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SUBSPACES OF L1, VIA RANDOM MEASURES
BY

DAVTD J. ALDOUS1

Abstract. It is shown that every subspace of Ll contains a subspace isomorpbic to
some L. The proof depends on a fixed point theorem for random measures.

1. Introduction. Let (Í2, 5", P) be a probability space, and let Ll be the Banach
space of integrable random variables. By a subspace of L1 we mean a closed
infinite-dimensional linear subspace. This paper is devoted to the proof of the
following theorem: for the general background to this result and the theory of Lp
spaces see [7], [8], [11].

Theorem 1.1. Any subspace H of Ll contains a subspace isomorphic to lq,for some
q G [1, 2].

By a result of Rosenthal [10] we need consider only subspaces satisfying

the unit ball of H is uniformly integrable, ( 1.2)
for any H failing (1.2) contains a subspace isomorphic to /,. Except for this
observation and Proposition 3.15, our proof is essentially self-contained.

Dacunha-Castelle and Krivine [5] investigated subspaces of Ü using ultra-
product techniques, and showed that it would suffice to prove Theorem 1.1 for
subspaces generated by exchangeable sequences (see also Maurey and Schectmann
[9]). We eschew ultraproducts in favor of random measures, which the author finds
more comprehensible. An account of random measures from a functional analysis
viewpoint is given in §2.

There is a natural correspondence between exchangeable sequences and random
measures. The only real novelty in our approach is that we regard the random
measures, rather than exchangeable sequences, as the objects to study. From any
sequence of random variables we may extract a subsequence which somewhat
resembles an exchangeable sequence. So let C be the class of random measures
corresponding to exchangeable sequences arising in this way from a given subspace
H of L1. On the one hand, G must satisfy certain structural properties (Proposition
3.9). On the other hand, if ß contains a random measure of a certain special kind
(a randomly scaled symmetric stable law of exponent q) then H contains lq
(Proposition 3.11). Thus Theorem 1.1 is reduced to a result involving only random

Received by the editors May 8, 1980 and, in revised form, September 26, 1980.
1980 Mathematics Subject Classification. Primary 46B05, Secondary 60G55.
Key words and phrases. Banach space, Lp space, random measure, exchangeable sequences, symmetric

stable laws, fixed point theorem.
'This research was supported in part by National Science Foundation Grant MCS78-25301. Paper

presented at International Conference on Banach Spaces, Kent State University, August 1979.

© 1981 American Mathematical Society
0002-9947/81 /0000-045 5/$05.75

445
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



446 D. J. ALDOUS

measures (Theorem 3.10). This result can be regarded as a fixed point theorem, but
known general results do not seem applicable: our ad hoc proof occupies §§4 and
5. §6 contains a miscellany of remarks and conjectures.

Remark added September 1980. Since the first draft of this paper, much
progress has been made in this field. Krivine and Maurey have generalised
Theorem 1.1 to show that any Banach space which is stable (in the sense of [12])
contains an isomorphic copy of some lp. Their result was announced in [12]; for
more details see [13]. In unpublished lecture notes, Garling has given a fine
synthesis of the present paper and the work of Krivine and Maurey; he also shows
that certain Orlicz function spaces are stable.

Notation. For random variables (r.v.'s) Xv X2, . . . write X -* X for convergence
s w p

in probability, and write Xn —> X (resp. -» A') for strong (resp. weak) convergence
in L1. Let "dP denote the set of probability measures on R. Let t(X) G <3> denote
the law of a r.v. X. Write </, ju> for jf dp,. Give <!P the usual topology: p.n -» p. iff
(/> i"n) -» </> /*) f°r each/ G C(R), where C(R) is the set of bounded continuous
functions. Recall that A c Í? is relatively compact iff it is tight, that is

inf{A([-n, «]): X G A} -» 1    asAi-»oo.

For X G <$ write <$>x(t) for the Fourier transform fe"xX (dx), and write |A| =
f\x\X (dx). Let 8a G f? denote the measure degenerate at a.

2. Random measures. By random measure we mean a random probability
measure. Thus a random measure is a measurable function £: ß -» ^P, in other
words a ty -valued random variable. Let (D\i denote the set of random measures.
For £ G 91L and / bounded measurable, the expression </, £> defines a random
variable a -» </, £(<o)>. For A c ß with P(A) > 0 define £" G <!P by

é"(.)=[p(^)]-1JTé(«o, W«),
and think of £A as the average of £ over A. Call £ constant if £ = £0 for some
£0 G ÍP ; degenerate if £ = 6a for some r.v. a.

Example 2.1. For 1 < 17 < 2 and a > 0 let a(q, a) G "dP denote the measure with
<í>(/) = e\.p(-aq\t\q). That is, o-(<y, a) is a symmetric stable law of exponent q, where
a can be regarded as a scale parameter. Now for a r.v. V > 0 we can define a
random measure £ = a(q, V). If V has law p, write a(q, v) for £n. To look at this
from a probabilistic viewpoint, let S be independent of V with law a(q, 1). Then
a(#, p) is the law of VS, and a(q, V) is the conditional law of VS given V.

Random measures of this form play a large part in the sequel.
Many topologies can be defined on 91L, but we shall be concerned only with the

next two. Define

£„^£   iff   </,£„> A</,£>,      /GC(R), (2.2)

£„^£   iff   </,£„>-^ </,£>,      /GC(R). (2.3)
These definitions can be reformulated in several ways. Clearly

£„^£   iff   tf-i".       P(A)>0. (2.4)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUBSPACES OF L1, VIA RANDOM MEASURES 447

And it is easy to verify that sw-convergence coincides with the usual notion of
convergence in probability for metric space valued random variables:

£„™£   iff   ¿(£„,£)^0 (2.5)

where d is any metrisation of "¿T. When this holds, we can find a subsequence such
that £„ -* £ a.s., and this gives a useful technique for proving facts about im-con-
vergence.

Other reformulations can be given in terms of transforms, and these will be
needed when we consider convolutions. For £ G 9H let

<p((t, a) = <t>((u)(t) = <exp(i7 •), í(«, •)>

be the random Fourier transform. Unsurprisingly,

£„™£   iff   «frJO-^tiO    for all/, (2.6)
£„^£   iff   ^(0-^(0   for all/, (2.7)

and it suffices to consider / in a dense set containing 0.
Let * denote convolution in 9. Then * is continuous on 9. For £,, £2 G 911

let £, * £2 denote the pointwise convolution £,(co) * £2(w). It is clear from (2.6) that
* is sm-continuous. But * is not ww-continuous, as the next example shows.

Example 2.8. With the notation of Example 2.1, let Vx, V2, . ■ . be independent
with law v, and define £, = a(q, Vf). Then

twm
£, -» a(q, v),

i * i+í W-^o(q, X) = a(q, v) * a(q, v),

i *^o(q,p),

where X is the law of ( Vxq + V^)l/q, p is the law of 2l/qVx, and X =£ u in general.
The usefulness of the wm topology lies in its compactness properties. Call

911o c 9H tight if {£n: £ G %,} is tight, that is if

mf £<l[_n,n], £> -» 1    as «^oo. (2.9)

In particular, 'DíLq is tight if sup{£|£|: £ G <!>R0} < oo.

Lemma 2.10. A tight subset of 91L is relatively wm-compact.

Proof. Fix K = [-«, n] and let 911, be the set of random measures with support
in K. We shall prove that 911, is ww-compact, and an easy approximation
argument completes the proof.

Let 91 be the space of finite signed measures on K, and consider 91 as the dual
of C(K). Let L2(9l) and L2(C(K)) be the associated spaces of square-integrable
random variables. For Z G L2(C(K)), 9 G L2(9l) the map (Z, 9)^> E(Z, 9}
shows that L2(9l) is contained in the dual of L2(C(K)). Since 911, is a bounded
subset of L2(9l), it is compact in the weak* topology, that is the topology

£„-^£   iff    £<Z,£„>^£<Z,£>,       Z G L2(C(K)). (2.11)
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By considering Z of the form f\A (f G C(K), A c ß), it can be seen that (2.11)
coincides with the »vm-topology.

This last argument gives another reformulation of (2.3):

£„^£   iff   <Z,£„>^<Z,£>,       ZGL2(C(R)). (2.12)
We now give some more technical facts. The first is a general form of the

continuous mapping theorem.

Lemma 2.13. Let g: RxR-^R be continuous. Define g: R X <!P -> <& by
g(a, t(X)) = £(g(a, X)). Let a be an arbitrary random variable. If £„—»£ then
¿(a, £„)-»£(«> £); '/4^»S then #(«> 0™g(<*> £)•

Proof. The jm-convergence case follows from (2.5) and the continuity of g. The
H7w-convergence case follows from (2.12) and the identity

</, g(«, £)>=</o g(«, •),£>•

We can now show that the two topologies coincide at degenerate random
measures.

Lemma 2.14. If £„ -» 8y then £„ —> 8V.

Proof. In the special case £„ -» 80 we have £nß —» 80 in 9 by (2.4), and it is
straightforward to show £„ —» 50. For the general case, let g(a, b) = a — b, h(a, b)
= a + b. If £„™8V then by Lemma 2.13 ¿(V, Q™g(V, Ó» = 80. So
g( V, £J ™ 8q, and then by Lemma 2.13 £„ = h( V, g( V, £„)) -» h( V, 8„) = 8V.

Finally, let L° denote the space of all r.v.'s, equipped with the topology of
convergence in probability. There is a natural embedding i: L° -» 911 given by
i(X) = 8X. It is easily seen from (2.5) that 8X -» 5^- implies Xn —> X, and so by
Lemma 2.14

L° is homeomorphic to (i(L°), wm). (2.15)
Moreover i(L°) can be shown to be ww-dense in 91L (we do not use this fact later),
and so we may regard the embedding i as producing a kind of local compactifica-
tion of L°, by Lemma 2.10.

So far, we have been discussing measures on R, but it will also be necessary to
consider measures on the compactified half-line R+ = [0, oo]. Write <3>+ for the
space of such probability measures, and 91L+ for the space of random measures.
The theory of 9!t+ differs only slightly from that of 911. In particular, (2.6) and
(2.7) hold for Laplace transforms <pa(t) = jfJe-0", / > 0. Also, 91L+ itself is vvm-com-
pact. We shall need one extra technical fact, an extension of Lemma 2.14 whose
proof is omitted.

Lemma 2.16. There exists a bounded metrisation p of <3'+ such that £„ —»£ in 91L+
implies Ep(í¡,n, 8a) —» £p(£, 8a) for any r.v. a > 0.

Remark. Recall that a sequence Z,, Z2„ . . . , of random variables is called
exchangeable with canonical random measure £ if, conditional on £ = X, the
random variables (Z,) are independent with common law X. Our proof of Theorem
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1.1 does not actually use exchangeable sequences. However, some of our manipula-
tions with random measures are motivated by considering the corresponding
manipulations of exchangeable sequences, so from time to time we provide transla-
tions between the two languages. If £ = a(q, a) then span(Z,) is isomorphic to / :
hence our interest in these special random measures.

Remark. Properties of the wm-topology have been presented above from the
viewpoint of functional analysis, but these ideas arise naturally in a probabilistic
context [2]. Given r.v.'s (Xn) and p G <i?, write X„ =» u for convergence in law, i.e.,
£-(Xn) —» p in *5P. By requiring that convergence to u should still hold conditional
on any fixed event, we obtain the idea of mixing:

Xn^p (mixing)    if E(f(Xj\A) -* </, M>,/ G C(R), P(A) > 0.

Clearly this is equivalent to i(Xn) ™ u. By allowing the limiting law to depend on
the conditioning event, we obtain the idea of stability:

Xn =» p (stably) if for each A with P(A) > 0 there exists pA
such that E(f(Xn)\A) -► </, nAy,f E C(R).

It can be shown that Xn converges (stably) if and only if i(X„) -* £ for some £, and
then pA = HA. Thus one could say that X„ converges (stably) to the random
measure £. Lemma 2.10 shows that from any tight (Xn) we can extract a subse-
quence converging stably to some £. This is the starting point of [1], where it is
shown that we can make the subsequence similar (in certain senses) to the
exchangeable sequence corresponding to £. The present paper proceeds in a
different direction: we shall consider the set of £ which can be obtained from
sequences in the given subspace H of Ll.

Remark. The major development of the theory of random measures has been in
a completely different area, as models for point processes-see [6]. There the main
interest lies in the distributional properties, which do not concern us here.

3. lq and a class of random measures. We now introduce certain classes of random
measures, to be called C-classes. The idea is to abstract the properties of the
ww-closure of a subspace of Ll (under the natural embedding). Essentially, a
C-class is a class closed under the operations of scaling and convolution, and
closed in the ww-topology. It turns out that we can also impose some integrability
and symmetry conditions. Formally, let % c 'S? be the set of symmetric integrable
laws. For 0 < a < oo, let sa: "¿Î -» ty denote scaling by the factor a, so that
sjt(V)) = £ (a V). Clearly

i(Xn)^£implies i(aXn)™sa($. (3.1)

Definition. A class G of random measures is a C-class if

£(w) G % a.s.,   each £ G C, (3.2)
£|£| < oo,    each i G C, (3.3)

Q is wm-closed, (3.4)
í/£ G S then sa(£) G S,       0 < a < oo, (3.5)
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(/{„fceß/bf, *£2Gß, (3.6)
//£„ G G and £„ ™£ then E\Q -» £|£|. (3.7)

Every nonempty C-class contains 80, by (3.5): call a class nontrivial if it contains
some other element. Using Lemma 2.10 we obtain

{£ G G: £|£| < AT} is wm-compact. (3.8)

Example. For q G (1,2] and a fixed r.v. a > 0 with Ea < oo, the class {a(q, ca):
c > 0} is a C-class. However, the class {a(<7, j8): ß > 0, ß integrable} is not a
C-class, because by Example 2.8 it is not vvm-closed.

Theorem 1.1 can now be decomposed into the three assertions below, which
together establish the theorem.

Proposition 3.9. Let H be a subspace of L1 satisfying (1.2). Let G[H] be the set of
£ in the wm-closure of i(H) such that £(w) G ÍP0 a.s. Then G[H] is a nontrivial
C-class. Moreover, if Xn G H and i(Xn) —* £ then (Xn) is uniformly integrable.

Theorem 3.10. Let G be a nontrivial C-class. Then G contains o(q, a) for some
q G (1, 2] and some a > 0 with P(a > 0) > 0.

Proposition 3.11. Let (Xn) be a uniformly integrable sequence of r.v.'s such that
i(Xn) -» a(q, a) for some a > 0 with P(a > 0) > 0. Then some subsequence ( Wn) =
(Xj ) is isomorphic to the unit vector basis of lq.

We shall prove Propositions 3.9 and 3.11 in this section, and defer Theorem 3.10
until the next section.

Before the proofs, let us try to explain what is going on in terms of subspaces F
generated by exchangeable sequences (Z,) with canonical random measures £ . For
such subspaces, when does F embed into Fl Certainly it does when Zt =
a,Z(n_1)j + 1 + • • • + a„Zm for some constants (ax, . . . , a„). In this case £ =
sa (£) * ' ' ' * sa„(Q- Le1 ® (0 be the set of such £. Then the ww-closure of % (£) is
essentially a C-class, and so by Theorem 3.10 contains some a(q, a). If we could
prove that {£: F embeds into F] were ww-closed, it would immediately follow that
/ embeds into F. Unfortunately we are unable to prove this, because ww-conver-
gence of random measures corresponds to a rather obscure operation on ex-
changeable sequences. We therefore proceed indirectly. Any exchangeable (Zj)
satisfies i(Z) -» £. We have already seen that there are £ in % (£) w/n-convergent to
some a(q, a), and hence there are random variables ( 1^) in F with i(Yf) —» a(q, a).
Proposition 3.11 now shows that lq embeds into F. Analyzing the argument, we find
the only property of F actually needed is: there exists £ such that each £ in *éB (£) is
a ww-limit of i( Yf), for some Yj G F. But this holds for a general subspace H, by
Proposition 3.9.

Proof of Proposition 3.9. Let ty be the wm-closure of i(H). We shall show that
ty satisfies the conditions for a C-class, except for (3.2). Condition (3.4) is
immediate, and (3.5) follows from (3.1). The lemma below gives (3.3) and (3.7).

Lemma 3.12. The map £ —> £|£| ¿j wm-continuous and finite on ^D.
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Proof. It suffices to show that i(Xn)^>£ implies E\Xn\ —>.E|£| < oo. Suppose
first that Vn G H, E\Vn\ = 1 and t(Vn)-*X. Then by (1.2), |a| = 1. So if Wn G H
and £(rVn)^>p then by considering subsequences of Wn/E\Wn\ convergent in
law, we see that sup E\ Wn\ < oo and so by (1.2) E\ W„\ —> \ p\ < oo, since ( Wn) is
uniformly integrable. Finally, notice that i(Xn)^>£ implies £(Xn)-*£a, and that
m = mi

The proof of (3.6) for fy is a special case of Lemma 3.14 below, since
i(X) * i( Y) = i(X + Y). We first quote an elementary result.

Lemma 3.13. Let (Yn), (Z ) be uniformly bounded sequences of (complex-valued)
w w w

r.v.'s. Suppose Z„^>Z, y„—> Y. Then there exist k„^>cc such that  YnZj -+YZ
whenever j„ -h> oo,y„ < k„.

Lemma 3.14. Suppose £„-^£ and tj„ -^ 17.  Then there exist y„ —» 00 such that

Zn*Vjn^£*V-

Proof. Recall that <j> denotes Fourier transform. For each / we have
</>, (t)-><¡>t(t), ^(f)—><»,,(/)• By Lemma 3.13 and a diagonal argument, there exist
j„ -» 00 such that <í>£Í/)<í>,, (/)-»^{(O^ÍO f°r rational /. Now (2.7) gives the result.

By definition, G[H] is the subset of ty satisfying (3.2): equivalently, the subset
for which <j>((t) = <j>ç(-t) a.s. for each /. So G[H] is a C-class by the corresponding
properties of 6D, using (2.7) to verify wm-closure. It only remains to prove G[H] is
nontrivial. Because H is infinite-dimensional, we can find (Xn) in its unit ball with
no i-convergent subsequence. Passing to a subsequence, assume i(X„) —> £. By
(2.15) £ is not degenerate, otherwise X„ is convergent in probability and hence in
Lx, by (1.2). Since £ G 6D, (3.6) shows that £ * (-£) G ÓD, in an obvious notation,
and this is a nondegenerate element of G[H].

Remark. Convolution of random measures does not correspond to addition of
the associated exchangeable sequences. Instead, if £w is associated with (Z,w) then
£(1) * £(2) is associated with the exchangeable sequence which is approximated in
law by (Z,(1) + Z„(2), Z2{1) + Z„(2), . . . ) for rapidly increasing («,).

For the proof of Proposition 3.11 we need to quote a known result. Call a
sequence (Yn) a copy of another sequence (Y¡f) defined on a possibly different
probability triple (ß', T, P') if P((YX, Y2, . . . ) G • ) = P\(Y[, Y¿, ... ) G • ).

Proposition 3.15 (Aldous [1, Theorem 10]; Berkes and Rosenthal [3, Theo-
rem 1.2]). Let X G ^P and suppose i(Xn)-+X. Then there exist, on some probability
triple, sequences ( Yn), (Zn) such that

( Yn) is a copy of some subsequence (Xj );

Z,, Z2, . . . are independent with law X

2| Yt - Z,| < 00 a.s.

We remark that for the special case of constant a, Proposition 3.11 is a simple
corollary of Proposition 3.15, because an independent sequence (Z,) with law
o(q, a) is isomorphic to the unit vector basis of lq.
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Proof of Proposition 3.11. For a = (c,.) let ||a||? = (L\a¡\q)l/q be the lq norm.
Let cq = \a(q, 1)|. Fix e > 0. Suppose 0 < Kx < a < K2. We shall show that some
subsequence ( Wn) of (Xn) satisfies

*ic,||a||, - eSKI^ < E\2a,Wt\ < *2c,||a||, + e^a^ (3.16)
for all a. First, apply Lemma 2.13 with g(x, y) = xy to deduce /(arlY,,) -» a(q, 1).
Then by Proposition 3.15 we can find a subsequence (Wn) and construct sequences
(Yn),(Zn) such that

( y,) is a copy of (o"1»;); (3-17)

Z,, Z2, . . . are independent, law o(q, 1); (3.18)

Y¡-Zt-+0   a.s. (3.19)
In view of (3.17) we can construct â such that (â, Yx, Y2, . . .) is a copy of
(a, a~iWx,a~,W2, . . .), and so

(â Yn) is a copy of ( WJ (3.20)

The sequences (âYn), (âZn) are uniformly integrable, so (3.19) implies
E\âYn — âZ„| -» 0, and by passing to a further subsequence we may assume

£|âT, - âZ,| < e2-'. (3.21)

Now E\2a¡Z¡\ = c9||a||?, and E\2a¡W¡\ = £|â2afyf| by (3.20), and so (3.21) and
the obvious estimates give (3.16).

S
Next consider the case a = 0: then Xn-*0 and so some subsequence (W„)

satisfies

£|2a,Tf;.| < e2|a,|2-''. (3.22)

Observe that if (3.16) or (3.22) holds for some (WJ then it holds for any
subsequence of ( WJ

To treat the general case, define

bm = 1 + me,       m > 0,

= (1 + e)m,       m < 0;

Am = {bm<a <bm+x),

A, = {a=0},

and ignore any of these sets which are null. Put S = ~ZbmP(Am). Choose integers
1 < L, < L2 < . . . such that

2    bmP(Am)>S-e, (3.23)
|m|<£,

sup    2     £|*Jl<    <e2"'' '>!■ (3-24)

Let /■„ = min{/: L¡ > m}. It is immediate from definition (2.3) that if £„ -»£ under
P then £„ -^>£ under /*(• |^4). Thus for fixed m we can choose (Wn) such that (3.16)
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holds for E(-\Am); and similarly (3.22) for E(-\AJ Using a diagonal argument,
( Wn) can be chosen such that

E(Z\aiWi\\AJ<eZ\ai\2-i;

£(2k^.| \Am) > bmcq\\*\\q - e2|a,|2-',       \m\ < L,;

E\   2   a,W, \AJ <bm + xcq( 2 H')   " + e £ |a,|2-',    each m.
V   í>r„ / \¡>rm I i>rm

Combining these estimates with (3.23) and (3.24) gives

E\2a,W,\ >(S- e)c,||a||, - eSlfl^;

E\2 a,W,\ <(S + e)e,||»||, + 2*2fc|2-*.
So for e sufficiently small, ( W¡) is isomorphic to the unit vector basis of lq.

Remark. We made no assertion concerning the dependence between â and (Z,).
If these were independent, then (áZ¡) would be exchangeable. However, a modifi-
cation of examples in [1], [3] shows that in general we cannot achieve (3.21) with
exchangeable (áZ¡). In other words, we cannot directly mimic Proposition 3.15 for
nonconstant random measures. Our argument depends on the special form of the
random measure a(q, a) as a randomly scaled fixed measure. Alternatively, it
might be possible to reduce Proposition 3.11 to Proposition 3.15 via a "variation of
density" argument used in [10].

4. A fixed point theorem. Before starting the proof of Theorem 3.10, which
occupies the rest of the paper, some remarks seem appropriate. As is well known, a
measure X G 90 is of the form a(q, a) for some q, a if and only if there exist
constants (cn) such that X*n = sc(X), where X*" is the n-fold convolution of X with
itself. It follows that a ?P0-valued random measure £ is fo the form a(q, a) if and
only if £*" = jc(£) for some (cj Now let 6 be a nontrivial C-class, and put
§ 6 = {£ G 6: £|£| = 1}. Define T„: S G -» S G by T„(£) = sft(£*B), where b =
£-|£*"|. Then Theorem 3.10 is simply the assertion that S G contains some element
fixed under the commuting family (Tn). So we can think of Theorem 3.10 as a fixed
point theorem. Unfortunately there is no reasonable topology which makes S G
compact and Tn continuous (consider £„ as in Example 2.8). In particular, Tn is not
wm-continuous and S G is not jm-compact in general. Hence it seems impossible to
reduce Theorem 3.10 to any of the standard theorems.

In the proof of Theorem 3.10 it is convenient to represent measures by their
Fourier transforms. Let F be the set of functions /: [0, co)-»[-l, 1] such that
/(/) = 4>x(t) for some X G % (we need consider only / > 0 because ÍP0 consists of
symmetric measures). Define || • || on F by ||</>x|| = |X|. Explicitly, this is

/-OO

11/11=4*-'/    r2(l -/(/)) dt. (4.1)
•'o

We now represent random measures £ with values in % by their transforms </>£(/),
which we may regard as stochastic processes X = (X,)0<l whose sample paths
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happen to lie in F. For uniformly bounded processes (Xn) = (Xf) we define
wp w

X"^X    ifA-,"^^,        / > 0,

XnZx   iiXp-^X,,       / > 0. (4.2)
Using (2.6) and (2.7) we can translate part of §3 into transform language. A class G
of processes A" is a C-class if:

each X G G is F-valued and £||*|| < oo, (4.3)

if Xn G C*"^* then * G G and E\\Xn\\ -* E\\X\\, (4.4)
if (X,) G G then (Xal) G G,       0 < a < oo, (4.5)

if X, Y G ß then AT G ß. (4.6)
ß is nontrivial if it contains some element other than X = 1. And (3.8) gives

{leß: £'||A'|| < K) is wp-compact. (4.7)
Let G be a fixed nontrivial C-class. Theorem 3.10 is the assertion that G contains
some element of the form exp(-a/?). Note that the subset G' of ß satisfying

X, > 0 (4.8)
is a C-class, and is nontrivial since X • X G G' for X G ß. Hence we may include
(4.8) as part of the definition of a C-class.

Recall that R+ denotes the compactified half-line [0, oo], and 9+ (9H+) the
space of probability measures (random measures) on R+. For X G ß we can
regard -log X, as a R+-valued r.v.

The proof of Theorem 3.10 falls into two parts. First we construct elements X of
ß which are "almost" of the required form; this result, stated below, will be proved
in §5.

Proposition 4.9. There exist q G [1, oo] and elements XJ of G such that
(ï)E\\XJ\\^l,
(ii) -log X{ - /'(-log X{)^0, t > 0.p
For definiteness, set oo - oo = oo. Putting a, = -log X\, part (ii) implies X{ —

exp(-ctjtq)—>0, / > 0. To establish Theorem 3.10, we must produce X G G of the
form Xt = exp(-a/9). The argument involves rather subtle interactions between the
two topologies. We start by considering which processes can arise as w/>-limits of
the processes in Proposition 4.9. Fix q for the rest of this section.

Definition 4.10. Let Gq be the set of X such that there exist X" G G and
R+-valued r.v.'s <x„ such that

wp
(a)X"^X,
(b) X," - exp(-cx„tq) Ao, / > 0.

Lemma 4.11. Gq is a nontrivial C-class contained in G.

Proof. Gq c G by (4.4). For (XJ) as in Proposition 4.9, it is clear that any
wp-\imit I of a subsequence is an element of Gq, and £||A"|| = 1. So Gq is
nontrivial. Lemma 3.14 shows Gq satisfies (4.6), and the other requirements are
obviously satisfied.
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Call a C-class minimal if it is nontrivial but no proper subset is a nontrivial
C-class. Since {X G ß: .E||A'|| = 1} is w/j-compact, Zorn's lemma shows that every
nontrivial C-class contains a minimal subclass. Lemma 4.11 shows that if ß is
minimal then G = Gq for some q. Thus Theorem 3.10 is reduced to the assertion
below.

Proposition 4.12. Suppose G = Gq. Then G contains exp(-a/9) for some r.v. a
with 0 < a < oo and P(a = 0) < 1.

Remark. This of course implies 1 < q < 2, which we do not assume in the
argument.

Proof. We first establish a sample path property of elements of Q. Fix X G ß
= Qq, and let X", a„ be as in Definition 4.10. Then

&xp(-antq)^X„       0 < / < oo. (4.13)

Since 91t+ is wm-compact we may suppose, by passing to a subsequence, that
i(aj™£, say, in 91t+. For / > 0 let/ G C(R+) be given by f,(x) = exp(-tqx). By
(2.3), exp(-ajq) = </„ /(aj> -></„ £>, and so

X, = </„ 0 - f     exp(-jtf «)€(•, dx),       t > 0.
■qo.oo)

Define Aq to be the set of functions/: [0, oo) -» [0, 1] such that

/(/)=(      exp(-x/")X(dx:),    someXG<!P+. (4.14)
■fyoo)

We have just proved that each X G ß has sample paths in Ar Lety: <3>+ —» A? be
the map implicit in (4.14). Equip Aq with the topology t given by

/„^/   iff   /„(f)-/(*),       OO.
By standard properties of Laplace transforms,

j: ?P+ -* (Aq, t) is a homeomorphism.

In particular, each space is compact. Define || • || on Aq by (4.1).

Lemma 4.15. Let d be any bounded metrisation of (Aq, t). Let X", X, Y denote
A q- valued processes.

(a) Ed(X, Y) defines a complete metric on the space of A -valuedprocesses.
(b) Ed(X", Y") -» 0 iffXf - Yfi>0,t> 0.
(c) // Ed(Xn, Y) -> 0, and if X" is F-valued and sup E\\X"\\ < oo then X" -+ Y.

Proof. Parts (a) and (b) are straightforward. To proved (c) it suffices, by (b), to
prove Y0 = 1. Passing to a subsequence, we may suppose d(X", y)-»0 a.s. But
d(fn,f)^>0 implies ||/|| < lim inf||/J|, by (4.1) and Fatou's lemma. So another
application of Fatou's lemma gives £||y|| < sup £||A'',||. Thus ||y|| < oo a.s.,
whence Y0 = 1 a.s. by (4.1).

Now let p be the metrisation of <3>+ described in Lemma 2.16, and let d be the
particular metrisation of Aq induced from p by the homeomorphism /. For this d

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



456 D. J. ALDOUS

we can add another part to Lemma 4.15, by Lemma 2.16 and (2.7) for Laplace
transforms.

wp
(à) IfX" -» Y then Ed(Xn, exp(-a/9)) -» Ed(Y, exp(-a/«))/or any a > 0.
Returning to the proof of Proposition 4.12, fix e < 1/4 and choose Xo E. G =

Gq with E\\X°\\ = 1. By Definition 4.10, (4.4) and (b) above, there exist X1 G ß
and a, > 0 such that

I^IIA-'H - 1| < e,    Ed(X\ exp(-axtq)) < e.
By the same argument, but using (d) also, we can construct inductively X" G ß,
an > 0 such that

®\E\\X»\\-E\\X-l\\\ <e2"",
(ii) Ed(X", exp(-a„/9)) < z2~",
(iii) ¿¿(A"1, exp(-a„_,/9)) < t2~n + Ed(Xn~\ exp(-a„_,/«)).

Putting together (ii) and (iii), Ed(X",Xn~x) < 5e2-". So by (a), there exists a
A?-valued process Y such that Ed(X", Y) -^ 0. Using (i) and (c), X" ^ Y. Thus
Y G ß, and by (i) and (4.4) E\\ Y\\ > 0. But from (ii) and (b),

exp(-an/")Ay„        />0,
and it follows that Y is of the form exp(-atq).

5. The smoothing argument. Given a C-class ß consisting of processes X, let
C = {-log X: X G ß}. To prove Proposition 4.9 we must produce Y G ß with T,
approximately of the form Yx • tq. We know that ß is closed under addition and
scaling (that is, Y G G implies Yat G ß). In the special case of a subspace H
generated by independent identically distributed random variables, Proposition 3.9
gives a C-class for which ß consists of deterministic functions y(t). In this special
case, we can use Markov's fixed-point theorem to show that ß contains some
y(t) = at9: this argument is somewhat reminiscent of the proof [7] that Orlicz
sequence spaces contain some lq, which is not surprising because here H is an
Orlicz sequence space. In the general case, we would like to associate with each
y, G G a deterministic "average" a(t), such that the map Y —> a preserves addition
and scaling: then we could apply the above argument to show that a(t) s¿ a(\) • tq
for some Y, which would almost give Proposition 4.9. Unfortunately we do not
know how to produce such an average, since we have examples where EYt = oo,
/ > 0. Deprived of "soft" arguments, we are forced to give an actual construction,
which is tedious though elementary.

Fix T, G G, and define an average a(t) via (5.6). Choose 0 < /, < /2 < 1 with
/2//, large, and define q by a(t2)/a(tx) = (t2/tx)q. By choosing /,, t2 to maximize q,
we find that a(t) cannot be much less than a(tx) ■ (t/tx)q on [/,, t2] (Lemma 5.13).
Now put /2//, = (1 + 8)N and define a smoothed process

z, = -!- 2d + 8)-*Y(t  tx(\ + 8)').
ö('l) ,=1

By the lower bound on a(t), the extreme terms of the sum make no outstanding
contribution. Since (1 + 8)~JqZt(X+&y is the same sum, but taken overy + 1 < / < j
+ N, we see that Z, is approximately Z, • tq on an interval [1, s] with s < /2//,.
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Finally, by choosing /, small we make the weights (1 + 8)~'q/a(tx) large, so they
can be approximated by integers: then Z G G, and we are finished. The rest of the
section merely fills in the details of this construction.

Proof of Proposition 4.9. First let us prove that we may assume each element
X of ß satisfies

X, is decreasing in /. (5.1)

(We use "decreasing" to mean "nonincreasing".) Since the subset of G satisfying
(5.1) is clearly a C-class, it suffices to exhibit a nontrivial X satisfying (5.1). Fix
y G ß. By properties of Fourier transforms,/ G F and ||/|| < oo imply 1 —/(/)
= o(t) as / —> 0. So for 0 < p < 1 and 0 < a < oo the infinite product

y,(p) = n Yatp.
n>0

is .^-convergent, and hence defines an element yw of ß. Choose a = a(p) so that
E\\ Yw\\ = 1. Clearly y#> > Y™. Now let A be a w^-limit point of Ar(p) as p-> 1
through the sequence (exp(-2~-/)): it is easy to verify (5.1).

For the remainder of this section let X be some fixed process in ß such that
E\\X\\ = \.

Let / denote the set of continuous increasing functions g: R+ —»R+ such that
g(0) = 0, g(oo) = oo. Define Yt = -log(Ar,), and consider y as a process with
sample paths in /. For g G / define

HI g||| = 47T-1 C r2(\ - exp(-/(/))) dt. (5.2)
•'o

Then for p G % we have |||-log <f>J| = H^J = \p\. In particular, £|||y||| = 1.
Define 9S: I -^ I by 9sg(t) = g(st). The following properties are straightforward.

Ill»,*lll = *lll*lll, (5-3)
III*+ A|||< |||g|||+ IHAIII, (5.4)

If0<|||g|||<oo then the function b —» |||è*||| defines a strictly
increasing function in /. (5.5)

Now (5.5) can be used to define a function a(t) which we shall regard as an
"average" of Y,.

Definition 5.6.
a(0) = 0,

1 9„Y
a(s)

Lemma 5.7. (i) a(t) is continuous and increasing.
(ii)/-'</(/)^0as t->0.
(iii) lim supr_>0 a(st)/a(t) < oo for each s.
(iv) lim^« lim sup^o P(Y,/a(t) > M) = 0.
(v) There exist 17 > 0, 83 > 0 such that

= 1,       s>0.

{in*-»')> 2t/,        / < S3
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Proof. Assertion (i) is an easy consequence of the definitions. To prove (ii), if
< oo then

1= "iii<WW > iii"¿Win= -in»/iii->a
the convergence occurring because «"'(1 - exp(-nx))iO. Hence £|||/iö1/ny||| -»0,
and (ii) follows.

To prove (iii), define for / < 1
1

y(0 _
a(t)

9,Y.

Then Y(,) = -log X{'\ for some X(,) G ß, and from (5.4) we obtain

i< e\\x^\\ < i.
We defer the proof of the next assertion.

Letr* = infill**!!: X G ß,£||A"|| > ±}. Then Tk -» oo.
Now fix s > 1, and choose k such that Tk > s. Then

k
a(t)

8,{Y) >E\\\kY^\\\ = E\\(X^)k\\ >Tk>s, t < 1.

So for / < s ',

a(st)
9,(Y) —    o"'s~lE

a(st) UY) > 1,

implying k/a(st) > l/a(t). This yields (iii).
To prove (iv), fix e, s > 0. For/ G /, (5.2) gives the estimate:

if/(e) > 1 then >i

Putting t = se ',

P(^>£^Mi>iH<i i
a(t)

< 2e   by 5.6.

0,(Y) > ¿)  by (5.11)

(5-8)

(5.9)

(5.10)

(5.11)

Now let s —> 0 and apply (iii).
Finally, suppose (v) is false. Then there exist tJO such that y,ya(/„)—»0. So,

defining Y(,) as at (5.8), we have y^-^0 and hence A,,('")-> 1. Because elements of
p

G have decreasing sample paths, it follows that X^-*l. Now by (4.4) £'||Ar('")|| ->
0, contradicting (5.9).

Proof of Assertion (5.10). We revert to regarding ß as a set of random
measures. Write ty = {£ G ß: Zs|£| = 1). By scaling it suffices to prove

inf £'|£*'r| —»oo    as k -> oo.
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Defining £n as in §2, we have |£n| = £|£|, and so by (3.7) and (3.8) {£n: £ G fy } is
uniformly integrable. So there exists b < oo such that

f      |x|£V*)>i,   each£G6D.
J\x\<b l

Hence each £ G <$ satisfies P(£ G B) > 1/46, where

B= \pE%:  f       \x\p(dx)>\\.
{ J\x\<b 4J

It now suffices to prove infB| p*k\ -^ oo, which is elementary. This concludes the
proof of Lemma 5.7.

Consider now the quantity q(s) = lim sup,^ a(st)/a(t). Clearly q(-) is a sub-
multiplicative function, so we may define

,= uml2M(f). (5.12)
i->oo      log S v '

By Lemma 5.7, q G [1, oo). We shall prove Proposition 4.9 for this value of q.
Much of the work is in the next lemma, which shows that there are intervals [/,, /2]
over which the function a(-) almost dominates Atq. The proof involves only
elementary real analysis of properties (i)-(iii) of Lemma 5.7.

Lemma 5.13. Given 5, > 0 there exists r < oo such that for any 82 > 0 there exist
0 </, < /2 <82such that

(i)exp(l/S,) < t2/tx < r,
(ii) a(t2)/a(tx) = (t2/txYfor some p G (q - 8X, q + 8X),
(iii) a(t)/a(tx) > (t/txy-s'; /, < / < t2.

Proof. Fix e > 0 and K >  log sup(<1 a(et)/a(t). Define «(/) = -log a(e~').
Then a(-) is continuous, increasing and satisfies

a(/)^oo    as/^oo,        a(t + 1) < a(t) + K,

q = lim  s~l lim sup(a(í + /) - a(/)). (5.14)

So we can choose an integer /0 such that

a(t + s) - a(t) < s(q + e);       s, t > t0. (5.15)

Let T = Kt0e~l. Then we can find arbitrarily large s0 such that, putting s6 = s0 +
T,

a(s6) - a(s0) > T(q - e). (5.16)

Let /?(•) be the minimal concave function on [j0, s6] such that ß(so) = a(s0),
ß(s6) = a(s6) and ß > a; the reader may find it helpful to sketch a diagram.

Put
S2 = S0 +  ^0'

j, = sup{/ < s2: a(t) = /?(/)},

i3 = inf{/ >s2:a(t) = ß(t)},

A, = ß'(sx) = ß'(s2),
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where ß' denotes the right-hand derivative. By (5.14),

a(sx) - a(s0) < KtQ. (5.17)

Next we have

A, < q + e, (5.18)
because

Now put

(*3 - so)(q + e)> a(i3) - ol(sq)   by (5.15)

= ß(s3) - ß(s0)

> Ax(s3 — Sq)   as /?' is decreasing.

s5 = inf{/ >s4:a(t) = ß(t)},

A2 = ß'(sj

We assert

A2 > q - 5e. (5.19)
To prove this, note that

ß' < A,   on (sx, sj
< Aj   on (s4, s6),

and so a(s6) - a(sx) = ß(s6) - ß(sx) < |(A, + AjX-Sg - j,). Combine this inequal-
ity with (5.16) and (5.17), and then (5.19) follows from some algebra. It is now clear
that

a(ss) - a(sx) = p(s5 - sx),    somep G[A„ A2],

a(s) < a(s5) + A2(j — s5),        sx < s < s5,

T>s5- sx>{(T- t0).

Put /, = exp(-i5), t2 = exp(-i,). Then

exp(î(^ - 'o)) < hl'h < exp(7-),

a(tj _(ti\'

a(h)      \ t, j '

a(h)      U /   ' /, < / < t2

Putting e = 5,/6 and taking K sufficiently large, we establish Lemma 5.13: the fact
that /2 may be taken arbitrarily small arises from the fact that s0 was taken
arbitrarily large.

Remark. Given (/,, t2) satisfying the conditions of Lemma 5.13, let /2 G [t2, et2\.
Then (/,, /^ satisfy essentially the same conditions, though with slightly weaker
constants. Thus we may add to Lemma 5.13 the requirement

(iv) given 0 < 9 < 1, we may take t2/tx = em for some integer N.
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The next lemma contains the essential construction, using Lemma 5.13 and
properties (iv), (v) of Lemma 5.7.

Lemma 5.20. Fix K < oo, 0 < 9 < 1. Then there exist X^ G ß, Z01 with sample
paths in I, p¡ —» q and integers m¡ -» oo such that

(i)A-w-»l.
(ii) Z,w + m,. log X?> ̂ 0, / > 0.

J p

(iii) Sj < e-^Zyj < Sj, + 5,', |n| < K, where Sj, Sj > 0 and
(iv) lim^«, lim sup,.^ P(SJ > M) = 0.
(v) limw_>00 lim sup^^,^ P(Sj > M) > 17, for r¡ as in Lemma 5.7.

Proof. Fix K, 9. For S„ r52 to be specified later, let tx,t2,p,N satisfy the
conclusions (i)-(iv) of Lemma 5.13. Recall that Y = -log X, where A' is a fixed
element of G. Define

Z*--77T   2    ^p(-n9p)Y(stxe"e). (5.21)
a(/,) „ = _*

Then Z has sample paths in / and

S < exp(-n9p)Z(e"9) < S + S',       \n\ < K, (5.22)
where

,       N-2K
S = -—   %    cxp(-n9p)Y(txe"6),

a\'l)    n = 0

S'-Y-T   2    +        2        expí-n^y^e").

We need an upper estimate for S" and a lower estimate for S. The first is easy,
since

- 2* «*«*){ ^.-f^r,,}. (5.23)

Consider sequences 5,^, ô2w|0, with processes Zw, S,, 5^' as above. Then (5.22)
gives assertion (iii), and (5.23) and Lemma 5.7 give (iv). We now give estimates
which establish (v). Recall that £ denotes the law of a random variable.

Let n, S3 be as in Lemma 5.7, and put A = {p E <ÍP+ : u[n, 00) > 2ij). By taking
82 < 0*3 we may assume £(y,/a(/)) G A, 0 < / < t2. The following estimate is
routine.

Sublemma. // t(V¡) G A and <¡>¡ > 0 then

^(2<í>,^>*,22<r>,)>í?.
Now the sum comprising 5 is in the form of the Sublemma, with

«h = -^-rcxp(-n9p)a{txene).
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Hence
(N-2K     \

s > v2 2 4>,l >n-
But by Lemma 5.13(iii), <í>, > exp(-/0ö,) and so

N^K 1 - exp(2/a>r5,)exp(-Ar6>0,)
V 1 - exp(-0S,)

1 - cxp(2K98x - 1) using Lemma 5.13(i), (iv)
98x

—> oo    as ó", JO, giving (v).

To prove (i) and (ii), let m > 1 be integral and approximate Z by

exp(-n9p)N-K
Zs   =     2    m

n = -K ma(tx)
Y{stxenB).

Because this sum has integer weights, Z' = -m log X' for some A" G ß. We have
the simple estimates

-log X' < mxZ, (5.24)
Z, + m log X' = Z, - Z,' < mNY(t-t2). (5.25)

If we hold 5, fixed, then by (5.21) and Lemma 5.7(iv) we see that Z remains
bounded as 82\Q, in the sense

lim    lim sup P(Z, > M) = 0,   each /.

We now must produce Sf0, 8^10 and m, -» oo such that Aw defined as X'
above satisfies (i) and (ii). To do this, first choose 6", small, then choose m large so
that (5.24) makes -log X' small independently of 82, and finally choose 82 small so
that (5.25) makes Z + m log X' small. This establishes Lemma 5.20.

By considering Lemma 5.20 for 9 = 2"', K = i2', applying a diagonal argument
and substituting -tn. log Aw for Zw in (iii), we can manipulate the lemma into the
following form.

Lemma 5.26. There exist Aw G Q,pi-> q and integers m -» oo such that
, \ sp(a)Iw^l,

(b) S¿ <-exp(-n2-Jpj)mj XogX^e"2') < SJ + SJ, \n\ < jfH
where S,, Sj > 0 a«¿ satisfy (iv) an¿ (v) o/ Lemma 5.20.

Now by (a), £||| - log A^||| = £||A'(/)|| — 0. But by (b), Sj < -m,. log A^, and
it follows from (v) that £'|||-m7log A"w||| —» oo. So there exist integers n¡ with
nn/mj->0 and £|||-«,- log A^W -» 1. Now to prove Proposition 4.9 for (A-0^ it
suffices to prove

«/log Xy - tq log A-f») -^ 0,       / > 0. (5.27)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SUBSPACES OF L1, VIA RANDOM MEASURES 463

By monotonicity, we need only consider / of the form exp(-w2 '). Fix / of this
form. For large j, we have by (b)

Sj < -ntj log A,°> < Sj + Sj,

Sj < -f'rnj logA-p < Sj + Sj,
and (5.27) follows.

6. Miscellaneous remarks, (a) We have shown that lq embeds into H whenever
G[H] contains a(q, a). The converse is true, although not quite obvious (we omit
the proof). It might be hoped that, for general subspaces H(i) of Ll, one could
attack the problem of deciding whether //(1) embeds into //(2) by looking at
G[Hm] and ß[//(2)]. But this program seems very difficult: here is one conjecture
along these lines. Let 91L9 be the wm-closure of {a(q, V): V > 0). The usual
embedding of Lq into L1 produces a subspace H with G[H] c 91L?, although we
can find no simple description of G[H]. However, we conjecture that any H for
which G[H] contains a sufficiently rich subset of 9H? must contain an isomorph
of ZA

(b) Given a subspace H, for which values of q does lq embed into HI An obvious
lower bound for q is sup{/?: H is type/?}. Our argument gives an upper bound, at
least in principle: take £ in G(H), put Yt = -log «^(f), define a(t) by 5.6 and ?(£)
by (5.14), and then q < sup{^(£): £ G Q(H)}. This is far from satisfactory. Note
that even if Proposition 4.9 holds for a particular q, it does not necessarily follow
that lq embeds into H, since the argument in §4 uses a minimality assumption.
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