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SUBSTANTIAL CONSTRUCTIVE INDUCTION
USING LAYERED INFORMATION COMPRESSION:
TRACTABLE FEATURE FORMATION IN SEARCH

This paper addresses a problem of practical inductive inference which is more difficult than any
comparable work in Al. The subject of the present research is a hard problem of new terms, a
task of realistic constructive induction: mechanized feature formation from data represented in
elementary form. A feature, attribute, or property such as “piece advantage’ in checkers is much
more abstract than an elementary descriptor or primitive such as contents of a checkerboard
square. Features have often been used in evaluation functions; primitives are usually too detailed
for this. To create higher level features from primitives (i.e. to restructure data), a new form of
clustering is used which involves layering of knowledge and invariance of utsisty (i.e. usefulness in
attaining a goal). The scheme, which is both model- and data-driven, requires almost no back-
ground, domain-specific knowledge, but rather constructs it. The method achieves considerable
generality with superior noise management and low computational complexity. Although the
domains addressed are difficult, initial experimental results are encouraging.

1. INTRODUCTION

A fundamental problem in Al is the automation of inductive inference [3,16,25].! Induction can
be described as generalization from particular cases [8, 18], as learning categorizations from exam-
ples or observation [16,19,21], as intelligent compression of massive data [25,32,33], or as discov-
ering regular, coherent characterizations of cases or events [16,2425].2 Whatever the interpreta-
tion, induction begins either with events or with partially formed groupings, and creates one or
more classes. These meaningful sets are also called categories or concepts. They are usually
expressed concisely using some descriptive language such as predicate logic [2,16]. A concise
representation of knowledge is imperative for reasons of space and time efficiency; in practical
application detailed information is simply too expensive either to store or to acquire [8,25].

While mechanized induction is crucial,® the problem is inherently difficult [t,6,32]. This can

1. The problem of induction is also a basic study outside of Al. It has occupied scholars in philosophy
[19], psychology |14, 28|, pattern recognition [2,3,31,33|, and other fields [32]. An increasingly prevalent at-
titude is that the same basic principles underlie both machine and human induction {(and other learning)
[15,16]. However, no theory has yet emerged which can explain human effectiveness and efficiency.

2. Formally, given a set S of individual events, induction is the inference of a larger class T, such that
S CT. S and T may be specified by eztension (as an exhaustive list of events) or by intention (as a combi-
nation of properties to be satisfied for membership) [32,33]. Often the original set S is given by extension
and the hypothesis T by intention. Since T is a generalization it may not be true; associated with T is its
credibility, the estimated veracity of the induction.

3. In an expert system, computer generalization allows mechanized knowledge acquisition [16,25],
which may reduce costs. Present expert systems are prone to unexpected error, whereas induction would
increase reliability and obviate maintenance. Moreover, even in its primitive state, automated induction
has outperformed knowledge engineering approaches [18].



be explained in various ways, all involving the fact that the end product of induction is one or
more purposeful classes. In general, very few of many hypothetical categorizations are plausible,
useful, or sensible, i.e. credible. A credible hypothesis may be sought in a space of category
descriptions. In this view of the inductive process, search is conducted through a set of expres-
sions which are systematically related to one another to facilitate their explicit formation (such
expressions are otherwise only implicit, because of their inmense number) [2,6]. In this search
formalization, exploration of plausible hypotheses must cope with exponential growth of their
explicit representations. Another view of the inductive problem involves classification [32,33].
Here the number of ways of combining events into categories is similarly extreme. This aspect of
induction may be important because the number of classifications may be finite in some cases
when the number of descriptions is not, and thus it may be possible to ascertain properties of the
domain and of induction algorithms only if the classification model is used. The classification
view of induction is illustrated in Fig.1. A third way of analyzing the difficulty of induction con-
siders the quantitative problem as a qualitative one {16,19]. Classification often requires restruc-
turing of data; events must be reorganized by transforming description variables. This means a
change of knowledge representation (constructive induction, the problem of new terms), which is
particularly difficult to automate [8,16,25]. Fig.1 compares constructive induction with the
simpler selective induction which needs no reorganization.

To order data, an expressive language such as predicate logic is required, but there are
tradeofls between expressiveness and efficiency (at least with current models). Greater expressive
power causes a worse combinatorial explosion in search. Given any language of even moderate
power, the number of possible candidates is immense, while the number of credible hypotheses is
small [6,25].

One approach to this problem is to limit candidate expressions by imposing constraints
[16,25,34). These constraints may take various forms. A straightforward tactic is simply to limit
the description language without confining its power too much. For example, many methods per-
mit conjunctions but not disjunctions [7]. Another way of restricting candidate descriptions is to
use some criterion to narrow search. Examples of criteria include “simplicity”, quality of “fit” to
the data [16,19], and “utility divergence” related to a goal in task performance [23,24,25]. Con-
straints may include some kind of invariance [8]. In the author’s scheme the utility divergence
criterion is the “dual” of utility similarity, which is a relaxed form of invariance [23,25]. Overall,
constraining search for abstract knowledge has seen only limited success in terms of efficiency,
effectiveness, and extensibility [7,15,34].

Generalization algorithms have been designed either for selective induction
[6,7,16,21,23,30] or for quite simple constructive induction {11,16]. The true nature of this Al
work has sometimes been obscure because little attention has been given to the usual methods of
science: delineation of abstract phenomena, detection of relevant variables, measurement of pre-
cise relationships, and development of guiding principles. Unified views of inductive systems are
scarce (though there are [8,7,16,25]). Furthermore, Al research often ignores earlier germane
results, including [2,32]. Consequently no standard exists for answering important questions such
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as: How difficult is the inductive task being studied? How much knowledge is acquired auto-

nomously, versus the amount given by the user? Similar questions have recently been considered
elsewhere [12,27].

While the current state of induction in Al is understandable (the field being new and
difficult), the time may have come for a more rigorous approach. (See [5,13,16,27] for similar
sentiments.) In keeping with this goal, the present author has begun to pursue a means for com-
paring inductive tasks and systems. Based on [32,33], this involves a quantification of inductive
difficulty, both for task domains and for learning systems. This attempt began in [24,25] and
continues in [28].

The idea is simple: since induction creates a class T from a set of events S, the difficulty of
the generalization task depends on the nature of the information compression from cases S to

concept T.* First, the more cases T must cover, the harder it is to describe T accurately while
differentiating S from negative instances of the concept (see the approximation of conceptual
knowledge as amount of information compression in [24,25]). Secondly, if the attributes describ-
ing S do not support straightforward selective induction but instead must be redefined for concise
expression of the class T (i.e. if constructive induction is necessary -- see Fig.1), then inductive
difficulty increases with the degree of reconstruction required (see the quantification of srregular-
ity in [26]). When examined in this light, many systems (such as [11,18]) perform little mechan-
ized induction, compared with human capability. In these systems the total number of possible
generalizations is confined to be relatively small from the outset (see [26] for an analysis).

In contrast, the current research attempts a very difficult task. Not only is the amount of
required information compression very large, but, more important, a large degree of constructive
induction is needed. In the proposed system little domain-specific guidance is provided by the
user or program. This scheme is conceptually compact and appears tractable. It is related to a
system for selective induction (PLS1) which has produced unique results (e.g. efficient discovery of
locally optimal evaluation functions [23,25]). One aspect common to PLSI and the new system
PLS0 is the observation of a goal-oriented measure, the utility. The utility divergence, partly a
function of “features” of events, and partly based on data patterns, is the criterion for induction.
When this is used for categorization (conceptual clustering}, the number of resulting knowledge
structures is minimized [23,25]. The algorithm automatically produces an effect similar to a cri-
terion using “similarity” and “fit” [16,25]; moreover this processing is inherently efficient. Still
another advantage of the scheme is that it has been incremental since its inception.

PLSO implements a new form of constructive induction unlike other systems in important
respects: although the inductive difficulty is great, little background knowledge is given, the
language of concept expression is quite general, the algorithms have low computational complex-
ity, and the approach appears extensible. These claims are elaborated in the following sections.

4. This is a simplification. More than one class T may be involved, and the set of events S may al
ready be partially formed into categories. For present purposes these details may be ignored without
affecting the essence of inductive difficulty.
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2. INDUCTIVE DIFFICULTY: AN EXAMPLE IN HEURISTIC PROBLEM SOLVING

An example of a product of induction is the concept pasr adjacency: two diagonally juxtaposed,
friendly men in checkers (Fig.2). In the description of such a concept, certain spatial patterns are
essential {(adjacency) while other aspects are immaterial {location of the pattern and presence of
extraneous pieces). Other “useful” concepts in checkers are piece advantage, mobility, center
control, etc. These are useful because they relate to winning, and the ultimate concept in a game
is the strength or utility for one player. (Similar utilities arise is other kinds of problems [25].)
Utility is the most abstract concept desired.

Utility is expressed using an evaluation function H which ranks states (here board
configurations).’ In the terminology of induction, states are elementary descriptions (events), and
the evaluation given by H is the most concise description. Pair adjacency and other properties
(piece advantage, etc.) become attributes or features to be combined in H. Feature values are
intermediate between events and utilities, as the following shows.

As it happens, a resolution of roughly 100 distinct utslsty classes is sufficient to differentiate
among moves (see the discussions in [24,25]). Fig.3 reflects this; here utility values lie in the
interval [0,1] and are given to two decimal places. In contrast, an event (board configuration or
state) is a vector of 32 primitives indicating the contents of each permissible square (black king,
black man, vacant, white man, white king; or -2,-1,0,1,2), and there are roughly 10 20 legal
states. Full inductive learning would require the assignment of each of these configurations to its
proper utility class, for an average of about 1020/ 100 = 10!8 in each class. In terms of primitives,
a (logic) description of such a class would be highly irregular, involving a combination of an
immense number of terms.
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Figure 1. Degrees of inductive difficulty. Positive (success) events occur in (e.g.) a two-
dimensional feature space. A simple case of classification (clustering) requires only a few boun-
daries to be inserted (left). This is selective induction. Complex cases may involve varying
degrees of heterogeneity, which logical reconstruction may unravel to provide concisely described
concepts. An example is the concept defined by variables f,and f, both being even (right). This
is constructive induction.

5. Using an evaluation function for search is fully general [9]. From this implicit knowledge an explicit
plan or strategy might be mechanically derived {10, 25].
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Figure 3. Levels of conceptual knowledge in search. Elementary data
represent fully detailed knowledge but no abstraction, and are massive
and infeasible to gather. At the other extreme, maximal induction
represents utility classes concisely (using predicate logic, although the
classes are simply enumerated here). Intermediate representations facili-
tate expression, e.g. features discriminate utility well and bear a smooth

relationship with it. In contrast, primitive measurements determine util-
ity irregularly.
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Figure 2. The three level information structure of PLSO. Shown is the
construction of a feature f which counts the number of diagonal juxta-
positions of two friendly pieces in checkers. This begins with a primitive
description of board configurations in terms of 32 primitives e, giving
the contents of individual squares. When subspaces such as ¢ ‘e and
€6 €9 are examined and corresponding utilities are CLUSTER‘gd 1(40‘(".

laid),.p:ftterns begin to emerge having common utilsty descriptors {UD’s
or primitive region s‘ets). A pattern class results (level 2). Eventually a
class may be generalized as a group of transformations (level 3).



Utility classes are much easier to describe in terms of predefined features. As Fig.3 illus-
trates, the number of classes at the feature level is very roughly 108 (this is the size of a typical
feature space [30]; see also [25]). Features exhibit a smooth relationship with utility, so the induc-

tion required is merely selective (Fig.1), and only a few simple descriptions are needed (Fig.4).5 In
contrast, not only are raw data descriptions (events, primitive vectors) more detailed (having 10%°
values as opposed to 10%), but also utility-primitive relationships are discontinuous, so the much
more difficult constructive induction is needed (see Figs.1 and 2).

This paper begins to explore a method for discovery of features from primitives, a problem
hardly addressed previously (but see [8,21,31]). Conceptually and experimentally, the approach
appears tractable and error resilient. A layered, ‘divide and conquer’ approach restricts complex-
ity, not just ‘generating and testing’ hypotheses, but rather constructing simple ones from previ-
ously validated components.

How can irregular utility-primitive relationships be captured and generalized? Induction is
infeasible without some guidance from regularities, assumed or else discovered [34]. One tech-
nique, curve fitting, is often inadequate even in selective induction with features the starting point
[4,8,25,30]. A more flexible approach is to record information in feature space cells [23,30]. An
important tool for inducing this knowledge autonomously is the method of clustering. Since it is
related to PLSO's more powerful clustering for constructive induction, clustering will first be out-
lined as used in PLS1's selective induction (see also [23,25]).
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Figure 4. A region set is a partition of feature space with associated information. Shown are
rectangles (concepts) r and their values (utilities) u for some purpose. A region can simply be
the pair {r,u). In PLS1 a feature space region set is used as an evaluation function. In PLSO a
primitive space region set is used to create features.

3. CLUSTERING, A TOOL FOR INDUCTIVE INFERENCE

Clustering classifies data so that cases or events are similar within any class, but dissimilar across
classes [1]. This technique has been used in successful learning systems by Michalski [16,18,19],
and by Rendell [22, 23], who independently introduced what Michalski calls conceptual clustering.
This takes into account not only independent variables (feature values), but also the environm=nt
(e.g. observed utslity).

6. Because most of the “knowledge” resides so regularly in the features, an evaluation function can
often be a linear combination of them. See [25].
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Clustering has several desirable properties. Within ascribed boundaries of a class, missing
data presumably share characteristics of their neighbors, so clustering can be predictive (see
Figs.1a and 3). Once a class is formed, its determining data may be dismissed, so storage and
computation may be economical. If statistics is employed, susceptibility to error may be low.
Further, the structure used for clustering may concisely describe a concept that emerges automat-
ically as information is compressed [25], ¢f [21]. As an example of all these characteristics, con-
sider the leftmost rectangle of Fig.4. Because of the imposed rectangular shape, the description
of this “concept” is simple and easily stored: (0 < f, = 4) N (0 = f, = 2). Moreover the associ-
ated utility u = 0.2 may have come from many data: out of perhaps 100 events observed in this
rectangle, 20 of them may have been “successful”. If one or a few observations were in error, the
value of u == 20 /100 = 0.2 would still be close to the “true” utility. As long as the utility does
not vary too much within the rectangle’'s boundaries (a case of selective induction), u may relate
to any enclosed point, observed or unobserved. As an added benefit, u may be more accurate
because is has been measured over many “similar” events. This important coincidence of infor-
mation compression, concept formation, and accuracy improvement may be called mutual data
support [25].

Clustering is central in the family of probabilistic learning systems (PLS) [23,24,25], in which
utility (probability of usefulness) is the dependent variable and feature values are independent
variables. In PLS, the utility u is obtained by counting the number g of “good” states (events)
contributing to solution of a problem or win in a game (or similar success measure in another
domain), divided by the total number t of observed events. PLS1 clusters utility, thereby associ-
ating state descriptions of equivalent quality. The cluster or region R is a triple (r, u, €), feature
space volume r having utility u with error € (this codes the interval [u/e, ue]). Because utility
bears a smooth relationship to typical features, clustering may profitably be restricted as a parti-
tion of feature space, the region set (this is selective induction; see Figs.1a and 3). This
knowledge structure accumulates information incrementally, regions gradually being resolved into
smaller units just adequate to express current knowledge (each region representing the worth u of
cell r).” Characteristics of regions (e.g. rectangle size and shape) are determined by data, so a
region set remains small, consistent with known information. Hence computation is inexpensive.
It is also more autonomous than Samuel’s signature table method [30] since no previous grouping
of features is required (more of the inductive difficulty is handled by PLS). Other benefits include
inherent insensitivity to noise (like [30]), and efficient convergence to locally optimal evaluation
functions (a unique result -- see (23, 25]).

To accomplish this inference the PLS1 algorithm CLUSTER [23, 25] uses splitting [1]. A region
R is refined when utility data are found to diverge within it. The criterion for splitting involves a
dissimilarity (distance) measure d. If u; and u, are the two utilities for a tentative dichotomy,
and €, and e, their errors, then d = [logu, - logu,| -log(e,€;). This distance is computed for all
boundary insertions parallel to any feature space axis. If the largest d is positive, the

7. Splitting cells is a specialization rule. Generalization 1s also involved in PLS1; conditions or features
are dropped. Reformulation takes place in PLS2; rectangular partitions are redrawn. See [25].
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corresponding split is retained. The process repeated until additional refinement is unwarranted
by the data (until d = 0). Notice that larger d means more assuredly dissimilar regions. If the
values of d are summed for successive permanent splits of R, the result is a measure of reliability
{credibility) of the complete clustering operation, the discrimination assurance D. One factor
affecting the error € (and hence D) is sample size N (number of statss); D improves as N increases.

As an example, consider Fig.4, and suppose that the two leftmost rectangles resulted from
the larger one (0 < f, <= 8) N (0 = f, =< 2). Assume that the sample size N in each new rectan-
gle was 100, and that the error € is the logarithm of 1 + 1 /m Then the total discrimination
assurance D = d = [log[20/100] -log[1/100]] -log[(1.1)(1.1)] = -1.6 -4.8 -0.2 = 2.8. If the
sample size were 10, D would be 2.5 (still a high credibility).

While very useful for creating an evaluation function from typical features {23, 25], CLUSTER
is inadequate for manipulating primitives, since their utility relationships are so disorderly (i.e.
constructive induction is required -- see Fig.1). Nevertheless, CLUSTER forms the basis for a more
powerful algorithm in the feature formation system PLSO.

4. LAYERED KNOWLEDGE: STRUCTURES FOR COMPLEX CLUSTERING

Automatic construction of an evaluation function from features is difficult [23,25,30], yet often a
small part of the whole inductive problem. The main part, formation of features from primitives,
should perhaps be accomplished in steps, since gradual information compression is easier [33]. In
PLSO, feature creation is automated using three stages. Each uses a characteristic knowledge
structure which progressively generalizes the level below; each stage imposes constraints, reduces
complexity, extracts meaning, and increases regularity. The basis for generalization at each level
is utility similarity in substructures of problem states (a relaxed form of invariance).

To illustrate the knowledge structures, their relationships, and their conformation into
features, consider the example of Fig.2. Here f is the number of instances of diagonal juxtaposi-
tions of two men in checkers (some degree of insurance against being jumped). We shall follow
the hypothetical generation of f at each of the three knowledge levels. Linearly index the thirty-
two elementary measures e; as is standard in checkers. Suppose e;(B)=0 means board B has no
piece currently occupying position i, while e;(B)=k indicates the presence of a man if k=1, or of
a king if k=2 (with corresponding negative values if the piece is the opponent’s). Then f would
be the number of cases in which e, > 0, e; >0, for “diagonally adjacent” i,j.

Creation of f requires the discovery that the condition (e; > 0 and e; > 0) is similarly good for
these i,j. For example the utility of simultaneously positive values of e ;and e, is about equal to
the utility of the same condition on e,;and e, (see Fig.2). A prerequisite for mechanizing this
inference is some language to express utility in the two dimensional subspace determined by e;
and e j» separate from any other coordinate e} . To permit this structuring, knowledge level 1
incorporates projections of the n-dimensional primitive space (here n=232): a subspace specifier
(SS) is a string €; €i,-Cig of length s n. Our illustrative example f can be expressed using a uni-
form combination of S5's (s==2). Paired with each SS € €€ is its utslity descriptor (UD), a

Ig
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region set expressing utility relationships in this primitive subspace. An SS together with its UD
is a primstive pattern. Level 1 of Fig.2 shows two primitive patterns, one for the subspace
specifier e g€, and the other for the SS e ge ;. Since the two subspaces represent identical pat-
terns, one just a translation of the other, their UD’s are somewhat alike.

The purpose of knowledge level 1 is to compress utility relationships into a concise form
(utility descriptors which are primitive region sets) and to distinguish striking aspects of states
(primitive subspace specifiers). Importantly, this compaction allows retention of just the meaning-
ful information, so wasted space and time are minimized.

Knowledge level 2 facilitates search for regular utility patterns; elements exhibiting similar
behavior are merged, eventually to produce a sensible feature. Regularities are recorded in a pat-
tern class, a union of primitive patterns, i.e. a set of SS’s with a common UD (Fig.2). In our
example, SS’s would arise consisting of two adjacent coordinates, such as e qe,,, €,0e,5 and e,.e,.
These would be placed in a distinctive pattern class because their individual UD’s are similar and
can be combined (details are given later). This category would indicate indistinguishable utility
behavior of each component SS and also nonseparability of e,,e,, into single coordinates e,, and
e,,, etc.; i.e. the primitives are meaningful as pairs.

The overall purpose of knowledge level 2 is to unify similar forms (SS's) as functionally
equivalent substructures of events (problem states), i.e. to cluster SS’s whose associated utility
descriptors agree when superimposed. This correspondence of UD’s strengthens knowledge about
primitive-utility relationships, since more information is present in the union (mutual data sup-
port). These regularized pattern classes become prospective feature elements. Little information
is wasted since only the strong patterns survive or even appear.

Knowledge level 3 is the most advanced structure for feature formation. A level 2 pattern
class is augmented by a set of transformation operators which, when applied to primitive sub-
space specifiers in the class, reproduce extant members and fill in “missing” SS's. Operators are
selected which give the “best” closure in this induction of the pattern group. The feature f
requires translation and rotation (of 90°). Several pairs like e qe,,, etc., might be needed for
confidence in the general transformation, which induces a group of 56 primitive patterns.

Summarizing: At the lowest knowledge level, data are CLUSTERed to distinguish utility pat-
terns in primitive subspaces (SS's); discriminating primitives are identified and their utility rela-
tionships are condensed as utility descriptors (UD’s). At the second level, these results are conso-
lidated into sets of corresponding primitive subspaces having mutually similar utility patterns
(invariances). At the third knowledge level, individual primitive patterns of a given class are used
to induce a complete group: a general rule is discovered for transforming one member of the class
into another, and missing elements are inferred. Overall, this three level scheme develops a com-
plex clustering structure (instead of the simpler partition or tree normally used {1]}). As explained
below, utility invariances help to generate these compound structures incrementally and
efliciently. '
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5. REALISTIC CONSTRUCTIVE INDUCTION (FEATURE FORMATION)

This section outlines feature creation from the knowledge structures just described and considers
lower computational complexity resulting from their restriction.

Features are produced from pattern classes (knowledge level 2) or from pattern groups (level
3). In either case, the associated utility descriptor (UD) for the category provides information
about a formative feature f, defined thus: An event x to be assessed by f is first mapped into
primitive space, then for each SS € i, ¢ of the class, the utility given by the UD is summed.
For our illustrative feature f, a pattern class might include e je,,, €49, and e..e.s. Suppose (i)
e,o(x) = -1 (enemy piece), e,,(x) = O (clear square), while (ii) e,5(x) = e,4(x) = 1 and (iii) e,,(x)
= e,5(x) = 1 (all friendly pieces). Typical utilities given by the UD for (i) might be u=10.001,
but for (ii) and (iii), u=0.1 (Fig. 2, level 2). Then f(x) is the sum of these, or .201. Since juxta-
posed friendly men have higher utility, f becomes a measure of the “pair adjacency” for the entire
checker board (if f is formed from a pattern group), or from parts of the board (if only a pattern
class is known).® Thus, generation of a feature is straightforward. The main difficulty is efficient
creation of reasonable knowledge structures preceding this ultimate step.

Even using exhaustive search, knowledge acquisition at level 3 is relatively inexpensive for
current domains (although not generally [31]). Here we will focus on levels 1 and 2, which, com-
binatorially, are extremely complex. The number of possible subspace specifiers (SS's) is 23 for
checkers, and finding appropriate SS’s is only one step in the induction. However the problem
may be simplified.

In PLSO the explicit creation of an SS begins with straightforward primitive CLUSTER ing
which determines various ground values and structures (Dg, UD, etc. -- see Section 3). Since not
all variables differentiate utility in a practical (small) data set, this ground processing reduces the
effective dimensionality (by about two thirds in trial experiments). The remaining primitives are
active for current data. The fact that only some primitives are active accounts for the
phenomenon of useful information extraction in ground CLUSTERing; even though features are
confounded at the primitive level, partial patterns arise here in small data sets. Moreover, strong
patterns appear first.

Simple utility-primitive relationships are reinforced through comparison with other formative
patterns in events (i.e. with other components of the board). To discover meaningful patterns
among these substructures (i.e. among subspaces of primitive space), certain arrangements A of
variables from the active set S are considered. Let the size of S be n; each A is a relation [29]
over Sk, where kssn. For example, suppose S = {e,,eq,€,5,€,,,€,5} is the active set. Then
n=>5. For k=2, one A is {(e,,&5), (€10:€14); (€10:€15)}; (€2, €g) determines the SS eye, etc., and
A defines a superposition of primitive subspaces, i.e. a class of SS's (here the class is S§, =
{e.eq, €,08,4 €085}, a precursor of f).

8. A feature is tentative until enough support is found for its determinative pattern class. This sup-
port increases gradually as experience is gained (additional data result in more regions per UD and in more
patterns per class). Once defined, features are independently assessed and selected by PLS1 [23,25].
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Given a superposition A of active variables, CLUSTER (Section 3) is now run with overlaid
primitives treated as one. E.g., for SS, above, e, and e, would be identified. Because of this
equivalence, the data counts (Section 3) are effectively increased (by a factor roughly equal to the
number of superpositions -- it is patterns wisthin states -- subobjects -- that are counted). Since
larger counts imply lower errors, the discrimination assurance D is higher in cases where primitive
patterns coincide; i.e. when utilities match up in the overlaid dimensions and merged UD’s sup-
port each other (see Fig.4). If, instead, utility behavior differs, the mutual support is weaker, and
if misalignment is extreme, D is even lower than the ground value D; . The simple example Fig.5
shows three cases of superposition, in three tables. The leftmost is ground clustering (no overlay-
ing) with subspace specifier e,,e,,e,5. In the first row, (0,1,1) has a sample size t of only 5. In
the third row, (1,1,0) has t = 8. Note that in the former, e,; = 0, while in the latter, e,; = 0,
and in no other row is either variable zero. The center table shows identification of e, with e,g.
Because of this identification and in the light of the above discussion, the t values from the first
and third rows of the left table are summed in the first row of the center table, giving a sample
size of 13 for ey or e,, equal to zero (and e,, = 1). The other table entries are determined simi-
larly. As it happens, the resulting divergence in utility (i.e. g/t -- see Section 3) is strong in the
central table but practically nonexistent in the right one. Hence the right case has a low discrimi-
nation assurance D. However, since the numbers are larger there, D is higher in the center case
than in the ground case, so the superposition of e,, with e, is supported (these two variables are
“similar” in this context). This is small sample similarity, which has been verified in experiments.
When various superpositions are examined, certain of them are found to stand out, having high
D's in this way; these become parts of pattern classes. In summary, overlaid CLUSTERing extracts
utility commonalities in components of the event (board description), and thereby discovers and
strengthens patterns of meaningful structure.

€19 e)g
®0 1 % 9 % oy v 9 F ol, ®i¢ 9 °
0 1 1l 3 5 0 1 6 13 1] 1l 3 11
1 0 1 0 6 1 0 0 12 1 0 6 16
b 1l 0 3 8 1 1 6 13 1 1 3 1

Figure 5. Three tables showing simplified data for ground clustering (left) and for superimposed
clustering (center and right). The utility divergence (discrimination assurance D — see Section 3)
depends on (i) dissimilar utilities g/t where t is the sample size and g is the number of successes,
and (i) the size of t, which aflects error. Since t becomes larger with more superpositions of
primitive variables (e.g. center and right), utility relationships may thus be strengthened. The
central case is supported but the rightmost case is not. Hence e, and e,y are similar but e,
and e,, are not. Superposition allows emergence of meaningful structure in events. See Section
5.
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Without guidance, examining superpositions is extremely complex; the number of trials is
0(2[“nl), where n is the number of active primitives. However the value of n is reduced by screen-
ing inactive variables with ground CLUSTER ing. More important, trials need not be exhaustive,
but rather uniformly guided by general heuristics. Intrinsic bonds in primitive variables manifest
in poorer D's when elements of the combination are unduly superimposed. This discovery of
small sample dissimilarity -- e.g. of €4 and e, above and in Fig.5 -- disqualifies the pair of primi-
tives as part of any other trial superposition, which means that only pairs need be overlaid in
preliminary testing; the complexity of this is O(n2). After pairs of small sample simslar primi-
tives are formed (e.g. A, = {{e,g}.{e,¢}}, A, = {{e,,}.{e,o}}, etc.), CLUSTERing is subsequently
reapplied to merge pairs of similar primitives into larger sets (at this point overlays are still one-
dimensional). Hence, similar patterns emerge and cluster into mutually dissimilar sets. Finally,
general SS's are constructed by appropriate selection: for example if there are two dissimilar sets
S, = {ej0.€16,€5} and S,= {e,,e,4,¢5,55,€5) }, one SS class would be {e se,,, €55, €xnesg},
thus preserving primitive dissimilarity in distinct dimensions while identifying similar primitives
and thereby creating structural pattern classes.

These algorithms have been programmed and tested with the fifteen puzzle.’ The 15 primi-
tives used were city block distances of sndividual tiles from their home positions. (This gives a
10% information compression advantage compared with the 809% of high level features -- see
(25].) The first feature induced was the total distance score f; . Experiments show that discrimi-
nation assurance D is a good measure for trial superpositions. When data were gathered using
breadth-first search, f; was created and no other pattern classes formed. In contrast, after f
emerged to guide search, D values were less uniform in overlays, and other pattern classes arose.

To summarize: Feature formation is straightforward once appropriate knowledge structures
have been created. In limiting the huge quantity of possible structures [32], PLSO imposes few
artificial constraints (cf [7]). Rather, the data themselves help to simplify search: structural pat-
terns (primitive subspaces -- SS’s) and goal-directed information (utility relationships -- UD’s) are
preferentially combined, consistent with intrinsic bonds among primitive components, using a
credibility measure (discrimination assurance D) to assess candidate hypotheses (overlays). This
process creates a change of knowledge representation (to meaningful event components expressed
as classes and groups of patterns). PLSO is designed for any cases in which components of events
may be identified (whenever translations, rotations, etc., leave utility invariant). This applies to a
large class of problems since goal-direction and invariance (similarity of event components) are
usually inherent.

9. Other ideas have not yet been programmed. One involves comparison with predicted D’s assuming
perfect superposition (i.e. completely agreeing utility patterns). Still another heuristic involves guidance
from pattern classes already forming: since PLSO is incremental, current data may be compressed preferen-
tially to match extant primitive patterns and classes — by searching for supporting superpositions, e.g. those
having the same SS length as established classes.
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6. CONCLUSIONS

While uncompleted, PLSO is a general, substantial, and promising learning system for realistic
constructive induction. Its superior capability can be quantified (Section 2). When assessed
according to criteria for constructive induction [7], PLSO is appears solid. The three level
knowledge representation is adequate for domains considered and eztensible to others. The rules
of generalization are powerful, suited to problems not previously explorable. Heuristics are gen-
eral across domains. This stochastic scheme is insensitive to error. Finally, PLSO is efficient; it
effectively reduces computational complexity (e.g. from double exponential to polynomial in an
important part of the problem -- see Section 5).

To improve efficiency, PLSO feature creation uses a ‘divide and conquer’ scheme having
three stages, each of which builds from elements verified at the level below. Structures are gen-
erated, assessed, and improved so that the generate-and-test cycle of inductive inference is mean-
ingfully constrained. The basis for generalization is classification of utility patterns; invariance of
utility relationships is used to extract regularities under transformation of primitives (basic
descriptions). A new form of clustering allows the necessary structuring and change of knowledge
representation resulting in a system which is both model- and data-driven. The progressive struc-
turing relies on mutual data support during clustering of utilities and patterns; information is
simultaneously regularized and reinforced. Mutual data support is important, it is the simultane-
ous occurrence of concept formation, noise management, accuracy improvement, and complexity
reduction. '

The computational complexity of the generalization problem may be reducible from intract-
ably exponential to practically polynomial.
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