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Abstract—Conventional linear subspace learning methods like
principal component analysis (PCA), linear discriminant analysis
(LDA) derive subspaces from the whole data set. These approaches
have limitations in the sense that they are linear while the data dis-
tribution we are trying to model is typically nonlinear. Moreover,
these algorithms fail to incorporate local variations of the intrinsic
sample distribution manifold. Therefore, these algorithms are
ineffective when applied on large scale datasets. Kernel versions of
these approaches can alleviate the problem to certain degree but
face a serious computational challenge when data set is large, where
the computing involves Eigen/QP problems of size N X N. When N
islarge, kernel versions are not computationally practical. To tackle
the aforementioned problems and improve recognition/searching
performance, especially on large scale image datasets, we propose
a novel local subspace indexing model for image search termed
Subspace Indexing Model on Grassmann Manifold (SIM-GM).
SIM-GM partitions the global space into local patches with a hi-
erarchical structure; the global model is, therefore, approximated
by piece-wise linear local subspace models. By further applying the
Grassmann manifold distance, SIM-GM is able to organize local-
ized models into a hierarchy of indexed structure, and allow fast
query selection of the optimal ones for classification. Qur proposed
SIM-GM enjoys a number of merits: 1) it is able to deal with a
large number of training samples efficiently; 2) it is a query-driven
approach, i.e., it is able to return an effective local space model, so
the recognition performance could be significantly improved; 3) it
is a common framework, which can incorporate many learning al-
gorithms. Theoretical analysis and extensive experimental results
confirm the validity of this model.

Index Terms—Grassmann manifold (GM) distance,
learning model, query-driven approach, subspace selection.

local

1. INTRODUCTION

UBSPACE selection algorithms have been successfully
used in many applications [22], [23], [26], [27], e.g.,
human face recognition [16], speech recognition and gait
recognition [12]. Conventional algorithms, such as principal
component analysis (PCA) [11], linear discriminant analysis
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(LDA) [14], [19], have proven their value in several applica-
tions. However, these algorithms are optimal under Gaussian
assumption and their performance criterion is global [10].
Therefore, they fail to estimate the nonlinearity of the intrinsic
data manifold, and ignore the local variation of the data [8].
Consequently, these algorithms result in unsatisfactory recog-
nition performance in real world problems especially for large
scale datasets. These global models prove often ineffective for
search problems on large scale image datasets.

Recently, nonlinear algorithms have been proposed to al-
leviate this problem, e.g., kernel algorithms [7] and manifold
learning algorithms [13], [25]. Kernel based algorithms apply a
nonlinear kernel mapping on the original data while manifold
learning algorithms exploit the intrinsic data distribution. With
these algorithms, the recognition performance can be signifi-
cantly improved. However, they face a serious computational
challenge when the data set is large. This is because these
algorithms involve a matrix decomposition problem of size
N x N, where N is the number of training samples. When N is
large, these algorithms are computationally impractical and the
solutions are unstable, i.e., these algorithms are inappropriate
for searching problems on large scale image datasets.

To solve the aforementioned problem and improve classifica-
tion performance especially on large scale datasets [4], [21], we
propose an efficient localized indexing model, termed Subspace
Indexing Model on Grassmann Manifold (SIM-GM). To im-
prove the searching performance, in SIM-GM we apply Grass-
mann manifold measurements to manipulate the indexed sub-
spaces derived from partitioning the global space. Moreover, we
construct the model hierarchical tree so that our proposed model
is able to return a customized local subspace in a query-driven
manner.

To construct SIM-GM, first we partition the global sample
space into local patches with a hierarchical tree structure for
indexing [3], [4], [20], [24], wherein each node in the tree cor-
responds to a local sample space. We name the derived tree as
“data partition tree”, and utilize its nodes for learning and clas-
sification. The highest-level node in the tree corresponds to the
global space, and the lowest-level node, i.e., leaf node, corre-
sponds to the “smallest” local space.

In the data partition tree, leaf nodes embody the most “local”
neighborhood information. However, they may fail to be the
most discriminant level because of the following reasons:
1) when the number of levels in the data partition tree is large,
each leaf node may contain insufficient number of samples,
which yields a poor learning performance; 2) when a sample
point lies on the boundaries of a node, i.e., a local space, leaf
nodes may fail to offer the best discriminating power.
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We solve this problem by incorporating the Grassmann man-
ifold distances [1], [2] into our proposed model. With Grass-
mann distances, our model is able to manipulate the leaf nodes in
the data partition tree automatically and build the most effective
local space for classification. The model works in a bottom-up
manner, i.e., it starts from the leaf nodes, merges the “nearest”
nodes into a new one, and propagates upward. In this way, a
new tree structure is created, wherein each node in the tree cor-
responds to a local space. We name the new tree as “model hi-
erarchical tree”. Further, we apply cross validation to empiri-
cally record the recognition performance on each node of the
model hierarchical tree. Therefore, when a new query comes,
our model provides a customized local space for classification,
i.e., in a query-driven manner. We apply our model on a large
multimedia dataset and compare its performance against other
conventional algorithms. A significant improvement in recogni-
tion rate suggests the validity of our proposed model.

Our model enjoys a number of merits: 1) our localized in-
dexing approach is efficient compared against other global al-
gorithms, e.g., Linear Preserving Projection (LPP) [5], [15], es-
pecially when the number of training samples is large; 2) given
a new query, our model is able to return a customized effective
local space for classification. Therefore, the classification error
rate can be significantly reduced; and 3) it is a common frame-
work, which can incorporate many learning algorithms, i.e., we
are able to introduce many conventional global subspace selec-
tion algorithms into this local model. The rest of this paper is
organized as follows: in Section II, we present our proposed
Subspace Indexing Model on Grassmann Manifold (SIM-GM),
including the implementation of the data partition tree and the
Grassmann manifold distance for manipulating nodes and the
model hierarchical tree; in Section III, we present the experi-
mental results by comparing our proposed model against other
conventional models; Section IV gives the conclusion and out-
lines the further direction of our work.

II. SUBSPACE INDEXING MODEL ON GRASSMANN
MANIFOLD (SIM-GM)

To improve the searching performance especially in large
scale image datasets, in SIM-GM, we construct two tree struc-
tures: the data partition tree and the model hierarchical tree—the
data partition tree to speed up the retrieval and the model hier-
archical tree to record the most effective local space in a cus-
tomized manner, i.e., as a query-driven approach. To construct
the model hierarchical tree, we introduce Grassmann manifold
distance to manipulate the local subspaces derived from parti-
tioning the global space.

The learning procedure of our proposed model is summarized
as follows: 1) apply subspace selection, i.e., Principal Compo-
nent Analysis (PCA) on the global sample space; 2) apply the
KD-tree based indexing on the obtained subspace, partition the
global space into a number of local spaces, and derive the data
partition tree; 3) apply the Grassmann manifold distance to mea-
sure the leaf nodes in the data partition tree, i.e., the distance
between two nodes on the Grassmann manifold; 4) construct
the model hierarchical tree based on the distance measure, use
cross-validation to empirically record the recognition perfor-
mance on each node of the model hierarchical tree; 5) when a
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Indexing Partition on Essex University
Human Face Dataset: 1.=8, d=2
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Fig. 1. Indexing space partition example on the Essex University human face
dataset: L = 8,d = 2, where L is the number of levels in the data partition
tree, and d is the number of dimensions preserved.

new query comes, consult the model hierarchical tree, and re-
turn the most effective local space for recognition.

The rest of this section is organized as follows: in Section II-A
we detail the implementation of the data partition tree; in
Section II-B we give a review of the Grassmann manifold and
incorporate it into our indexing framework; in Section II-C we
present the implementation of the model hierarchical tree.

A. Data Partition Tree: A KD-Tree Based Indexing

In order to improve our indexing performance, we need sam-
ples to distribute evenly in a subspace with a low dimension,
so that we could apply a KD-tree based partition scheme to di-
vide the whole space into nonoverlapping subspaces more ef-
ficiently. Conventional subspace selection algorithms could be
applied on the whole sample space before the whole space is
partitioned and indexed.

PCA can be an effective approach for the indexing. It selects
the first d bases with largest variance, here we denote the first
d bases as Arndex = [a1,02,...a4]. The covariance informa-
tion obtained from global PCA is utilized in the indexing. The
indexing process is described as follows: 1) project all sample
points on the maximum variance basis a1, find the median value
of the projected samples 1, and split the whole collection of
data along aq at my, i.e., split the current node into left and
right children; 2) starting from ¢ = 2, for each left and right
child, project the whole collection of data along the 2-th max-
imum variance basis a;, find the median value m;, and split all
the children at m; 3) increment ¢, repeat 2) until some prede-
fined criteria for number of levels, or the number of samples in
the leaf node is satisfied. At each node, a minimum bounding
box (MBB), i.e., Vinin, Vinax € R?, is computed and recorded.
The split dimension and medium values are also recorded.

We apply our indexing scheme on Essex University dataset
[9] and plot Fig. 1. For the number of levels in the data partition
tree, we assign L. = §; for the dimension of data, in order to get
a better visualization, we assign d = 2, i.e., we apply PCA and
reduce the dimension of original data to 2.



WANG et al.: SUBSPACES INDEXING MODEL ON GRASSMANN MANIFOLD FOR IMAGE SEARCH

Samples locate near the boudaries of a leal node

28

aak-

X2

34
a6t
a8

I3 62 54 66 88 7
X1

Fig. 2. Example when samples distribute near the boundaries of a leaf node.

In Fig. 1, each box corresponds to a leaf node in the data par-
tition tree, i.e., the smallest local sample space. Sample points in
the same leaf node are considered to be close in the Euclidean
space, and thus, the leaf nodes could be utilized for localized
discrimination.

The partition on the global space serves as the first stage of the
proposed work. Compared with other local partition methods
e.g., Quad-tree partition, kd-tree partition is superior because
this approach is distribution-based partition and minimizes the
quantization error. However, when the number of local patches
is sufficient enough, the constructed local models will be the
same for any given query point and locality.

However, leaf nodes may not be the most effective local
space for classification, because of several reasons. First, as the
number of levels in the data partition tree increases, the number
of samples in each leaf node decreases. Therefore, each leaf
node may contain insufficient number of samples to offer a
strong discriminating power. We may consider an extreme case,
if the number of levels in the data partition tree . = log, N,
where N is the total number of samples, each leaf node contains
only one sample. Under such circumstance, when a new query
point comes, to assign a leaf node (i.e., local space) to it is
equivalent to find its nearest neighbor in the Euclidean space.
This approach is obviously not what we want.

Second, the leaf nodes are ineffective for classification when
the training samples lie near the node boundaries. This case in-
dicates similarities between the two leaf nodes. This example
can be visualized in Fig. 2.

Fig. 2 shows the case when samples points in the training set
distribute near the boundaries of leaf nodes. Under such circum-
stance, there are samples from three classes. The class in the
middle, i.e., the class with the symbol ‘o’, distribute along the
boundary. When a new query of class ‘0’ comes, it will be as-
signed to either one of the two leaf nodes. However, as one may
observe, the most promising local space is the merged space of
the two leaf nodes.

B. Grassmann Manifold Distance for Manipulating Nodes in
the Data Partition Tree

To alleviate the aforementioned problems of leaf nodes, we
introduce Grassmann manifold into our indexing model for ma-
nipulating the leaf nodes derived from the data partition tree.
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We utilize the Grassmannian metric and build the most effective
local space. Therefore, when a new query comes, our model re-
turns the most effective local space for classification. In this sec-
tion, we give a brief review on the concept of Grassmann mani-
fold [1], [2] and the Grassmann manifold distance, i.e., principal
angles and geodesic distance.

First, we briefly review the definition of Grassmann mani-
fold. Grassmann manifold G(d, D) can be defined as the set of
d-dimensional linear subspace in R” [2]. We consider the space
R](DO)Cl of all D x d matrices, i.e., Y € RP*4. The group of trans-
formation Y = Y L, where I is a full rank d x d square matrix,

. Lo 0
defines a equivalence relation in R% )d

Y1 = Ya if span(Y1) = span(Ya2)
where Yp,Ys5 € H([??d. €))

Therefore, the equivalence classes of R,]()O,)d are in one-to-one

correspondence with the points on the Grassmann manifold

G(d, D), i.e., each point on the manifold is a subspace.
Grassmann manifold G(d, D) can be seen as a quotient space

G(d, D) = R, /RY) &

where the dimension of the analytical manifold G(d, D) is Dd—
d?. When we consider Y as point in 7%, the set of all ele-
ments Y L in the equivalence class forms a surface of dimension
d? in RP*4,

Second, we introduce principal angles and principal vectors.
Each point on the Grassmann manifold is a subspace. There-
fore, to measure the distance between two points on the Grass-
mann manifold is equivalent to measure the similarities between
two subspaces. Principal angle [1], [2], [17], [18] is a geomet-
rical measure between two subspaces, i.e., a measure of distance
on the Grassmann manifold. We consider two orthonomal ma-
trices Y3, Y2 € RP*4 on the Grassmann manifold, the principal
angles 0 < #; < --- < 3 < m/2 between two subspaces
span(Y7) and span(Ys) are recursively defined by

cosfr = max max  ulvp
uy €span(Yy) vy, Espan(Ya)
s wup =1, vop =1
wpu; = 0, vv; =0
fore=1,...,k—1. 3)

The vectors (u1,us,...,uq) and (v1,vs,...,vq) are called
principal vectors of the two subspaces. 6}, is the kth smallest
angle between two principal vectors uy and vy, e.g., 61 is the
smallest principal angle and cos #; = w)v;.

Third, we focus on the computation of principal angles and
principal vectors. Several ways exist to compute the principal
angles between two subspaces. One numerically stable way is
to apply Singular Value Decomposition (SVD) on the product
of the two matrices Y{Y3, i.e.,

Y{Y, = USV' )

where U = [u1,u9,...,uq],V = [v1,v9,...,v4] and S =
diag(cos 1, . ..,cosfy). The cosine of principal angles 6, i.e.,
cosfy,...,cosf, are known as canonical correlations [17].
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span(Y;) span(Y,)
U;
0;
D
0,05, ..., 04

1)

Fig. 3. Principal angles in R™ and Grassman Distance in G(d, D). span(Y7)
and span(Yg) are two subspaces of dimension d in R ; the distance between
these two subspaces can be measured by principal angles 8§ = [0, 6, ..., 64].
In the Grassmann manifold point of view, two subspaces span(Y;) and
span(Y) are two points on the manifold G(d, D), the geodesic distance
between these two points on the manifold is d(Y7,Y%) = ||6]|2. (1) principal
angle in R, (2) Grassmann distance in G(d, D).

(2)

Finally, we define the distance on the Grassmann manifold.
A distance is referred to as Grassmann distance if it is invariant
under different basis representations. Grassmannian distances
between two linear subspaces span(Y;) and span(Ys) can be
described by principal angles. The smaller principal angles are,
the more similar two subspaces are, i.e., the closer they are on
the Grassmann manifold. In literature, a number of subspace
distances are proposed, e.g., projection distance, Binet-Cauchy
distance, and Max/Min Correlation. In this paper, we adopt
the geodesic distance (or arc-length) [1], which is defined as
follows:

B3, (Y1, Y2) = > 67 )

As we may observe in Fig. 3, the geodesic distance is derived
from the geometry of Grassmann manifold. It is the length of
geodesic curve connecting two subspaces along the Grassmann
surface. The geodesic distance decreases as the principal angles
decrease; when 1 = 5 = - -- = 04, the distance between two
subspaces is zero and two subspaces collapse into one.

The reasons we choose geodesic distance as the Grassmann
manifold distance lie on the following aspects: 1) geodesic dis-
tance is a metric which satisfies a number of properties, e.g.,
symmetric property and triangular property; some other dis-
tance measures (e.g., max correlation) are not metrics so they
do not have such properties [1]; 2) the max correlation is a ro-
bust distance when the subspaces are highly noisy, while the
min correlation is more discriminant when data are concentrated
and have nonzero intersections. Geodesic distance have inter-
mediate characteristic so it can be applied for a wider range of
data distributions.

C. Model Hierarchical Tree

As we discussed in Section II-A, the leaf nodes of the data
partition tree may not be the most effective local spaces for clas-
sification. To obtain the most effective local space and improve
the classification performance, we apply Grassmannian distance
on the leaf nodes and measure their similarity. Then we con-
struct a model hierarchical tree and record the recognition rate
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€5 (2)

Fig. 4. Criterion for defining two “similar” nodes in the node set: First, the two
nodes should be adjacent in Euclidean space; second, among all the adjacent
node pairs, the two nodes (i.e., subspaces) should be of shortest distance on
the Grassmann manifold, i.e., the smallest principal angles. If the two nodes
satisfy the above criterion, we merge these nodes into a new one and replace the
original two nodes with this new node in the node set. The construction process
is repeated until there is only one node in the node set. (1) adjcent in Euclidean
space, (2) close on Grassmann manifold.

(49% )
D) €D
Cy_w ) G==) (éa%)

- o %
(19 Y 13% X 23%): 27% )
31% 26% 9 4 22% b 15% )

Fig. 5. Example of model hierarchical tree. The number inside each node in-
dicates an empirical classification error rate. A bold node indicates the most
effective level for classification. When a new query comes, our model will as-
sign it to the corresponding the most effective level for recognition.

on each level. When a new query comes, we assign it to the most
promising level in the model hierarchical tree for classification.

To construct the model hierarchical tree, we initialize the
“node set” with leaf nodes of the data partition tree, and prop-
agate the tree in a bottom-up manner by merging the “similar”
nodes in the node set. The criterion for two nodes Y;,Y; to be
“similar” is defined as follows: 1) in the Euclidean space, the
two nodes should be adjacent, i.e., Y; € adj(Y;); 2) on the
Grassmann manifold, the two nodes should be close in geodesic
distance, i.e.,

j = arg mkin dzArc(Yi? Yi)

s.t. Vi €adj(Vi). (6)
We may geometrically understand the criterion as follows: the
two local subspaces should be not only near to each other in
space, but also similar in “shape”. One example can be visual-
ized in Fig. 4.

To merge two leaf nodes, i.e., two local subspaces, we apply
the Grassmann manifold distance again. Let us consider two
subspaces span(Y7) and span(Y2), with corresponding prin-
cipal vectors U = [uy,us,...,uq],V = [v1,v2,...,v4]. Be-
cause U and V are orthogonal, they can be considered as bases
for the two subspaces span(Y7) and span(Ys) correspondingly,
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i.e., span(U) = span(Y7) and span(V') = span(Y2). We ma-
nipulate the bases of the two original subspaces and create the
basis for the merged subspace, i.e., we utilize U and V and
create the basis 1" for the new subspace. The basis 1" can be
derived as follows:
1 N9
b = n1 + N9 et ny1 + ne vk

for k=1,...d (1)

where n; is the number of samples in node 1, ny is the number
of samples in node 2, and " = [t1, 12, ..., t4]. As we may ob-
serve, the derived basis ?j, lies on the hyper-plane spanned by
up and vp.

To prove the derived 7' is a set of basis for the new subspace,
we have the following theorem:

Theorem 1: The derived T € RP*4 from (7) is a set of basis
for a subspace of dimension d in R”.

Proof: T is the basis set for a subspace of dimension d
indicates that the columns in T are linearly independent. Further,
columns in 7' are linearly independent if and only if 7'T is
positive definite.

For any X € R%x!

X(T'TYX = (TX)(TX)=||TX|?

:‘ ( LN ) R V)X > 0.
n1 + Na n1 + N2
(3)
For any k = 0,1,...,d, we have ||ug|| = 1 and ||vg|| = 1.
Therefore, X'(1"1)X = 0 if and only if n; = ng and U =
—V,1ie., u = —uwj for all k. However, when U = —V, we

have span(U) = span(—V), i.e., the two subspaces collapse to
one. This case will never happen because U and V' are derived
from cos f, = max max uj,vs. If two subspaces collapse into
one, we would derive U = V for the sake of maximizing u} vg.
Therefore, X'(1"1)X # 0, i.e., X'(1"1)X > 0. Further, we
know columns in 7" are linearly independent, so 7" could be
served as a set of basis for a subspace of dimension d. ]

However, the derived T is not orthogonal. In order to obtain
the orthogonal basis for the new subspace of dimension d, we
can apply Gram-Schmidt [18] process to obtain the orthogonal
basis T7 = [t},t], ..., 1]

The derived subspace can be intuitively understood as a linear
“combination” of original subspaces, the linear coefficient is
proportional to the number of samples in each subspace (i.e.,
the number of nodes in the node set).

We then replaced the two original nodes with the merged node
in the node set. Our merging algorithm repeats until there is only
one node in the node set, and the very last node can be consid-
ered as the global space. In this way, the model hierarchical tree
is built in a bottom-up manner. The leaf nodes are those nodes
obtained from the data partition tree, the inner nodes are merged
nodes, and the root node corresponds to the global space.

After we set up the model hierarchical tree, we apply cross
validation on our training sets and empirically derive the classi-
fication performance on each level, i.e., on each subspace. For
any leaf node, there is one unique path from the root node to
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this leaf node; we mark the node (i.e., level in the model hierar-
chical tree) with the lowest classification error rate along each
path. When a new query comes, we first check which leaf node it
belongs to, and suggest the most promising level (i.e., the most
promising local space) for classification. After we assign the in-
coming query to its most promising local space, we project the
query and all the samples in this local space onto the subspace
learnt by conventional algorithms, e.g., LDA. Then we apply
KNN to classify the query. Therefore, the proposed SIM-GM is
able to incorporate many learning algorithms.

The splitting operation on each local subspace is possible
but not encouraged, the reasons are illustrated as follows: 1)
the splitting operation forces samples from each class to be re-
stricted within one local space (i.e., one node), which leads to
problems like over-fitting; 2) it forces the using of linear clas-
sifiers, i.e., we are forced to apply linear classifier to split the
original space into two, so we are not able to utilize other effec-
tive classifiers like K-NN; 3) it is more time/effort consuming.

III. EXPERIMENTS

In this section, we conduct experiments on two different ap-
plications, i.e., multimedia image classification and human face
recognition. To confirm the validity of our proposed model,
we compare the performance of our proposed SIM-GM against
those of other models. We take both computation time and clas-
sification error rate into comparison.

A. Dataset

We adopt the Microsoft Research Asia Multimedia
(MSRA-MM) image dataset [6] and Essex University human
face dataset [9], and compare the performance of SIM-GM
against those of other models.

1) Microsoft Research Asia Multimedia (MSRA-MM) Image
Dataset: The MSRA-MM consists of two sub-datasets, i.e., an
image dataset and a video dataset. In this paper, we utilize the
image dataset for training and testing. The image dataset con-
tains 68 classes, each of which consists of around 1 000 images,
and in total 65 443 images. All the images are collected from
the query log of Microsoft Live Search. Based on the relevance,
each image is assigned a relevance level: very relevant, relevant
and irrelevant. These three levels are indicated by scores 2, 1,
and 0, respectively.

For this image dataset, a set of features are available in-
cluding: 1) 225D block-wise color moment; 2) 64D HSV color
histogram; 3) 256D RGB color histogram; 4) 144D color cor-
relogram; 5) 75D edge distribution histogram; 6) 128D wavelet
texture; 7) 7D face features. Therefore, for each sample, we
have 899D data in total.

As we may observe from Fig. 6, the content of the “very
relevant” samples match well with their labels. The “relevant”
samples are somehow redundant in content, while the “irrele-
vant” samples do not match their labels. To assess our proposed
model, we leave out the “Irrelevant” samples in the dataset,
i.e., the samples whose Relevance Indicator is 0. Therefore, we
derive a dataset consisting of 52 336 samples from 68 classes.
From this derived dataset, we further select images from 12
classes (i.e., in total 11555 images) and conduct classification
on these images. The 12 classes include: tree, bird, email,
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‘Relevant’ samples from the
three classes
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‘Irrelevant’ samples from
the three classes

Fig. 6. Sample images from the MSRA-MM dataset.

Fig. 7. Sample images from the Essex University human face dataset. Images are from three individuals.

beach, panda, youtube, military, fruit, background, dragon,
people, hairstyle. For each sample, we integrate all features
(i.e., 899D) for classification.

2) Essex University Human Face Dataset: The Essex Uni-
versity human face dataset consists of four subsets, i.e., faces94,
faces95, faces96 and grimace. Images from faces96 are of size
196 x 196 pixels while images from the other three are of size
180 x 200 pixels. We assemble faces 94, faces95 and grimace
subsets, and obtain a large dataset with 4 840 faces of 242 in-
dividuals, i.e., 20 faces for each individual. We then randomly
select training samples and testing samples from the obtained
dataset and conduct experiments.

B. General Experiments and Results

We conduct experiments on the two aforementioned datasets,
and compare performance of SIM-GM against other conven-
tional algorithms. To apply SIM-GM, we first conduct PCA on
the whole dataset, and derive a subspace; then we build the data
partition tree for our training data; after that we construct the

model hierarchical tree based on leaf nodes derived from the
data partition tree; last we apply cross validation to empirically
record the most effective level for classification in the model hi-
erarchical tree. When a new query comes, SIM-GM outputs the
optimal localized subspace for classification.

We design our experiments into the following parts: 1) com-
pare the recognition rate of SIM-GM against those of global
models, e.g., global PCA; 2) compare the recognition rate of
SIM-GM against those of local models; 3) compare the execu-
tion time of SIM-GM against those of global models.

We compare three different linear subspace selection ap-
proaches, i.e., PCA, LDA, and LPP. LPP [5] is a linear
projection which preserves neighborhood structure of the data.
It linearly approximates to the eigenfunctions of the Laplace
Beltrami operator on the manifold.

1) Microsoft Research Asia Multimedia (MSRA-MM) Image
Dataset: Fig. 8 shows the recognition performances of the pro-
posed SIM-GM against those of global models. As we may ob-
serve, our SIM-GM outperforms the traditional models signifi-
cantly. For the MSRA dataset, PCA preserves a better recogni-
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Fig. 8. Recognition performance of SIM-GM against those of global models,
i.e.,, PCA, LDA, and LPP.
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Fig. 9. Average running time for classifying one query, running on Intel Cen-
trino VPro 2, 2 G RAM. (avg. of 10 trials, 90% Train, No. of Dimension: 30).

tion performance than LDA, while LPP outperforms PCA. This
is because LDA assumes samples from each class distribute in
a Gaussian distribution, which may not true for the real data;
moreover, LDA can obtain a subspace of dimensionality up to
C-1, where C is the number of classes; however, LPP embeds
a graph distribution into the training process, so the recogni-
tion performance can be enhanced. Our SIM-GM partitions the
whole sample spaces into a number of local spaces, and approx-
imates the intrinsic data distribution by piece-wise linear local
subspaces. When a new query comes, SIM-GM provides a cus-
tomized effective subspace accordingly. Therefore, the recogni-
tion performance can be significantly improved. Please note that
the subspaces do not necessarily have the same dimensionality
in each local space. However, in order to have a fair comparison
against global models, we force the dimensionality on each level

to be equal.

In Table II, we compare the recognition performance of
SIM-GM against those of local models. We derive the local

TABLE I
RELEVANCE LEVEL AND CORRESPONDING PERCENTAGES OF THE MSRA-MM
IMAGE DATASET
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Relevance Relevance | Number of | Percentage

Level Indicator | Images

Very Relevant | 2 19517 29.82%

Relevant 1 32819 50.15%

Irrelevant 0 13107 20.03%
TABLE II

RECOGNITION PERFORMANCE OF SIM-GM AGAINST THOSE OF LOCAL
MODELS ON DIFFERENT DIMENSIONS (L.E., 5, 10, 30,AND 50) AND ON
DIFFERENT LEVELS (LE., 2, 5, 8, AND 10) IN THE DATA PARTITION TREE. (AVG.
OF 10 TRAILS, 90% TRAIN). “SIM-GM-PCA/LDA/LPP” MEANS WE ASSIGN
THE QUERY TO THE RECORDED MOST EFFECTIVE LOCAL SPACE IN THE MODEL
HIERARCHICAL TREE, AND APPLY PCA/LDA/LPP ON THIS LOCAL SPACE
FOR CLASSIFICATION. LOCAL PCA-LX MEANS WE ASSIGN THE QUERY TO A
PREDEFINE LEVEL L IN THE MODEL HIERARCHICAL TREE, AND APPLY PCA
ON THIS LOCAL SPACE, 1.E., LEVEL L

Recognition Performance | Running Time (ms)
PCA 0.2869 13.54
SIM-GM-PCA | 0.5469 2.63
SIM-ES-PCA | 0.3841 2.93
LDA 0.2336 14.02
SIM-GM-LDA | 0.4794 2.89
SIM-ES-LDA | 0.3598 3.32
LPP 0.3552 14.79
SIM-GM-LPP | 0.5786 2.91
SIM-ES-LPP | 0.3918 3.06

TABLE III
AVERAGE RECOGNITION PERFORMANCE AND RUNNING TIME FOR ONE QUERY
ON AN INTEL CENTRINO VPRO 2, 2 G RAM. (AVG. OF 10 TRAILS, 60% TRAIN,
NoO. OF DIMENSION: 30). SIM-ES-XXX REFERS TO THE EUCLIDEAN BASED
MERGING MODEL, 1.E., SUBSPCE INDEXING MODEL ON EUCLIDEAN SPACE

Recognition Performance | Running Time (ms)
PCA 0.2869 13.54
SIM-GM-PCA | 0.5469 2.63
SIM-ES-PCA | 0.3841 2.93
LDA 0.2336 14.02
SIM-GM-LDA | 0.47%4 2.89
SIM-ES-LDA | 0.3598 3.32
LPP 0.3552 14.79
SIM-GM-LPP | 0.5786 2.91
SIM-ES-LPP | 0.3918 3.06

models from the data partition tree, and select different-level
local spaces (i.e., nodes on different levels in the data partition
tree) for classification. We may observe the SIM-GM is the
optimal among all the local models. We may also observe
the SIM-GM-LPP presents satisfactory performance. That is
because LPP encodes the local geometry of training samples
and finds the optimal linear embedding transformation.

Time in Table III refers to the time slot between a query
arrives and an output is returned, i.e., the running time.
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TABLE 1V
BEST RECOGNITION RATE OF FIVE MODELS, L.E., PCA, LDA, LPP, SIM-GM-PCA, AND SIM-GM-LDA
% of Train | PCA LDA LPP SIM-GM-PCA | SIM-GM-LDA
40 0.8673 0.8923 | 0.9087 | 0.9058 0.9303
70 0.9006 0.9484 | 0.9594 | 0.9784 0.9987
i Recognition Performance: 40% Train TABLE V

AVERAGE RECOGNITION RATE AND RUNNING TIME FOR ONE QUERY (70%
TRAIN, NO. OF DIMENSION: 40) ON AN INTEL CENTRINO VPRO 2, 2 G RAM

0.95
&
i3
el
=
=}
£
&
80.35
u 3 =
e —— S-GIALDA
o8- SIM-GM-FCA
----- LPP
—— | DA
- PCA
0751 . a . . : . ; : ; —ilt
10 20 30 40 B0 60 70 B0 90 100 110 120
No. of Deminsions (1:3:120)
Recognition Performance: 70% Train
b=
3
: ..... o - iy
=2
=
e
=14}
(=}
o
3 N ]
e ——CIM-GM-LDA
SIM-GM-PCA
- LPP
| DA
- PCA |
0 5 80 70 80 90 100 110 120

No. of Deminsions (1:3:120)

Fig. 10. Recognition rate versus number of dimensions (1:3:120). Five models
are compared, i.e., PCA, LDA, LPP, SIM-GM-PCA, and SIM-GM-LDA. Every
trial is repeated for ten times, and the average is recorded.

Our SIM-GM builds the model hierarchical tree and utilizes
cross-validation to record the most effective level for classifica-
tion in an off-line manner. SIM-ES follows similar construction
process but applies different criterion to merge nodes (as
compared against SIM-GM’s criterion in Fig. 4): instead of
using two criterions i.e., adjacent in Euclidean space and close
on Grassmann manifold, SIM-ES adopts only one criterion to
merge similar nodes—closest on the Euclidean space. SIM-ES
computes the centroid of each node and utilizes the distance
between centroids as the distance between nodes; for any
node, SIM-ES finds the closest one in Euclidean space and
merge them. From Table III we may observe, SIM-GM is very
efficient in classification and is able to maintain a satisfactory
recognition performance.

2) Essex University Human Face Dataset: In Fig. 10, we
show the recognition rate versus the dimensionality. We initial
the dimensionality to be 1 and increment the dimensionality by
3 each time until it reaches 120. We may observe the recognition

Recognition Rate | Time (ms)
PCA 0.8945 14.62
SIM-GM-PCA | 0.9764 3.87
LDA 0.9448 14.82
SIM-GM-LDA | 0.9987 4.65

rate trend given the change of dimensionality: the rate signifi-
cantly goes up when the dimensionality is between 1 and 15; it
peaks when the dimensionality is between 40 and 50; it slowly
decreases/remains the same when the dimensionality is larger
than 50.

As we may observe, the recognition rates on this Essex Uni-
versity human face dataset are high, even for global algorithms
like PCA. This is because for this dataset, the intravariance is
small, as we may notice from Fig. 7. However, our proposed
SIM-GM still enjoys a better performance in terms of classifi-
cation rate.

Similar to MSRA-MM dataset, in Tables IV and V we show
recognition rate and classification time. We may observe that
our proposed SIM-GM enjoys a higher recognition rate with a
shorter classification time, compared with conventional global
models.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose the Subspace Indexing Model on
Grassmann Manifold (SIM-GM) for large subject set pattern
recognition. SIM-GM partitions the manifold space into local
patches with a hierarchical structure, and train local subspace
models for classification. By further introducing the Grassmann
manifold distance into this framework, local models are orga-
nized into model hierarchy with a second tree structure for clas-
sification at query time. The model enjoys a number of advan-
tages including: 1) its classification efficiency on large scale
image datasets; 2) its query-driven nature; 3) its ability to in-
corporate conventional algorithms as a framework.

In the future, we plan to introduce more learning algorithms
into SIM-GM and apply this framework on other applications,
e.g., document categorization.
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