in the civil engineering

field. The use of ambient excitations is convenient because of the technical difficulties associated with

exciting large civil engineering structures in a controlled and repeatable manner [1–5]. Although

output-only identification is a popular choice among civil engineers, the approach has a number of

notable limitations. Foremost among those limitations is that a mathematical evaluation of the

accuracy of the system models resulting from output-only methods is difficult to perform because of

the absence of a measured input. Hence, output-only system identification must be treated as

operational modal analysis as opposed to experimental modal analysis. In light of these technical

challenges, output-only methods might be insufficient to completely attain the goal of system

identification, which is the accurate estimation of the physical quantities and output prediction of

the system extracted from a mathematical model created using measurement data [6]. Hence, input–

output system identification is strongly favored over output-only methods if the excitation (i.e.,

system input) can be accurately measured.
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The vibrations of foundation systems is one of the most widely studied problems in the civil

engineering field [7]. Foundation excitations originating from earthquakes, rotating machinery,

vehicular loads, and construction equipment may be harmful to civil engineering structures.

Paradoxically, the structural vibrations derived from support excitations can also be used to examine

the performance of the structure [8]. For example, structural characteristics extracted from vibration

measurements can be correlated to the structural integrity of the system. Structural characteristics

observed after the application of strong ground motion could be used to assess the health of the

structure by comparing structural characteristics to a set of baseline characteristics extracted before

the application of ground motion. Unlike other structural dynamic problems where the system input

corresponds to time-varying forcing functions applied to the system degrees-of-freedom, the system

input for support-excited structures is based on the motion of the structure boundary (i.e., support

motion). The input motion of the foundation is typically as easy to measure as any other system

degree-of-freedom; this allows input–output system identification methods to be applied to support-

excited structures.

Since the introduction of stochastic subspace identification (SSI) by Peeters and Roeck [9], subspace

methods have become popular system identification tools used by the civil and mechanical engineering

communities. The SSI algorithm is just one member of the general subspace state-space system

identification (4SID) family [10] and is recognized as a significant achievement of the theoretical

dynamics and control communities [11]. Since 4SID was introduced to the civil engineering

community as a set of output-only system identification methods, a rigorous mathematical mapping

of state-space model parameters to the physical parameters of the system has yet to be undertaken.

The lack of a mathematical mapping has limited 4SID as a purely black-box data-driven tool whose

results are difficult to interpret by engineers. The overarching goal of this paper is to revisit

subspace system identification for the modeling of support-excited civil engineering structures. To

accomplish this goal, a detailed description of the subspace system identification method is provided

with an emphasis placed on the physical meaning of subspace operations using geometric

interpretations intuitive to researchers in the field of structural dynamics. This paper is intended to serve

as the theoretical foundation of a companion paper [12] whose focus is on the extension of subspace

system identification to realize a physically meaningful model derived from experimental data. Central

to this study is the use of a six-story steel frame test structure experimentally excited with moderate

seismic base motions. Both input–output and output-only state-space models are extracted by subspace

system identification methods. Uncertainties associated with output-only system identification are

quantified by comparing the modal parameters extracted from the output-only models with those

extracted from the input–output models.

2. THEORY OF SUBSPACE SYSTEM IDENTIFICATION

2.1. Problem statement: system identification of a state-space model

Consider a combined deterministic–stochastic discrete-time state-space model (Figure 1(a)) as

xkþ1 ¼ Axk þ Buk þ wk (1)

yk ¼ Cxk þ Duk þ vk (2)

where uk2Rm is a vector of m measured inputs at time step k, yk2Rl is a vector of l measured

outputs at time step k, and xk2Rn is an n-dimensional unknown discrete state vector. The model

considers two additional stochastic processes: process, wk2Rn, and measurement noise, vk2Rl.

Assuming that wk and vk are uncorrelated Gaussian zero-mean white noise processes, their covariance

matrices are defined simply as
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where Q2Rn� n, S2Rn� l, and R2Rl� l. By assuming a linear system, the states and outputs in

the model (Equations (1) and (2)) are split into deterministic and stochastic components as follows:

xk ¼ xd
k
þ xs

k
; yk ¼ yd

k
þ ys

k
(4)

By considering Equations (1), (2), and (4), the deterministic subsystem is formulated as

xdkþ1 ¼ Axdk þ Buk;y
d
k ¼ Cxdk þ Duk (5)

Similarly, the stochastic subsystem is written as

xskþ1 ¼ Axsk þ wk; y
s
k ¼ Cxsk þ vk (6)

If the stochastic state process, xs
k
, is stationary, then the state covariance matrix, Σ, can be defined as

Σ :¼ E xs
k
xs

k

� 	T
� �

¼ AΣAT þQ 2 Rn�n (7)

Now, the problem statement for the identification of a linear time-invariant (LTI) system can be stated as

the optimal estimation of A, B, C, D, Q, R, S given the measured input sequence (i.e., u0, u1, . . .,uN� 1)

and output sequence (i.e., y0, y1, . . ., yN� 1) as N!1 [13, 14].

2.2. Subspace state-space system identification family

The methods associated with 4SID are generally categorized into two groups: realization-based and direct

4SID methods [10]. Realization-based 4SID methods find their origins in the seminal work of Ho and

Kalman [15] and offer a means of extracting state-space models from the extended observability

matrix. At the core of the realization-based 4SID methods is the need for a reliable estimate of system

impulse responses, often termed Markov parameters (MPs); the extended observability matrix is

Figure 1. (a) Complete input–output state-space model for system identification; (b) state-space model for
stochastic system identification.
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estimated directly from theMPs. In contrast, direct 4SIDmethods, also referred to as data-driven subspace

identification in the civil engineering community [16], strive to estimate a state-space model directly from

an arbitrary set of input and output sequences (i.e., without requiring the estimation of system impulse

response functions). Extensive research in the 1970s and 1980s (e.g., stochastic realization [17]) led to

the establishment of numerous direct 4SID numerical algorithms such as the multivariable output-error

state-space (MOESP) [14] and the numerical algorithms for subspace state-space system identification

(N4SID) methods [13]. Generally, direct 4SID methods are simply referred to as subspace methods or

subspace system identifications.

Figure 2(a) illustrates the geometric interpretation of the direct 4SID methods from which the name

‘subspace methods’ is derived. Given the measurements of the system input, U, and output, Y, two

subspaces spanned by the input U and the colored noise output Ys and one subspace spanned by the

joint null space of the input and the colored noise output {U⊥,Ys⊥} are defined. The output Y is

placed at a specific point in the space. The colored noise output Ys is the system output from the

unmeasured colored noise input. The measured system response comprises the forced and free vibration

response plus a noise component. In this context, Y can be divided into three orthogonal matrices

(HU, OX, and Ys), which are parallel to the spans of {U}, {U⊥,Ys⊥}, and {Ys}, respectively. Here, O

is the extended observability matrix of the system, and H is the lower block triangular Toeplitz matrix

composed of deterministic MPs. Because the free vibration component of the system response is only

dependent on the system dynamic properties, 4SID estimates the terms of OX (i.e., the product of the

extended observability matrix and the state sequence) along the span of {U⊥,Ys⊥} (as denoted with

the question mark in Figure 2(a)) fromwhich the system state-space matricesA,B,C, andD are extracted.

Subspace operations that estimate the termOX from the measured output are illustrated in Figure 2(b)

and (c) for the MOESP and N4SID algorithms, respectively. In the MOESP method, the orthogonal

projection of Y onto the null space of the input is conducted first in order to remove the input

dependence. Then, the coloredness of the system output is eliminated through the adoption of

instrumental variables. In contrast, the two-step MOESP operation is combined to a one-step

oblique projection in the N4SID method (Figure 2(c)). Essentially, the two subspace operations are

identical (i.e., MOESP and N4SID) except for different weighting terms used in the two methods;

hence, the product of the extended observability matrix and the state sequence (OX) obtained in

both methods are similar. The estimated product of O and X can be further simplified to extract a

state-space model of the system. Specifically, singular value decomposition (SVD) of the estimated

OX matrix can be performed. Once the appropriate system order is established by the singular

values, a truncated extended observability matrix can be determined. The main difference between

the MOESP and N4SID methods can be found in the numerical procedures used to estimate the

Figure 2. Geometric interpretation of subspace system identification: (a) definition of the three subspaces
defined by the input–output measurements; (b) subspace operations in the MOESP algorithm; (c) subspace

operations in the N4SID algorithm.

2238 J. KIM AND J. P. LYNCH

Copyright © 2012 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:2235–2251

DOI: 10.1002/eqe



state-space system matrices (A, B, C, and D). In the MOESP method, system matrices A and C are first

calculated from the estimated observability matrix. Then, the input systemmatricesB andD are calculated

by linear regression from the estimated system matrices (A, C) and measured input–output data. In

contrast, the N4SID method adopts a one-step estimation of the complete state-space model by solving

a least square problem. To ensure the problem is over-determined, the system state sequence needs to

be estimated first. Van Overschee and De Moor argue that the intermediate system state sequence is the

state sequence of the Kalman filter [13]. Even though the two methods in the 4SID family are posed

differently, the accuracy of both methods are reported to be comparable [18].

During the development of the aforementioned N4SID method, the stochastic identification problem

(Figure 1(b)) played an important role because it established the concept of the Kalman filter state

sequence and provided a least square solution for the determination of system matrices [19]. The

stochastic identification problem can be stated as the estimation of A, C, Q, R, and S given the

measured output sequence (i.e., y0, y1, . . ., yN� 1 as N!1). Because the stochastic system

identification problem can also be interpreted as an output-only system identification method under

the assumption of an unmeasured white noise input, it has been widely applied to the identification

of civil engineering structures excited by ambient vibrations [9]. After Peeters and Roeck’s

introduction of data-driven SSI to the civil engineering community, numerous researchers have

adopted SSI for output-only modal analysis of structural system, thereby attaining greater accuracy

compared with classical frequency domain methods [5, 20–22]. In this paper, the N4SID method

will be exclusively used for the system identification of support-excited structures.

3. NUMERICAL ALGORITHMS FOR SUBSPACE STATE-SPACE SYSTEM IDENTIFICATION

Numerical algorithms for 4SID is considered for input–output system identification (i.e., combined

deterministic–stochastic subspace identification) [23] of support-excited structures. This general case

can be further specialized for output-only system identification (i.e., SSI) by ignoring the input system

matrices B and D that represent the deterministic subsystem. A convenience of using N4SID is the

availability of a MATLAB function (i.e., n4sid) for its execution [24]. A more detailed description of

the N4SID algorithm can be found from the works of Van Overschee and De Moor [13, 23].

3.1. Least square solution for state-space model estimation

An input–output discrete-time state-space model is considered with unknown state, X, measurable

input, U, and output, Y, sequences as

Xiþ1 ¼ AXi þ BUiji þW (8)

Yiji ¼ CXi þ DUiji þ V (9)

where the state sequence consist of j sequential state vectors

Xi ¼ xi xiþ1 xiþ2 ⋯ xiþj�1½ � (10)

Similarly, the input and output sequences are also composed from the system measurements

Uiji ¼ ui uiþ1 uiþ2 ⋯ uiþj�1½ � (11)

Yiji ¼ yi yiþ1 yiþ2 ⋯ yiþj�1


 �

(12)

W and V are zero-mean Gaussian random sequences corresponding to the process noise and

measurement noise, respectively. Combination of Equations (8) and (9) leads to
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Xiþ1

Yiji

� �

¼
A

C

� �

Xi þ
B

D

� �

Uiji þ
W

V

� �

(13)

If the two state sequence estimates X̂iþ1; X̂i

� �

are given, then the system matrices A, B, C, and D are

produced by the least square solution as

Â

Ĉ

B̂

D̂

� �

¼
X̂iþ1

Yiji

� �

X̂i

Uiji

� �†

(14)

where ‘†’ is notation for the pseudo-inverse. As a result, subspace system identification algorithms seek

to first estimate the state sequence using the measured system input and output sequences without

requiring a priori knowledge of the system matrices.

3.2. Oblique projection by LQ decomposition

Because subspace system identification deals with batch data (i.e., sequential data), the Hankel matrix

is introduced. A block Hankel matrix is constructed from 2i+ j� 1 sequences of the system output and

partitioned as the past, Yp, and future, Yf, output as follows:

Analogously, the past and future input block Hankel matrices are defined as

The past and future deterministic state sequences are also defined as

Xd
p :¼ Xd

0 ¼ xd0 xd1 xd2 ⋯ xdj�1


 �

(17)

Xd
f :¼ Xd

i ¼ xdi xdiþ1 xdiþ2 ⋯ xdiþj�1


 �

(18)

The oblique projection in Figure 2(c) can be numerically implemented using LQ decomposition.

Householder transformations are preferred among the numerous LQ decomposition algorithms [25].

The LQ decomposition of the system input, U, and output, Y, is

where L11, . . ., L66 are lower triangular matrices and Q1, . . ., Q6 are orthogonal matrices. Because the

null space of the colored noise output Ys⊥ can be determined from the span of ‘past’ input and output

(15)

(16)

(19)
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{Up,Yp} (this is also related with the concept of instrumental variables), the oblique projection of Y

onto the span of the joint null space {U⊥,Ys⊥} is considered as a projection of the future output Yf

onto the span of the past input and output {Up,Yp} and the null space of the future input. This

projection is

Pi :¼ Yf =U⊥

f

Up

Yp

� �

¼ LUp
L11Q

T
1 þ LYp

L41 L42 L43 L44½ � Q1 Q2 Q3 Q4½ �T (20)

where LUp
and LYp

are subspace weighting matrices corresponding to past input and past output,

respectively, and determined by

Another oblique projection Pi� 1 can be defined similarly as

Pi�1 :¼ Y�
f
=

U�
fð Þ

⊥

Uþ
p

Yþ
p

� �

(21)

where one block row has been added (superscript +) or deleted (superscript �) from the input and

output matrices as defined respectively as

Thus, the oblique projection can be calculated as

Pi�1 ¼ LUþ
p

L11 0

L21 L22

� �

QT
1

QT
2

� �

þLYþ
p

L41 L42 L43 L44 0

L51 L52 L53 L54 L55

� �

Q1 Q2 Q3 Q4 Q5½ �T

(24)

where both subspace weighting matrices are calculated as

3.3. Span of the Kalman filter state sequence

Before exploring the oblique projections, Pi and Pi� 1, the nonsteady state Kalman filter state estimate

(i.e., the optimal state estimate based on the measured input and output data) is first reviewed [26].

Given the initial state estimate (x̂0), initial stochastic state covariance (Σ0) noise covariances (Q, R,

(22)

(23)

(24)

(21)

(25)

(26)
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and S), input sequence (u0, u1, . . ., uk� 1), and output sequence, (y0, y1, . . ., yk� 1), along with a model

of an LTI system (A, B, C, D), then the nonsteady state Kalman filter state estimate at time step k, x̂k, is

calculated as

x̂k ¼ A x̂k�1 þ Buk�1 þKk�1 yk�1 � Cx̂k�1 � Duk�1ð Þ (26)

where the Kalman gain, Kk� 1, is determined based on the stochastic state covariance, Σk� 1. The

Kalman filter state estimate can be also written in matrix form as

x̂k ¼ A�Kk�1C
�

� B�Kk�1D
�

� Kk�1


 �

x̂Tk�1

�

� uTk�1

�

� yTk�1


 �T
(27)

An alternative recursive form of Equation (28) is written from the initial time step 0 to step k as

x̂k ¼ Ak �ΩkOk

�

�Δ
d
k �ΩkH

d
k

�

�Ωk


 �

x̂T0

�

� uT0 ⋯ uTk�1

�

� yT0 ⋯ yTk�1


 �T
(28)

where the modified Kalman gain Ωk :¼ Δ
s
k þ Ak

Σ0O
T
k

� �

Ls
k þOkΣ0O

T
k

� ��1
, the extended observability

matrix Ok :¼ CT CAð ÞT CA2
� �T

⋯ CAk�1
� �T

h iT

, the reversed extended controllability matrix

Δ
d
k :¼ Ak�1B ⋯ AB B


 �

, the reversed extended stochastic controllability matrix Δ
s
k :¼

Ak�1G ⋯ AG G

 �

, the stationary stochastic state and output covariance matrix G :¼ E xsk ysk
� �T

h i

and the limit for the past stochastic output Ls
k :¼ limj!11=jysp ysp

� 	T

are all included. A sequence of the

future Kalman filter state estimate vectors can be expressed as

X̂f :¼ x̂i x̂iþ1 x̂iþ2 ⋯ x̂iþj�1½ � (29)

Substituting Equation (29) into Equation (30) leads to

This expression for the Kalman filter state estimate sequences is significant. It implies that the future

Kalman filter state estimate sequence is a linear combination of the past state estimate sequence and the

past input and output sequences. Namely, it is located in the subspace spanned by the past input and

output. This means that the span of the Kalman filter state estimate sequence is identified.

3.4. Estimation of state sequences

Because the span of the Kalman filter state sequence is identified, the Kalman filter state sequence is

geometrically calculated by projections. First, a projection of the future output sequence to the

subspace of past input and output {Up,Yp} eliminates the stochastic term, Ys
f :

P′
i ¼ OiX̂i þHd

i Uf (31)

Then, a projection of P′
i to the null space of the future input Uf (i.e., Equation (20))results in

Pi ¼ OiX̂i (32)

SVD can be applied to factorize Equation (33) as

(30)

(27)

(28)

(29)

(31)

(32)

(33)

2242 J. KIM AND J. P. LYNCH

Copyright © 2012 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:2235–2251

DOI: 10.1002/eqe



Pi ffi U1 U2½ �
S1 0

0 0

� �

VT
1

VT
2

� �

¼ U1S1V
T
1 (33)

Thus, the Kalman filter state estimate sequence can be calculated as

X̂i ¼ S
1=2
1 VT

1 (34)

Now, the Kalman filter state sequences are estimated directly from the input and output data sequences

without a priori knowledge of system matrices by the geometrical interpretation of the batch

implementation of Kalman filtering.

Similarly, the oblique projection Pi� 1 is calculated with one-step shifted data sequences as

Pi�1 ¼ Oi�1X̂iþ1 (35)

As a result, the one-step shifted Kalman filter state estimate can be calculated as

X̂iþ1 ¼ O†

i�1Pi�1 (36)

where Oi� 1 is the notation of Oi (in Equation (33)) without the last block row. Based on the two

estimated state sequences, X̂i and X̂iþ1 , the state-space system matrices A, B, C, and D can be

estimated by a least square solution in Equation (14). Finally, the noise covariance matrices are

estimated from the residuals of Equation (13):

Q̂ Ŝ

Ŝ
T

R̂

� �

¼
1

j

rW

rv

� �

r
T
W r

T
v


 �

(37)

The estimated system matrices represent a black-box state-space model for the system by input–output

identification. Now, with an algorithmic foundation for the N4SID algorithm, black-box state-space

models will be estimated for support-excited (i.e., seismically excited) structures.

4. SYSTEM IDENTIFICATION OF SUPPORT-EXCITED STRUCTURES

4.1. Testbed structure and support excitations

A single-bay, steel frame structure (Figure 3) is constructed on a large shaking table at the National

Center for Research in Earthquake Engineering (NCREE) at National Taiwan University (NTU).

The structure is a partial-scale six-story single-bay steel frame building with an interstory height of

1m and a total building height of 6m. Each story consists of four steel columns supporting a heavy

steel plate floor (1m by 1.5m). Because of the rectangular cross section of the columns, the

structure has two orthogonal axes: a flexurally weak axis (termed the x-axis) and a flexurally strong

axis (termed the y-axis). Because system identification of the structure focuses on the estimation of a

black-box state-space model, a more detailed physical description of the structure is not necessary.

To study the behavior of the test structure under seismic base motion, the shaking table is used to

excite the structure in two lateral directions. In total, 20 accelerometers are installed (Figure 3(b)).

Each floor is instrumented with three accelerometers: two oriented in the x-axis (denoted as xa and

xb) and one oriented in the y-axis (denoted as y). Additionally, two accelerometers are installed in

two orthogonal directions at the ground level to measure the support motion in two orthogonal

directions (denoted as x base and y base). Two moderate base excitations are applied to both axes

of the shaking table. First, the 40 s-long El Centro (1940) earthquake motion is applied to the two

table axes simultaneously. The peak ground accelerations are scaled to 0.053 g and 0.044 g for the

x-axis and the y-axis, respectively. Second, a 120 s-long white noise base motion is applied with

(34)

(35)

(36)

(37)

(38)
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variances of 0.061 g and 0.0745 g in the x-axis and the y-axis, respectively. During the tests, the lateral

acceleration of the building is measured at each floor with a 100-Hz sampling rate. A fourth-order

Butterworth anti-aliasing filter with a 25-Hz cut-off is utilized on each data channel.

4.2. Input–output black-box model estimation and evaluation

Subspace system identification by the N4SID method is conducted off-line using 30-s segments of the

input (i.e., base acceleration) and output (i.e., floor acceleration) for the El Centro and white noise

excitation tests. Implementation of the N4SID algorithm entails a priori determination of two user-

defined parameters: (1) the number of block rows of the past input or output data in the block

Hankel matrix (i.e., the size of the instrumental variables or i in Equation (15)) and (2) the model

order (i.e., the dimension of the Kalman filter state sequence or the number of significant singular

values in Equation (34)). Theoretically, the number of block rows of the past input or output data

should be the same or larger than the model order [23]. The default setting of i is 2 times the model

order in the n4sid MATLAB function [24]. Hence, the selection of the model order will be the

most significant factor in determining the quality of the final system identification results. In the

control theory community, the model order is determined using a residual error analysis of model

predictions [6]. However, the civil engineering community commonly uses stabilization diagram to

determine the model order. In this study, both approaches are adopted to determine the correct

model order. Input–output N4SID analyses, followed by modal parameter estimation are conducted

with the white noise test data sets for eight different model orders ranging from 18 to 60 with a

model order increment of 6. Then, structural modes with small modal damping ratios (i.e., less than

3%) are selected, and results are plotted in Figure 4(a, b). After a model order of 36, 12 modes

consistently appear with reasonable and stable damping ratios. Thus, the final model order of 36 is

determined based on the stabilization diagram results of Figure 4.

To validate the estimated black-box model, the model’s ability to reproduce the output signal of the

system for a given input signal is checked. Figure 5 displays the predicted system output (i.e., the floor

accelerations) from the black-box model compared to that measured. A very close match is discovered

for both the white noise and El Centro tests with the deterministic predicted output signal in strong

Figure 3. Large-scale six-story steel frame building structure: (a) perspective view of test structure on the
NCREE shake table; (b) schematic of the sensor installation (a total of 20 accelerometers installed).
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agreement with the measured signal. The small differences encountered between the predicted and

measured accelerations seem to be random along the time axis and are considered as innovation

processes or random residuals of the prediction. To confirm this belief, stochastic signal analysis is

conducted on the prediction residual. Ideally, the residual is independent of the system input and is a

Gaussian process with zero mean. This ideal condition can be checked by using the autocorrelation

function of the residual and the cross-correlation function between each degree-of-freedom residual

and the system input. Figure 6 plots the autocorrelation and cross-correlation functions for the El
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Figure 4. Stabilization plots of the input–output system identification study using N4SID on the white noise
excited test data: (a) frequency stabilization plot; (b) damping ratio stabilization plot. The numbers in the

plots denote modes tabulated in Table II.

0 5 10 15 20 25
-0.2

0

0.2

x
a
6
 (

g
)

0 5 10 15 20 25
-0.2

0

0.2

x
a
5
 (

g
)

0 5 10 15 20 25
-0.2

0

0.2

x
a
4
 (

g
)

0 5 10 15 20 25
-0.2

0

0.2

x
a
3
 (

g
)

0 5 10 15 20 25
-0.2

0

0.2

x
a
2
 (

g
)

0 5 10 15 20 25
-0.2

0

0.2

x
a
1
 (

g
)

0 5 10 15 20 25
-0.05

0

0.05

Time (sec)

b
a
s
e
 (

g
)

(a)

5 6 7 8 9 10
-0.2

0

0.2
x
a
6
 (

g
)

5 6 7 8 9 10
-0.2

0

0.2

x
a
5
 (

g
)

5 6 7 8 9 10
-0.2

0

0.2

x
a
4
 (

g
)

5 6 7 8 9 10
-0.2

0

0.2

x
a
3
 (

g
)

5 6 7 8 9 10
-0.2

0

0.2

x
a
2
 (

g
)

5 6 7 8 9 10
-0.2

0

0.2

x
a
1
 (

g
)

5 6 7 8 9 10
-0.05

0

0.05

Time (sec)

b
a
s
e
 (

g
)

(b)

Figure 5. Comparison plots of the measured (blue thin) versus predicted (red thick) floor accelerations in the
x-direction: (a) El Centro base motion; (b) white noise base motion. For completeness, the base acceleration

is also shown for each test.
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Centro test. In the case of the autocorrelation function (Figure 6(a)), the consistent high peak at the zero

time lag implies strong whiteness of the model residual at each degree of freedom. After the zero time

lag, a small-value bounded signal reveals a slight degree of coloredness to the model residual.

Furthermore, a small arbitrary signal along the time lag axis is found in the cross-correlation

function (Figure 6(b)), confirming that the residual is not correlated to the input signal.

4.3. Output-only black-box model estimation

The deterministic subsystem (Equation (5)) is ignored to apply SSI to the system identification

problem. The projection operation by LQ decomposition with the output data block Hankel matrix

(i.e., Equation (15)) and its SVD lead to estimates of the Kalman filter sequences. Then, a black-box

model consisting of the system matrices A and C is calculated by the least square method

Â

Ĉ

� �

¼
X̂iþ1

Yiji

� �

X̂i
† (38)

Being similar to input–output subspace identification, SSI by the N4SID is conducted off-line again

using 30-s segments of the measured floor accelerations from both base excitations (i.e., white noise

and El Centro). The appropriate model order is again assessed using stabilization diagrams. As

shown in Figure 7(a), the stabilization plot of system natural frequencies suggests model orders of

30 or larger to fully capture the system dynamics. However, unlike the stabilization plot of damping

ratio for the input–output analysis (Figure 4(b)), the plot is less stable even for cases of high model

orders. In addition, the actual damping ratios for each mode do not compare well to those found for

the input–output model. With higher model orders not resolving the lack of stability in the damping

ratio, a final model order of 36 is selected in order to be consistent with the models formulated for the
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Figure 6. Stochastic residual analysis for the El Centro base motion: (a) autocorrelations of the model resi-
duals; (b) cross-correlations of the model output residual and the applied base excitation (in the same direc-

tion as the output).

(39)
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input–output case. The lack of consistency in the estimated damping parameters has been reported in the

literature for covariance-based stochastic subspace indentification (cov-SSI). For example, Reynders et al.

[27] methodically explored variations in estimated systemmodal parameters based on perturbations to the

output covariance. The uncertainty bound (with a 95% reliability) on the modal parameters from the

covariance-based output-only system identification were calculated under the assumption of an ideal

white noise input. Unlike the uncertainty bound of modal frequency, that of damping ratio was found

to be 360% for the output-only analysis of a steel transmitter mast excited under wind loads.

5. COMPARISON OF INPUT–OUTPUT AND OUTPUT-ONLY BLACK-BOX MODELS

The black-box model generated by the output-only identification analysis (i.e., SSI) is difficult to be

verified by prediction methods largely because of the absence of a deterministic system input.

Hence, a comparison study between the output-only and input–output models is conducted by

comparing the modal parameters derived from each model. Henceforth, the input–output model will

be utilized as a baseline to which the output-only model will be compared. Towards this end, modal

parameters (e.g., mode shapes, natural frequencies, and damping ratios) will be estimated from both

the input–output and output-only black-box models. The modal parameters are extracted from the

estimated system matrices, Â and Ĉ . The estimated system matrix Â can be decomposed by

eigen-decomposition as Â ¼ ΨΛΨ
�1 , where Ψ2C2n� 2n is the eigenvector matrix and Λ= diag

(ldi)2C2n� 2n (i = 1,⋯, 2n) is the diagonal eigenvalue matrix. The matrix Λ contains the n discrete-

time eigenvalues ldi of which the complex conjugated pairs are directly related to the frequency and

damping properties of the structure. The discrete-time eigenvalues are first converted to continuous-

time eigenvalues lci as lci= ln(ldi)/Δ t, where Δ t is the time step of the digital data acquisition

system. The natural frequencies oni and damping ratios Bi can then be easily calculated from the

conjugate pair of complex-valued eigenvalues: lci ;l
�
ci ¼ �Bioni � joni

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B2i

p

. The mode shape

vector for the ith mode Φi2Cn can be calculated as Φ1 ⋯ Φi ⋯ Φn½ � ¼ Ĉ Ψ. A comparison

of the modal parameters extracted from the input–output and output-only models is tabulated in

Tables I and II for the El Centro and white noise tests, respectively. Mode shapes for the El Centro test

(both input–output and output-only models) are depicted in Figure 8. In total, 12 modes are reliably

identified for both the models derived from the El Centro and the white noise excitations. Modes 1, 4,

5, 7, 9, and 10 are clearly flexural modes in the x-direction, whereas Modes 2, 6, and 11 are flexural

modes in the y-direction. Modes 3, 8, and 12 are pure torsional modes.
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Figure 7. Stabilization plots of the output-only system identification study using N4SID on the white noise
excited test data: (a) frequency stabilization plot; (b) damping ratio stabilization plot. The numbers in figures

denote modes tabulated in Table II.

BLACK-BOX SUBSPACE SYSTEM IDENTIFICATION OF SUPPORT-EXCITED STRUCTURES 2247

Copyright © 2012 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:2235–2251

DOI: 10.1002/eqe



The output-only SSI algorithm might generate some estimation outliers because it is based on a

stochastic analysis. In this study, anomalous outliers are identified when comparing the natural

frequencies, damping ratios, and mode shapes (more specifically the modal assurance criteria also termed

MAC) of the output-only models to those from the input–output models. Namely, modal parameters

deemed as anomalously big or small appears in italics in Tables I and II. The output-only model derived

from the white noise test data reveals stronger agreement (i.e., fewer outliers) with the input–output

model. In contrast, the output-only models derived from the El Centro test data appear to have more

anomalous results. This discovery is not surprising due to the narrow-band colored attributes of the El

Centro excitation in the frequency domain. If it is assumed that the input–output model estimated from

the white noise test data is the most accurate model, this input–output model can then serve as the

baseline model to which all the other models can be compared. Therefore, it can then be concluded that

the quality of the output-only models depends on the input quality (i.e., degree of coloredness) because

the fundamental assumption of output-only identification is the excitation is white noise. However, it

should be emphasized that even for colored narrow-band excitations (e.g., seismic excitations such as El

Centro), the output-only model is still an excellent model capturing the behavior of the structure.

Table I. Comparisons of estimated modal parameters for the El Centro test from input–output identification
and output-only identification with 30 s-long data segment.

Mode number

Natural frequencies (Hz) Damping ratio
MAC
valueInput–output Output only Error (%) Input–output Output only Error (%)

Mode 1 1.115 1.125 0.880 0.013 0.006 57.477 0.999
Mode 2 2.206 2.192 0.643 0.019 0.008 57.384 0.037
Mode 3 3.056 3.198 4.650 0.062 0.051 16.855 0.927
Mode 4 3.626 3.630 0.123 0.010 0.010 0.558 0.990
Mode 5 6.324 6.310 0.227 0.009 0.017 85.510 0.998
Mode 6 8.454 8.333 1.432 0.015 0.026 70.177 0.996
Mode 7 9.225 9.254 0.323 0.009 0.011 19.914 0.989
Mode 8 10.270 10.240 0.286 0.011 0.015 30.130 0.997
Mode 9 12.122 12.055 0.556 0.004 0.009 152.256 0.861
Mode 10 14.329 14.337 0.052 0.004 0.004 3.457 0.963
Mode 11 19.544 19.583 0.202 0.010 0.023 121.802 0.832
Mode 12 21.870 21.812 0.262 0.016 0.016 3.332 0.971
Mean 0.803 0.015 0.016 51.571 0.880

Numbers in italics indicate anomalous results.
MAC, modal assurance criteria.

Table II. Comparisons of estimated modal parameters for the white noise test from input–output
identification and output-only identification with 30 s-long data segment.

Mode number

Natural frequencies (Hz) Damping ratio
MAC
valueInput–output Output only Error (%) Input–output Output only Error (%)

Mode 1 1.123 1.121 0.011 0.011 0.005 52.094 1.000
Mode 2 2.243 2.232 0.018 0.018 0.030 67.774 0.999
Mode 3 2.937 2.931 0.013 0.013 0.013 3.464 0.228

Mode 4 3.627 3.639 0.009 0.009 0.009 0.894 1.000
Mode 5 6.327 6.352 0.008 0.008 0.010 23.874 1.000
Mode 6 8.535 8.525 0.013 0.013 0.015 9.703 0.999
Mode 7 9.208 9.169 0.007 0.007 0.011 50.648 0.998
Mode 8 10.452 10.421 0.009 0.009 0.012 27.985 0.981
Mode 9 12.090 12.092 0.005 0.005 0.004 14.979 0.954
Mode 10 14.335 14.343 0.003 0.003 0.006 69.438 0.990
Mode 11 19.758 19.701 0.009 0.009 0.015 60.688 0.999
Mode 12 21.975 21.987 0.006 0.006 0.007 13.804 0.996
Mean 0.009 0.009 0.011 32.946 0.929

Numbers in italics indicate anomalous results.
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6. CONCLUSIONS

This paper provides a detailed explanation of the N4SID subspace system identification algorithm. N4SID

is a powerful estimation tool for formulating black-box state-space models using measurement data

collected from a base excited structure. One of the most significant concepts in N4SID is the estimation

of the nonstationary Kalman filter state sequence without a priori knowledge of the system matrices.

To provide civil engineers with a deeper appreciation for this concept, a geometric explanation has

been provided. In addition to the theoretical exploration of N4SID, application of the method to

classical identification problems in structural engineering (i.e., system identification of support-excited

structures) has been undertaken. Toward this end, a partial-scale six-story steel frame structure mounted

on a shaking table (NCREE, National Taiwan University, Taiwan) was excited at its base using

bidirectional seismic and white noise excitations. The accuracy of the estimated model using input–

output data was evaluated deterministically (i.e., comparison of the estimated model’s prediction and the

measured response) and stochastically (i.e., correlation analysis of the residual error of the prediction);

outstanding predictive capabilities were found with the model yielding strongly Gaussian residuals. The

Figure 8. Mode shapes extracted from the system matrices A and C estimated from the El Centro test data:
(a) input–output analysis; (b) output-only analysis.
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accuracy of the output-only model was checked by comparing modal parameters of the output-only model

to those of the input–output model derived from the white noise base excitation. It was confirmed that the

estimated model by output-only identification using white noise test data provided the most accurate

output-only model. The modal parameters of these models were in excellent agreement with those of the

input–output model.

The subspace system identification methods presented in this study yield black-box models that can

be used for accurate modeling of support-excited structures. However, one drawback of the models is

that they are black-box models. This will prevent these models from being fully utilized for structural

health monitoring (SHM). The companion paper to this paper will convert the N4SID models into

‘gray’-box models from which structural parameters can be extracted for SHM purposes [12].

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge the generous support offered by the National Science
Foundation under grant CMMI-0726812 (program manager: Dr. S. C. Liu). The authors would also like
to thank Prof. C. H. Loh of National Taiwan University and the National Center for Research in Earthquake
Engineering (NCREE) technical staff for their support and guidance during experimental testing at the
NCREE shake table facility.

REFERENCES

1. Abdelghani M, et al. Comparison study of subspace identification methods applied to flexible structures.Mechanical

Systems and Signal Processing 1998; 12(5):679–692.

2. Hermans L, Van Der Auweraer H. Modal testing and analysis of structures under operational conditions: industrial

applications. Mechanical Systems and Signal Processing 1999; 13(2):193–216.

3. Brownjohn JMW. Ambient vibration studies for system identification of tall buildings. Earthquake Engineering and

Structural Dynamics 2003; 32(1):71–95.

4. Yi JH, Yun CB. Comparative study on modal identification methods using output-only information. Structural

Engineering and Mechanics 2004; 17(3–4):445–466.

5. Weng JH, et al. Output-only modal identification of a cable-stayed bridge using wireless monitoring systems.

Engineering Structures 2008; 30: 1820–1830.

6. Ljung L. System Identification: Theory for the User. Prentice Hall: Upper Saddle River, NJ, 1999.

7. Richart FE, Hall JR, Wood RD. Vibrations of Soils and Foundations. Prentice Hall: Englewood Cliffs, NJ, 1970.

8. Chaudhary MTA, et al. System identification of two based-isolated bridges using seismic records. Journal of

Structural Engineering, ASCE 2000; 126(10):1187–1195.

9. Peeters B, Roeck GD. Reference-based stochastic subspace identification for output-only modal analysis.

Mechanical Systems and Signal Processing 1999; 13(6):855–878.

10. Viberg M. Subspace-based methods for the identification of linear time-invariant systems. Automatica 1995;

31(12):1835–1851.

11. Gevers M. A personal view on the development of system identification. In 13th Federation of Automatic Control

Symposium on System Identification (IFAC SYSID). Rotterdam, Netherlands, 2003.

12. Kim J, Lynch JP. Subspace system identification of support excited structures—part ii: gray-box interpretations and

damage detection. Earthquake Engineering and Structural Dynamics 2012. DOI: 10.1002/eqe.2185.

13. Van Overschee P, De Moor B. N4SID: subspace algorithms for the identification of combined deterministic–stochastic

systems. Automatica 1994; 30(1):75–93.

14. Verhaegen M. Identification of the deterministic part of MIMO state space models given in innovations form from

input–output data. Automatica 1994; 30(1):61–74.

15. Ho BL, Kalman RE. Effective construction of linear state-variable models from input–output functions. Regelungtechnik

1965; 12:545–548.

16. Peeters B, Ventura CE. Comparative study of modal analysis techniques for bridge dynamic characteristics.Mechanical

Systems and Signal Processing 2003; 17(5):965–988.

17. Akaike H. Stochastic theory of minimal realization. IEEE Transactions on Automatic Control 1974; 19(6):667–674.

18. Viberg M, et al. Performance of subspace-based system identification methods. In 12th Federation of Automatic

Control Symposium on System Identification (IFAC SYSID). Sydney, Austraila, 1993.

19. Van Overschee P, De Moor B. Subspace algorithm for the stochastic identification problem. Automatica 1993;

29(3):649–660.

20. Arici Y, Mosalam KM. Modal identification of bridge systems using state-space methods. Structural Control and

Health Monitoring 2005; 12:381–404.

21. Yan AM, Golinval JC. Null subspace-based damage detection of structures using vibration measurements. Mechanical

Systems and Signal Processing 2006; 20(3):611–626.

22. Kim J, Lynch JP. Comparison study of output-only subspace and frequency-domain methods for system identification of

base excited civil engineering structures. In 29th International Modal Analysis Conference (IMAC-XXIX). Jacksonville,

FL, 2011.

2250 J. KIM AND J. P. LYNCH

Copyright © 2012 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:2235–2251

DOI: 10.1002/eqe



23. Van Overschee P, De Moor B. Subspace Identification for Linear Systems Kluwer Academic Publishers: Dordrecht,

Netherlands, 1996.

24. Ljung L. System Identification Toolbox 7. The Mathworks, 2009.

25. Golub GH, Van Loan CF. Matrix Computations The Johns Hopkins University Press: Baltimore, Maryland, 1996.

26. Kalman RE. New results in linear filtering and prediction problems. Journal of Basic Engineering, ASME 1960;

82(Series D):95–108.

27. Reynders E, Pintelon R, De Roeck G. Uncertainty bounds on modal parameters obtained from stochastic subspace

identification. Mechanical Systems and Signal Processing 2008; 22:948–969.

BLACK-BOX SUBSPACE SYSTEM IDENTIFICATION OF SUPPORT-EXCITED STRUCTURES 2251

Copyright © 2012 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2012; 41:2235–2251

DOI: 10.1002/eqe


