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Abstract 

Background: A specific T1-weighted magnetic resonance imaging (MRI) sequence has 

been shown to detect substantia nigra (SN) neuromelanin (NM) signal changes that 

accurately discriminate Parkinson’s disease (PD) patients from controls, even in early 

disease stages. However, it is unclear what happens to these SN changes in later disease 

stages and if they can be a marker of disease progression.  

Objective: to investigate the pattern of SN-NM area loss and contrast ratio (CR)  

intensity changes in late-stage PD (LSPD) compared to earlier disease stages.   

Methods: A comparative cross-sectional study was performed, analyzing SN-NM MRI 

signal in LSPD (Schwab and England Activities of Daily Living Scale score <50 or 

Hoehn Yahr Stage [HY] >3), comparing this group with de novo, 2-5 year PD and 

controls. SN-NM signal area and CR values for the internal and lateral SN regions were 

obtained with semi-automated methods.  

Results: 13 LSPD, 12 de novo patients with PD, 10 PD patients with a 2-5 year disease 

duration, and 10 controls were included. NM signal area was significantly decreased in 

LSPD compared to de novo PD (P-value = 0.005; sensitivity: 75%; specificity 92% and 

AUC: 0.86). In the lateral SN region, a decrease in the CR was detected in all PD 

groups compared to controls; despite not reaching statistical significance, a slight 

increment was observed comparing LSPD to 2-5 year PD. NM signal area significantly 

correlated with HY (R=-0.37; P<0.05) and Movement disorder Society Unified 

Parkinson’s Disease Rating Scale part II (MDS-UPDRS) (R=-0.4; P <0.05) while a 

weak correlation was found with MDS-UPDRS part III (R=-0.26; P: 0.1). 

Conclusion: SN area evaluated by NM-sensitive MRI may be a promising biomarker of 

nigral degeneration and disease progression in PD patients. 
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Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a selective 

loss of pigmented neurons in the substantia nigra (SN) pars compacta (SNc) and locus 

coeruleus (LC) and by the appearance of Lewy bodies [1, 2]. Approximately 60-70% of 

dopaminergic neurons of the SNc are lost before the onset of clinical PD symptoms and 

their degeneration progresses throughout the disease [3]. 

The degree of neuronal loss in the SNc is correlated to PD severity, which confirms the 

potential of SNc imaging for tracking disease progression [4]. 

The pronounced depigmentation of SNc neurons is related to the loss of neuromelanin 

(NM), which, in PD patients, occurs in the whole pars compacta region though 

preferentially affecting the ventrolateral part [5]. Over the last 10 years, new T1-

weighted magnetic resonance imaging (MRI) sequences have been shown to detect a 

significant reduction in the SN-NM signal in PD compared to healthy subjects; these 

sequences also enable the differential diagnosis with essential tremor [6]. Furthermore, 

a reduction of SN and LC contrast ratios (CR) has been reported in PD patients distinct 

from atypical parkinsonian syndromes [6-11]. These NM changes have a high 

diagnostic sensitivity and specificity for PD diagnosis, even in early clinical stages [8, 

12-14]. 

However, the relative ability of NM-sensitive MRI to mark disease progression and to 

detect potential differences in pathophysiological processes still remains unclear. 

Currently, very few studies have looked at longitudinal changes in the SN NM with 

MRI; inconsistent results have been reported, that could be related to differences in MR 

acquisition parameters and data analysis [12, 15-17]. Likewise, only a few studies have 

suggested a potential correlation of NM SNpc signal intensity loss (or CR) or NM-



6 
 

volume loss with disease severity, i.e. Hoehn and Yahr rating scale (HY) or Unified 

Parkinson’s Disease Rating Scale (UPDRS) scores [8, 11, 14, 16]. 

The purpose of this study was to investigate the pattern of SN-NM area loss and CR 

intensity changes in late-stage PD (LSPD) patients, compared to de novo PD patients 

and PD patients with a 2-5 year disease duration, and thereby evaluate NM changes 

throughout disease progression.  

 

Patients and Methods 

Patients  

We performed a comparative cross-sectional study that included 45 subjects: 13 LSPD, 

12 de novo PD patients, 10 PD patients with a 2-5 year disease duration, and 10 healthy 

subjects.  

Inclusion criteria for healthy subjects, de novo PD patients and patients with a 2-5 year 

disease duration has already been reported in a previous paper [12]. Patients were 

recruited from the Movement Disorders Unit of the University Hospital of Santa Maria, 

Lisbon. PD was defined according to the UK Brain Bank criteria [18] and diagnosis was 

made by a movement disorders specialist. LSPD was defined as PD patients with either 

a Schwab and England score (S&E) < 50 (MED ON) or a Hoehn &Yahr stage (HY) >3 

(MED ON) [19, 20]. 

PD patients were rated using the UPDRS, except for the LSPD group who were 

evaluated by means of the Movement Disorder Society (MDS) UPDRS[21], while 

MED ON. Conversion from the UPDRS-part II and UPDRS-part III to the MDS-

UPDRS part II and MDS-UPDRS part III respectively, was performed adopting the 



7 
 

algorithm proposed by Goetz and colleagues [22]. De novo PD patients were not on 

antiparkinsonian medication and they were all <6 months since the beginning of clinical 

symptoms.  L-dopa equivalent daily dose (LEDD) was calculated according to 

recognized standard conversions [23]. The Local Ethical Committee approved the study 

and all patients provided informed consent.   

 

Imaging Protocol 

A 3.0 T Phillips scanner (Phillips Achieva; Phillips Medical Systems, Best, Netherlands) 

was used to acquire all data. A T1 -weighted fast spin echo NM-sensitive pulse sequence 

was used as previously described by Sasaki and colleagues,[24] with a repetition 

time/effective echo time of 633/10 ms, echo train length of 3, 20 slices with 2.5 mm of 

thickness and intersection gaps of 0 mm, field of view of 220 mm, matrix size of 548  

474 (pixel size of 0.40  0.40 mm2) and an acquisition time of 8 min. Slices were set in 

an oblique axial plane perpendicular to the fourth ventricle floor and covering from the 

posterior commissure to the inferior border of the pons. Magnetization Prepared Rapid 

Acquisition Gradient Echo (MPRAGE) images were also acquired for volumetric 

analysis, with 0.740.741.0 mm3 resolution, TR/TE of 9.6/4.6 ms. In case of motion 

artefact, the sequence was repeated adjusting the slice positioning and reiterating to the patient 

on the importance of remaining still. 

 

Image Analysis 

The software OsiriX (OsiriX Lite version 8.0, Pixmeo, Geneva, Switzerland) was used 

to perform image analysis. A Gaussian filter (full width at half maximum of 0.8 mm) 

was applied to reduce image noise, prior to performing image segmentation using the 
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confidence region growing algorithm. As the high signal intensity SN was always 

visible in three slices, the middle slice, corresponding to the greatest SN volume was 

selected for segmentation.  

Two symmetrical seed points were manually defined on the most medial part of the 

high intensity area in the SN, and as close as possible to an imaginary straight line 

passing through the bottom of the interpeduncular cistern. The SN CR were assessed by 

positioning circular regions of interest (ROI), covering approximately 26 pixels, in the 

internal and lateral parts of both sides of the SN and in the lateral part of the crus 

cerebri, taken as a reference. The CR were calculated using the following equations:  

=  

=  

=  

                     =  

Where , , ,  correspond to the CR of the internal right ( ), internal left ( ), lateral 

right ( ) and lateral left ( ) regions of the SN, respectively. , , ,  are the average 

values of the signal intensities within the ROIs positioned on the described regions of the 

SN, and ,  the average values of the signal intensities within the ROIs positioned on 

the right and left region of the crus cerebri, respectively (Figure 1).  

The midbrain and brainstem volumes were estimated using Freesurfer® for the automatic 

segmentation of the MPRAGE images. To account for inter-subject variability, the 

fraction of midbrain to brainstem volume (MBF) was calculated. 
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Statistical Analysis  

The Wilcoxon Ranked Test was used to test statistical differences between right and left 

NM area among subjects of each group. Kruskal-Wallis tests were employed with P-

values corrected for multiple comparisons using the Bonferroni method. Potential 

differences in the SN areas and in the clinical characteristics among the different groups 

were evaluated. The Wilcoxon signed-ranked test was performed to evaluate differences 

between the area and CR of both sides of the SN of each subject. 

Receiver operating characteristic curve (ROC) analyses were performed to determine 

the sensitivity, specificity, cut-off optimal values and the area under the curve (AUC) 

for distinguishing between the different PD groups. The Pearson product-moment 

correlation coefficient was used to evaluate the dependence between the MDS-UPDRS 

Part III score, MDS-UPDRS part II, LEDD, HY stage, age and the mean area of the SN 

and CRl/CRi results. Also, the dependence between the MBF and the SN areas was 

evaluated. 

Differences in the clinical characteristics were also assessed. The chi-squared test was 

performed to evaluate differences in the sex distribution among groups.  For comparison 

of the age between groups as well as for the MDS-UPDRS total score and MDS-

UPDRS Part III, the Kruskal-Wallis test was used.  A P value of 0.05 was considered 

significant.  

All analyses were performed with the R software (Version 3.3.1, The R Foundation for 

Statistical Computing, Vienna, Austria). 
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Results 

MRI was performed on all subjects, and the image quality allowed a clear identification 

of the high signal area in the SN region as well as a semi-automatic analysis of all NM-

MRI images.  

The demographic and clinical characteristics of all subjects are detailed in Table 1. 

LSPD patients had a median disease duration of 14 years [IQR: 9-17]. They were 

significantly older compared to controls and de novo PD patients and had a worse HY 

stage and MDS-UPDRS part II compared to the de novo and 2-5 year PD groups. MDS-

UPDRS part III scores of LSPD patients were worse compared to the de novo and 2-5 

year PD groups, but the difference was statistically significant only for 2-5 year PD 

patients (Table 1). 

We found no difference between the left and right NM areas (0.31 <P< 0.79) and so the 

mean right/left area value was used in all subsequent analysis.  

The median SN-NM area obtained for de novo PD patients, 2-5 year PD, LSPD groups 

and healthy subjects is detailed in Table 1.  

The median SN-NM area was markedly decreased in PD groups compared to controls 

(Figure 2) with a P value of 0.002 for de novo PD patients and a P value < 0.001 for 2-5 

year PD and LSPD groups (Table 1). The NM area of the LSPD group was significantly 

smaller when compared with the de novo group (P=0.005) but not when compared to 

the 2-5 year PD group (Table 1 and Figure 3).  

On ROC analyses, the sensitivity and specificity of the SN high signal area for 

discriminating the LSPD group from earlier PD groups were: a) 75% and 92%, 

respectively, with a cut-off value for the area set at 26.31 mm2 and an AUC of 0.86 if 

compared to de novo PD (Figure 3, Panel B); b) 70% and 62%, respectively, with a cut-
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off value for the area set at 19.29 mm2 and an AUC of 0.65 if compared to 2-5 year PD; 

(Figure 4, Panel C). The sensitivity and specificity for discriminating the 2–5 year PD 

group from the de novo group were 67% and 80%, respectively, with an area cut-off 

value of 27.16 mm2 and an AUC of 0.69 (Figure 3, Panel A). Finally the sensitivity and 

specificity for discriminating all PD patients from controls were 100% and 91%, 

respectively, with an area cut-off value of 33.02 mm2 and an AUC of 0.969 (Figure 4, 

Panel A). 

No differences were found among right versus left CR in both medial and lateral SN 

across all groups, except for the LSPD group (P <0.05). Thus, CR analysis was 

performed independently for left and right values. CR analysis for both right and left 

sides of the internal SN region showed no differences across all PD groups and controls. 

Concerning the lateral SN region, CR analysis showed a significant difference only for 

the left side between 2-5 year PD patients and controls (P<0.05).  

The median left and right CR results obtained for the internal and lateral SN region are 

detailed in Table 1. Across all groups no differences were found for the internal SN 

region (P =0.06), while CR in the lateral region was significantly different between 

controls and 2-5 year PD patients (P =0.008) (Figure 5). Although no other statistically 

significant differences were found, a tendency for CR decrease was observed with 

disease progression for early-intermediate stage groups (Figure 5). Contrary to this 

trend, an increment in CR was observed for the LSPD group if compared to the 2-5 year 

PD group (Figure 4).  

No statistically significant differences were found for the MBF across all groups (global 

P: 0.2) and no correlation was found between MBF and SN-NM area (R= 0.14; P = 

0.37).  
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No significant correlation was detected between SN-MN mean area and CR of the 

internal region (CRi) (R=0.33; P=0.054) and the CR of the lateral region (CRl) (R=0.3; 

P=0.08).  

Considering all PD groups, MDS-UPDRS part III showed no correlation with SN-NM 

area (R= - 0.26; P: 0.1). Negative moderate correlations were found between the SN-

NM area and the MDS-UPDRS part II (R= -0.4; P <0.05), LEDD (R= - 0.45; P <0.05) 

and HY (R= -0.37; P<0.05). No correlation was found between age and NM area 

values.  

A moderate correlation was found between age and CRl (R= - 0.42; P<0.05) and CRi 

(R=-0.36; P<0.05). No correlations were found between HY, MDS-UPDRS part II, 

MDS-UPDRS part III, LEDD and CRl or CRi. 

 

Discussion 

In the present study, we were able to identify a significant reduction in the NM-SN area 

compared to controls among several groups of PD patients belonging to different 

disease stages, i.e. from a very early stage up to LSPD. This is consistent with a 

tendency for NM depletion with disease progression. 

Our results also confirm the ability of NM-MRI related measures for differentiating PD 

patients from healthy controls with high accuracy, even in the early disease stages, as 

reported in previous studies. [8, 12, 13, 17] 

The main objective of our study was to investigate NM-MRI alterations in an LSPD 

sample, to see the NM changes with disease progression and its potential as a biomarker 

of disease progression in PD. The NM-SN area presented a tendency to decrease with 
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progressive disease stages, with statistical differences between de novo PD and LSPD 

patients. Furthermore, setting a cut-off value at 26.31 mm2, we found excellent 

sensitivity, specificity, and AUC values for differentiating de novo PD and LSPD 

patients (75%, 92% and 0.86, respectively). There are very few studies that have 

explored NM-area modifications in PD evaluating early, intermediate and advanced PD 

stages (from HY stage 1 to 4) and all included small sample sizes. These studies 

reported conflicting results, although the use of different imaging and analysis protocols 

may partly account for these differences [12, 15, 16, 25]. Indeed, in a previous report we 

found no differences in SN area or length when comparing de novo PD with 2-5 year 

PD patients.[12] A few other reports suggest a tendency for SN-NM area reduction with 

disease progression: Schwarz and colleagues observed a tendency for a decrease in NM 

area when comparing six PD patients with HY stages 1-1.5 with four PD patients with 

HY stages 2-3.[15] While Aquino and colleagues observed differences in NM area 

between twenty-two 3-5 year PD and twenty 6-10 year PD patients (HY stage <3).[25] 

Finally, a recent study by Matsuura and colleagues reported longitudinal changes in 

NM-SN area in a group of fourteen PD patients, suggesting a decline of approximately 

17.5%, after one year follow-up, concomitant with an aggravation of HY stage (from a 

range of 1-3 to 2-4).[16] However, to the best of our knowledge, this is the first study in 

which SN-NM area is specifically examined in a population of LSPD patients. Our 

findings are in agreement with the report of apparent disease stage- and duration-

dependent volume loss of the SN-NM-sensitive region as reported in a manual NM 

volume analysis, performed on PD patients presenting HY stages 1 to 5 [8]. An age-

related bias on NM area reduction among our sample of LSPD patients cannot be 

excluded, as those patients were statistically older when compared to de novo PD ones. 

However, a correlation with age was found only for CR values and not for NM area 
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values. In the current literature there is no consensus on the loss of pigmented neurons 

during normal aging [26-28]. Nevertheless, throughout a sensitive and specific 

biochemical quantification of NM, we know that in the SNc this pigment linearly 

increases with age from the 10th year up to the ninth decade of life. [26, 29]. Moreover 

in normal ageing the fallout of pigmented neurons has a very low rate, i.e. 4.7% per 

decade [3]. Taken as a whole, our findings on NM area reduction among LSPD patients 

do not seem to be significantly influenced by age and are more likely accounted for by a 

stage-dependent modification as opposed to an age-dependent factor. 

Though the MDS-UPDRS part III score showed no significant correlation with SN area 

depletion, we found a negative significant correlation of SN area with other indicators 

of disease severity, i.e. MDS-UPDRS part II and HY. Such a correlation is in agreement 

with our finding of NM area stage-dependent depletion, as suggested in a few other 

studies [14, 17]. The absence of a significant correlation between MDS-UPDRS part III 

and SN area depletion can be accounted for by the relatively high MDS-UPDRS-III 

scores of our de novo PD sample, probably linked to the medication-free condition of 

those patients and with the high frequency of tremor dominant type (11 over 12) [6]. 

Moreover, as showed in previous studies, the activities of daily life subscore, i.e. the 

MDS-UPDRS part II, may be a better biomarker of disease progression than other 

MDS-UPDRS sections [30-32]. 

To evaluate the possible impact of a midbrain volume reduction in PD patients which 

could have influenced NM measurements, the MBF was calculated for each group. As 

expected, the midbrain volume was similar between the groups and the calculated MBF 

showed no correlation with NM area depletion, confirming that individual midbrain 

volume does not explain the reduction of NM in PD [12]. 
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Concerning the CR assessment, although a statistically significant difference was 

observed when comparing PD patients to controls, and a there was a tendency for CR 

decrease with disease progression, a small and non-statistically significant increment in 

CR was observed for the LSPD group compared to the 2-5 year PD group. Even if 

LSPD patients had a clearly worse clinical condition and longer disease duration when 

compared to 2-5 year PD patients, they were taking a significantly higher levodopa 

dose. Dopamine and dopamine agonists in standard dosages do not markedly affect DaT 

binding. A recent study found a correlation of the CR of the SNc and LC with DAT 

binding values [33]. Interaction between NM-SN signal and dopaminergic therapy is 

currently unknown but its influence cannot be excluded.  

The pattern of pigmented neuron loss of the SN follows an opposite trend comparing 

PD patients with normal ageing to that observed for CR, with a greatest neuronal loss in 

PD (45% loss in the first decade), principally affecting the ventro-lateral part of the SN 

which is relatively spared in controls [3]. Accordingly, comparing healthy subjects with 

PD patients, we found a significant reduction of CR only in the lateral SN part. Those 

data suggest that CRl could be more appropriate than CRi in differentiating PD patients 

from healthy subjects. A few other studies on NM-CR in PD patients have reported 

heterogeneous results. Indeed, Ohtsuka and colleagues reported a NM-CR diminishing 

in the lateral-central part of SNc and LC in early (HY stage 1-2) and advanced (HY 

stage 3-5, during MED OFF) PD patients, compared to controls, but equally observed 

no difference between early and advanced patients, which is consistent to results from 

Schwartz and colleagues [15], however, no LEDDs were reported in either paper [17]. 

Conversely, Matsuura and colleagues reported a CR reduction during one-year follow-

up observation with a correlation between CR values and disease duration, in spite of a 

LEDD increasing from about 380 mg to 630 mg [16]. Moreover, CR values did not 
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show a significant correlation with indicators of disease severity (HY), further 

confirming that its alterations are not clearly coupled with disease progression [16] 

thereby suggesting that other confounding factors should be identified. Myoshi and 

colleagues found a stage-dependent CR reduction in the medial part of SNc, comparing 

1-2 HY PD patients with 3-5 HY ones [34]. Taken as a whole, even if CR of SNc 

should give a measure of the density of melanized neurons, its relationship with disease 

progression in PD remains to be clarified. Finally a greater signal attenuation on NM 

imaging has been found in the LC when compared to SNc among PD patients [7, 17], 

though no difference between early and advanced PD patients were found even in the 

CR of the LC [7, 17].  

A potential source of signal variability is the inhomogeneity in the B1 field, particularly 

relevant at 3.0T, which is known to affect image contrast. This effect should be 

accounted for in future studies, performing bias field correction prior to CR evaluation 

[35]. Future work should include assessing the variability in measured signal intensity 

and estimated NM-area associated to the acquisition and segmentation procedures. To 

assess the former, the acquisition procedure should be repeated after patient 

repositioning. 

Several neuroimaging techniques, such as [18F]fluorodopapositron emission 

tomography (PET), [11C]dihydrotetrabenazinePET, [123I]beta-carbomethoxy-3beta-(4-

iodophenyl) tropane single photon emission CT (DAT-SPECT), and 

[18F]fluorodeoxyglucose PET, have been proposed as markers for nigral abnormalities, 

disease progression or clinical characteristics for PD.[36, 37] For instance, longitudinal 

studies have shown an annual rate of reduction in striatal DAT uptake of 6–13% in PD 

patients [38, 39]. However, these examinations are invasive, expensive, and there is still 

uncertainty on whether there is an interaction between results and therapeutic 
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intervention outcomes. For this reason, these neuroimaging techniques are not 

commonly used for routine diagnosis or follow-up of PD patients. Moreover, a very 

recent study has shown a correlation between striatal DAT density, as measured by 

DAT-SPECT, and SN-NM volume loss [33]. On the other hand, transcranial ultrasound 

has also been shown to detect increased echogenicity in the SN in PD as an indirect 

measure of neuronal loss [40], but this technique is limited by the requirements of a 

good temporal bone window and its ability in tracking disease progression is still 

unclear. Recently the loss of the “swallow tail” in the dorsolateral SN as observed at 

high resolution 3T – SWI MRI has been proposed as an in vivo diagnostic biomarker 

for nigral degeneration in PD [14]. However even if such a radiological assessment 

yielded a high diagnostic accuracy (sensitivity 100%, specificity 95%), no longitudinal 

studies have investigated its modification with disease progression.  

Our study has several limitations namely the small number of patients in each group and 

the cross-sectional nature with no longitudinal follow-up. On the other hand, our results 

clearly show a significant NM signal area reduction in PD patients compared to controls 

and a tendency for an NM area decrease along with disease progression. These findings 

are consistent with previous reports and validate the consistency of our results. Due to 

the small number of patients we were not able to investigate the age-related effect on 

NM area reduction throughout other statistical techniques (stratification nor regression 

model). However, no correlation was found between age and area, suggesting a more 

probable role of disease stage on NM area reduction. NM-MRI has also several 

technical characteristics that have to be considered when evaluating the feasibility of 

performing related imaging studies. It requires a long acquisition time, and the images 

suffer from relatively low spatial resolution, in-plane signal inhomogeneity and not all 

image analysis processes are completely automated, although few operator-dependent 



18 
 

steps are required. Moreover, motion artifacts during image acquisition and partial 

volume effects may deteriorate the quantitative nature of the analyses. Nevertheless, we 

succeeded in performing MRI on all subjects without problems, obtaining good quality 

images and semi-automated analysis was possible for all patients. Finally there have 

been, so far, no reproducibility studies of NM-sensitive MRI. However, there have been 

up to now several studies using this specific sequence with different equipment and the 

obtained results are similar in terms of the identification of SN changes in PD 

patients[15, 25], which is strongly supporting sequence reliability. 

 

Conclusions 

In the present study, with semi-automated MRI measures, we detected a stage-

dependent progressive decrease in the SN-NM area of PD patients. A marked SN-NM 

area decrease occurred in parallel with other markers of disease severity. Our findings 

suggest that NM-sensitive MRI could be used as a potential biomarker for nigral 

degeneration and disease progression in PD patients. Furthermore, to the best of our 

knowledge, this is the first study that observed SN-NM area modifications in a sample 

of LSPD patients, allowing an assessment of the modifications of NM signal in very late 

disease stage. CR values, although showing a tendency for a decrease with disease 

progression, presented a slight, albeit not significant, increase in the LSPD group; its 

interaction with therapeutic intervention and its modifications with disease progression 

needs further investigation.  

Further longitudinal studies on a larger population and the use of consensus acquisition 

and analysis protocols are warranted in order to replicate our results, verifying if SN-
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NM area can measure PD patients’ progression and if it could be considered as a disease 

progression imaging biomarker in clinical trials.  
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TABLE 

 Healthy 
subjects 

De novo PD 2-5 year PD LSPD P value 

Number 
(female/male) 

10 (4/6) 12 (7/5)  9 (2/7) 13 (7/6) 0.3 

Age, yrs 60 [55-69.2] 62.5 [52.5 – 
73.7 ] 

66 [63.5 – 71.2] 78 [68.5-81.5] a, f: 1; b: 0.8; c: 
0.001; d: 0.003; e: 
0.08; 

HY NA 2 2 4 d - e: <0.001 
LEDD NA 0 480 [325-810] 1040 [725-1325] e <0.01  
MDS-UPDRS 
part II 

NA 6.2 [3.5 – 
10.6] 

10.1 [1.7 – 12.8] 36 [30-40.5] d-e: <0.001; f: 0.1 

MDS-UPDRS 
part III 

NA 32.3 [28.7 – 
47]  

24.5 [13.4 – 43.1] 51 [41-53.5] f: 1;  e: 0.02; d: 0.09; 

Area (〖mm
〗^2 ) 
 
 

40.63 
[33.03-
55.64] 

27.7 [17.13-

360.4] 

22.65 [8.64- 46.84] 18.68 [12.50 – 
26.47] 

a: 0.002; b, c 
<0.001; d: 0.005; e: 
1; f: 0.8; 

CR 
Internal 
region 

1.16 [1.11 – 
1.19]  

1.15 [1.09 – 

1.21]  

1.12 [1.05 – 1.16]  1.12 [1.09 – 
1.18] 

0.06 

CR 
Lateral 
region 

1.10 [1.02 – 
1.12] 

1.06 [0.10 – 

1.13] 

1.03 [0.99 – 1.08] 1.04 [0.10 – 1.1] b: 0.008; a,c:0.1; 
d,e,f: 1; 

Table 1. Demographic, clinical and neuromelanin assessment data of patients and 

controls. Values are presented as median [IQR: 25th - 75th percentile] if not otherwise 

specified. NA: not available; LEDD: levodopa equivalent daily dose. CR: contrast 

ration. HY: Hoehn and Yahr rating scale; MDS-UPDRS: Movement disorders society 

Unified Parkinson’s disease Rating Scale Comparisons: a) controls versus de novo PD; 

b) controls versus 2-5 yrs PD; c) controls versus LSPD; d) de novo PD versus LSPD; e) 

2-5 yrs versus LSPD; f: de novo PD versus 2-5 yrs PD. Statistical significant results are 

in bold characters. 
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FIGURES 

 

Figure 1. Representative CR assessment by means of circular regions of interest (ROIs) 

on an NM-sensitive T1-weighted MRI. CCr: crus cerebri right; CCL: crus cerebri left; 

SNiL: substantia nigra, left internal region; SNlL: substantia nigra, left lateral region; 

SNiR: substantia nigra, right internal region; SNlR: substantia nigra, right lateral region. 

 

 

Figure 2. Neuromelanin (NM) area selection on NM-sensitive MRI of the SN of a 

healthy control (a), a de novo PD patient (b) and a LSPD patient; 

 



27 
 

 

Figure 3. Median area values of the SN high intensity region on NM-sensitive MRI in 

de novo PD patients, 2-5 year PD patients, LSPD patients and controls.  
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Figure 4. Receiver Operator Characteristics (ROC) curves of the NM area for: a) 

differentiating between de novo PD versus 2-5 year PD patients (A); b) de novo PD 



29 
 

versus LSPD patients (B); c) 2-5 year PD versus LSPD patients (C); d) PD versus 

controls;  

 

 

Figure 5. CR values in in de novo PD patients, 2-5 year PD patients, LSPD patients and 

controls for the SN internal region (A) and lateral region (B).  
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