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A combination of climate events (e.g., low precipitation and high

temperatures) may cause a significant impact on the ecosystem

and society, although individual events involved may not be severe

extremes themselves. Analyzing historical changes in concurrent

climate extremes is critical to preparing for and mitigating the

negative effects of climatic change and variability. This study focuses

on the changes in concurrences of heatwaves and meteorological

droughts from 1960 to 2010. Despite an apparent hiatus in rising

temperature and no significant trend in droughts, we show a sub-

stantial increase in concurrent droughts and heatwaves across

most parts of the United States, and a statistically significant shift

in the distribution of concurrent extremes. Although commonly

used trend analysis methods do not show any trend in concurrent

droughts and heatwaves, a unique statistical approach discussed in

this study exhibits a statistically significant change in the distribu-

tion of the data.

climate change | drought | heatwave | compound climate extremes |
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Heatwaves cause severe damage to society and the environ-
ment (1), with impacts on human health, air quality, and

vegetation (2, 3). In 2003, for example, European countries
faced an unprecedented heatwave, which in turn caused un-
usually high ozone concentrations (3) and severe health prob-
lems, particularly in France, where 15,000 extra deaths occurred
(3−5). United Nations Environment Programme considers the
European heatwave the world’s most costly weather-related
disaster in 2003. Impacts were exacerbated because the region
was in a drought (6).
Heatwaves have a variety of direct, indirect, immediate, and

delayed impacts, including higher water loss via evapotranspi-
ration, lower yields of grains and other agricultural products (7),
increased energy consumption, a decrease in efficiency of power
plants (8), air pollution, and adverse effects on human health
(3, 6). Heatwaves have also contributed to an increase in the
duration, size, and intensity of wildfires, causing economic losses
and catastrophic environmental impacts (8).
Droughts also have pronounced impacts on society and the

environment, such as significant reductions in gross primary pro-
ductivity, leading to shortages in food production and increases
in global food prices (2). The annual economic damage caused
by droughts is estimated to be approximately $7 billion globally
(9), with potential impacts on livestock, transportation by river,
hydropower production, bioenergy, and energy consumption
(8, 10−12).
Extreme climatic events can occur simultaneously, exacerbat-

ing environmental and societal impacts. Environmental hazards
often result from a combination of climatic events (13, 14) over a
range of spatial and temporal scales (15, 16). A wildfire, for
example, may occur on a hot, dry, and windy day, although each
of these individual conditions may not necessarily be extreme by
themselves (16). In the Intergovernmental Panel on Climate
Change special report on managing the risks of extreme events
and disasters, the combination of multiple climate extreme events is
termed a compound event (14, 16). Most analyses of climate and
weather extremes typically tend to focus on a single climatic

condition; however, this univariate approach may underestimate the
effects of concurrent and compound extremes (16).
Sustained precipitation deficit in summer can be a contribu-

tory factor to hot summer days (17). Heatwaves reduce the total
energy transfer to the atmosphere, resulting in a decrease in
convective precipitation (7). This in turn causes a soil−precipitation
feedback loop that tends to extend or intensify drought conditions
(7). The interaction between precipitation and temperature has
been widely recognized in numerous studies (18, 19). Heatwaves
concurrent with droughts can intensify individual impacts of
heatwaves or drought on society, the environment, and the global
economy (19, 20). Studies suggest that changes in the relation-
ship between precipitation and temperature may be more im-
portant than the changes in each of the variables individually (16,
21). This study investigates changes in concurrent droughts and
heatwaves in the United States using several different statistical
techniques.
A heatwave is typically defined as a period of consecutive

extremely hot days (22, 23), such as five consecutive days with
temperature above the 90th percentile. Here, we use the 85th,
90th, and 95th percentiles of the warm season (May–October)
temperature as extreme thresholds, and three heatwave dura-
tions (3 d, 5 d, and 7 d). A 5-d heatwave with a 90th percentile
threshold is defined as five consecutive days with the maxi-
mum temperature exceeding the 90th percentile of the long-
term climatology for that month. In this study, meteorological
droughts are defined as precipitation deficits relative to the cli-
matology using the Standardized Precipitation Index (SPI) (24).
Throughout this study, a drought is defined as an event that leads
to SPI < −0.8 (approximately the 20th percentile precipitation).
We use daily temperature and monthly precipitation information
to identify historical droughts and heatwaves in the United States
(see Data).

Significance

Climatic extremes cause significant damage to the environment

and society, and can cause even more damage when multiple

extremes occur simultaneously. This study shows that although

there is no significant trend in meteorological drought, the

concurrence of meteorological droughts and heatwaves shows

statistically significant increases across the United States. We

show that the tail of the distribution of concurrent drought and

heatwave conditions has shifted toward more frequent and

extreme concurrent extremes. Our study outlines a statistical

approach for investigating continuous change in the cumulative

distribution functions of climatic extremes.
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Results

We evaluated the changes in concurrent droughts and heat-
waves during 1990–2010 relative to the baseline period 1960–
1980. Fig. 1 displays percent change in the occurrences of con-
current drought and heatwave events in each grid box (see also
Figs. S1 and S2). Here, the percent change is based on the dif-
ference in the number of events in 1990–2010 relative to 1960–
1980, divided by the total number of events. We present results
for different durations (3-, 5-, and 7-d heatwaves) and extreme
temperature thresholds (85th, 90th, and 95th percentiles). Fig. 1
shows that concurrences of all combinations of drought and
heatwave intensities and durations have increased substantially
in the south, southeast, and parts of the western United States,
and have decreased in parts of the Midwest and northern United
States. Notably, the longer and more severe (7-d 95th percentile)
drought and heatwave concurrences have increased more than
shorter, less severe concurrences (e.g., compare 7-d 95th per-
centile with the 3-d 85th percentile panels). This indicates that
longer heatwaves (i.e., 7 d) have become more frequent in 1990–
2010 compared with the shorter heatwaves (i.e., 3 d).
Investigating the empirical cumulative distribution function

(CDF) of the concurrent droughts and heatwaves reveals a
substantial change in extremes in 1990–2010 relative to 1960–
1980 (Fig. 2). The x axes represent the percent (%) of the con-
tiguous United States in concurrent drought and heatwave. The
y axes show the corresponding cumulative probability. In each
panel, the blue line is the CDF for the baseline period and the
red line represents the CDF for 1990–2010. The CDF is based on
data from the continental United States. As shown, for all in-
tensities and durations during 1990–2010, the upper tail of the
CDF has shifted to the right, indicating more extreme events in
1990–2010 relative to the baseline period (compare the red and
blue lines in Fig. 2). Notice that the shift is far more pronounced
in the more extreme 7-d 95th percentile drought and heatwave
concurrence compared with other combinations. The two-sample
Kolmogorov−Smirnov (KS) test (Methods) confirms that the
CDFs of the concurrent droughts and heatwaves in the second

period (1990−2010) are substantially different from those in the
baseline period (1960−1980) at 0.05 significance level (95%
confidence) for all heatwave durations and intensities except for
3-d 85th percentile heatwaves (Table 1).
Past studies focused on changes in drought trends report

conflicting results (9, 21, 25, 26). Here, we investigate the percent
of the continental United States in concurrent droughts and
heatwaves for different durations and intensities from 1960
through 2010 (Fig. 3; see also Fig. S3). For the 90th percentile
threshold, the percent of the country in drought and heatwave
can range between 6% (7-d heatwave) and 9.6% (3-d heatwave);
see the boxplots of the percent contiguous United States
(CONUS) in concurrent drought and heatwave for all dura-
tions and severities in Fig. S4. Although the CDFs clearly
indicate changes in concurrent droughts and heatwaves, the
commonly used Mann−Kendall (MK) trend test (see Methods)
does not show a statistically significant trend (95% confi-
dence) in the fraction of CONUS under concurrent drought
and heatwave (Table S1 provides the test statistics results). This
can be attributed to limitations of statistical trend tests discussed
in previous studies (27) or to lack of sensitive tools for change
detection.
Here, we explore an approach based on the Cramér–von

Mises change point detection test statistic (see Methods and
Supporting Information) to investigate changes in concurrent
droughts and heatwaves. We argue that this method is more
sensitive to potential changes in time series and is well suited to
investigate climate time series. This method, primarily used in
economics and finance, evaluates different periods of data and
determines statistically significant changes throughout time se-
ries. Fig. 4 shows the Cramér–von Mises statistics for drought
and heatwave concurrences during 1960–2010. The y axes in-
dicate a dimensionless measure of divergence between the em-
pirical distributions of data before and after any given year as a
continuous function (see Methods). For all plots, the maximum
divergence occurs between 1998 and 1999, indicating substantial
departure of the drought and heatwave CDFs before and after

Fig. 1. Percent (%) change in concurrent droughts and heatwaves during 1990–2010 relative to 1960–1980 for each grid box. The rows change in heatwave

severity (85th percentile, 90th percentile, and 95th percentile), and the columns change in heatwave duration (3 d, 5 d, and 7 d).
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the red line in Fig. 4. This information cannot be achieved from
the commonly used trend analysis method or distribution change
evaluation approaches.
Recent reports suggest an apparent hiatus or so-called pause

in global warming since 1999–2000 (28). Possible explanations
include a long-lasting solar energy output minimum, low strato-
spheric water vapor, an increase in early 21st century volcanic
activity, and a more frequent La Niña phase since the major El
Niño event of 1997–1998 (28). However, analyses show no pause
in the occurrence of hot extremes over land since 1997 (29), or
even in the mean global temperature (30). Rather, during the
hiatus, exceedances of 30 extreme warm days per year have in-
creased (29). The results in Figs. 2 and 4 indicate a statistically
significant (at the 0.05 significance level) change in concurrent
drought and heatwave events across many regions. Fig. 2 in-
dicates more extreme drought and heatwave concurrences in the
latter two decades. This is consistent with the increase in extreme
warm days during this period (29). However, this conclusion
cannot be reached using the commonly used statistical trend
analysis techniques (e.g., MK trend test) used in hydrology and
climate literature. Unlike the MK trend test, which investigates
monotonic changes in the ranks of variables over time, the
Cramér–von Mises test focuses on changes in the distributions of
subsamples of the data (Table S2 provides the test statistics re-
sults). Typically, climatologists evaluate a certain period against

a baseline. The Cramér–von Mises test is a flexible approach that
allows investigators to examine different subsamples (e.g., pro-
jected and baseline periods) for potential distributional changes.
The methodology outlined in this paper shows statistical changes
in extremes beyond those achieved with commonly used methods.

Data

Both precipitation and temperature data sets are from the ob-
servation-based forcings developed for the North American
Land Data Assimilation System Variable Infiltration Capacity
simulations over CONUS (31, 32). Daily temperature and monthly
precipitation data with a spatial resolution of 1/8° are used for
detecting droughts and heatwaves (see Supporting Information
for more information on the data).

Methods

Here, the two-sample KS test assesses differences between the CDFs of the

concurrent drought and heatwave events. KS is a nonparametric test that can

evaluate two distribution functions (two-sample) based on the distance

between their empirical distribution functions. The null hypothesis is that the

two distribution functions are drawn from the same distribution at a certain

significance level (here, α = 0.05). We use the two-sample KS test to compare

different types of droughts and heatwaves (e.g., 3-d 85th percentile, 5-d

90th percentile) in 1990–2010 relative to 1960–1980. The test indicates

whether the data from the two periods come from the same distribution at

a 0.05 significance level.

Fig. 2. The empirical CDF of drought and heatwave concurrences from 1960 to 1980 (blue) and 1990 to 2010 (red). The x axes represent the percent (%) of

CONUS in concurrent drought and heatwave (see SI Data Sources and Processing for more information on percent of CONUS). The rows change in heatwave

severity (85th percentile, 90th percentile, and 95th percentile), and the columns change in heatwave duration (3 d, 5 d, and 7 d).
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The MK trend test (33) here assesses the presence of a statistically sig-

nificant (0.05 significance level) trend in the time series of the fraction

of CONUS in concurrent drought and heatwave. The MK test is a non-

parametric approach based on the empirical ranks of time series widely used

in hydrology and climatology.

We use a framework based on the Cramér–von Mises change point

detection to evaluate temporal changes in the concurrent drought and

heatwave events (34−37). This approach detects changes in the empir-

ical CDF by comparing two subsamples [F̂SðxÞ and F̂T ðxÞ] of the original

time series,

F̂SðxÞ=
1

τ

X

τ

i=1

IðXi ≤ xÞ

F̂T ðxÞ=
1

n− τ

X

n

i=τ+1

IðXi ≤ xÞ,

where F̂SðxÞ and F̂T ðxÞ are the empirical CDF of the two subsamples, I is the

indicator function, n denotes sample size, and the terms 1/τ and 1/(n - τ) are

adjustment factors for the length of each subsample. The test measures the

divergence between the empirical distributions as

Wτ,n =

Z

∞

−∞

�

�F̂S − F̂T
�

�

2
dFtðxÞ

where Wτ,n can be computed as the square of the mean distance between

the empirical distributions (37, 38),

Wτ,n =

X

n

i=1

�

�F̂SðXiÞ− F̂T ðXiÞ
�

�

2
.

Larger divergence values, W, indicate greater changes in the cumulative

distributions. Here, the null hypothesis is that there is no change in the data

over time and the two subsamples come from the same distribution. The null

hypothesis is rejected if at an unspecified point τ, F̂SðxÞ and F̂T ðxÞ come from

statistically different distributions. Because we do not have any prior in-

formation on the position of τ in the time series, the test involves computing

Wτ,n for all 1< τ<n (39). However, for different values of τ, the variance of

the two subsamples will be different. For this reason, the Wτ,n statistics are

adjusted so that both periods exhibit equal mean and variance for all values

of τ (39) (see Supporting Information for more). The methods in this study

Fig. 3. Percent (%) of CONUS in concurrent drought and heatwave from 1960 to 2010.

Table 1. Change in distribution functions between 1960–1980

and 1990–2010 based on the KS test

Drought and heatwave P value

3-d, 85th percentile 0.53090

5-d, 85th percentile ∼0

7-d, 85th percentile ∼0

3-d, 90th percentile ∼0

5-d, 90th percentile ∼0

7-d, 90th percentile ∼0

3-d, 95th percentile ∼0

5-d, 95th percentile ∼0

7-d, 95th percentile ∼0

Column 2 shows the corresponding P values, where P values smaller than

0.05 indicate the distribution functions are drawn from different distribu-

tions at a 0.05 significance level. Smaller P values represent higher confi-

dence in rejecting the null hypothesis that the distributions come from the

same distribution.
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should be applied to independent and identically distributed time series.

Supporting Information provides more information on the sampling ap-

proach and temporal autocorrelation of the data (see Fig. S5 and the

corresponding discussion).
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