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ABSTRACT
We consider the design of an open P2P live-video streaming
system. When designing a live video system that is both
open and P2P, the system must include mechanisms that
incentivize peers to contribute upload capacity. We advocate
an incentive principle for live P2P streaming: a peer’s video
quality is commensurate with its upload rate.

We propose Substream Trading, a new P2P streaming
design which not only enables differentiated video quality
commensurate with a peer’s upload contribution but can
also accommodate different video coding schemes, including
single-layer coding, layer coding, and multiple description
coding. Extensive trace-driven simulations show that sub-
stream trading has high efficiency, provides differentiated
service, low start-up latency, synergies among peers with
different Internet access rates, and protection against free-
riders.

1. INTRODUCTION
BitTorrent is a remarkably popular file-distribution tech-

nology, with millions of users sharing content in hundreds
of thousands of torrents on a daily basis. Fundamental to
BitTorrent’s success is its openness – the BitTorrent pro-
tocol is published in the Internet, and the source code of
the baseline implementation is made widely available. This
openness has enabled developers to create over 50 indepen-
dent BitTorrent client implementations [1], dozens of inde-
pendent tracker implementations [2], and a multitude of tor-
rent search sites. The openness of the protocol has further
fostered open discussions in both the online developer and
research communities, leading to further performance and
security improvements. It has also fostered innovations in
the broader BitTorrent ecosystem, including recent deploy-
ments of distributed trackers, using DHTs and gossiping, in
many popular BitTorrent clients.

A second key element in BitTorrent’s success is, of course,
its P2P design. Since BitTorrent peers assist in file distri-
bution, a file can be distributed to an unlimited number of
peers with modest initial seeding capacity.

But with an open P2P design, it becomes necessary to
incorporate an incentive mechanism to encourage peers to
contribute upload bandwidth. Without such an incentive
in an open protocol, clients can easily be written to free-
ride (that is download without uploading) or be configured
to upload at low rates. Bram Cohen, the inventor of the
original BitTorrent system, recognized the need of building
into the system a simple, but effective incentive mechanism
[5]. Fundamentally, BitTorrent’s incentive principle is as

follows: a peer will get the file faster if it contributes more
upload bandwidth to the torrent. This incentivizes users to
upgrade their ISP access and/or increase the maximum up-
load rates (typically configurable) in their BitTorrent clients.
BitTorrent provides this basic incentive using the celebrated
tit-for-tat algorithm [5], in which peers trade blocks of con-
tent with each other. (Although several recent studies have
shown that the tit-for-tat algorithm is not sufficient for pre-
venting free-riders or fully incentivizing users [12, 14, 19,
23], the algorithm has nevertheless been very successful in
practice.) Tit-for-tat effectively creates a differentiated ser-
vice at the application layer, providing high-speed upload-
ers with short download times and low-speed uploaders with
high download times.

In this paper, inspired by BitTorrent’s open and P2P
philosophies, we consider the design of an open P2P live-
video streaming system. Ideally, such a design would lead
to an open protocol and numerous independent client, seed,
and tracker implementations. Such a live P2P streaming
system would also allow arbitrary users to seed live video
channels – including live user-generated content – in much
the same way that BitTorrent allows arbitrary users to seed
files. Eventually, we expect much of the live content to em-
anate from handheld wireless devices, and may include such
diverse sources as professors’ lectures, Little League baseball
games, and political demonstrations.

Recently, several P2P live video systems have been suc-
cessfully deployed. They have reported phenomenal success
on their Web sites, claiming tens of thousands of simulta-
neous users in a single channel, with stream rates between
300 kbps to 1 Mbps. These systems include CoolStreaming
[32], PPLive [20, 9], PPStream [21], UUSee [25] and many
more. The success of these systems shows the potential of
broadcasting live video over P2P networks. However, all
of these systems are closed and proprietary: the protocols
are not published; independent client, seed, and tracker im-
plementations are not possible without reverse engineering;
there is no forum for discussion and criticism of the various
designs; and the companies fully determine what content is
distributed over their systems.

As with BitTorrent, when designing a live video system
that is both open and P2P, the system must include mech-
anisms that incentivize peers to contribute upload capacity.
But unlike BitTorrent, the incentive cannot be “download
the file faster” as there is no notion of faster downloads
in live streaming. We advocate a new incentive principle
for live P2P streaming, namely, peers that upload more see
higher quality video. Ideally, peers that free-ride will receive



at best poor quality; peers that upload at a high average
rate can receive maximal quality; and peers that upload at
more modest rates receive moderate quality. Implicit in this
incentive principle is that the system will make available dif-
ferent video qualities. With different video coding schemes,
video quality can be defined with different criteria.

In this paper we propose Substream Trading, a new
P2P streaming design which enables differentiated video qual-
ity that is commensurate with a peer’s upload contribution.
Importantly, the substream trading framework can accom-
modate different video coding schemes, e.g., single-layer cod-
ing, layer coding, and multiple description coding (MDC).
Moreover, the design provides a framework for an open P2P
live video standard. Substream trading has the following
key characteristics:

• Substream trading: The design uses a tit-for-tat mech-
anism based on substream trading. In the baseline
design, peers exchange substreams on an even parity
basis: if Alice gives Bob exactly n substreams, Bob will
reciprocate with exactly n substreams. If peers receive
more substreams and correspondingly more useful bits,
they can obtain a better video quality. Thus, the more
substreams a peer uploads the more substreams it re-
ceives and the better the quality. This is the basic
mechanism that incentivizes users to upload more to
obtain better video quality. Our final design also al-
lows for altruistic behavior, permitting Alice to over
reciprocate to Bob when she has spare upload capac-
ity.

• Mesh design: Peers self-organize into a mesh as a func-
tion of their available bandwidth and content. The
mesh overlay is robust and easy to manage in the
highly dynamic P2P environment.

• Substream rather than chunk focus: Peers notify, se-
lect, request and deliver video in basic content units
of substreams instead of chunks. As compared to a
chunk-based pull-scheme (as in PPLive), the substream
design achieves a smaller playback lag with less signal-
ing overhead.

• Flexibility in video coding: The design can accommo-
date different video coding schemes. With single-layer
video, the substreams can be generated by time divi-
sion of the encoded video; while with layer coding or
MDC, the substreams are the video layers or descrip-
tions, respectively.

To thoroughly investigate substream trading, we apply it
on a single-layer video system and a layered video system.
For both systems, the substream trading scheme can pro-
vide differentiated video quality and a high overall system
performance. In this paper, we make the following contri-
butions:

• We first make the simple, but critical observation that
an open P2P live streaming system needs an incen-
tive mechanism, and that the appropriate incentive for
streaming is not “download faster” but to get better
quality.

• We propose a new P2P streaming design, substream
trading, based on a dynamic mesh network (as opposed

to a tree design), and trading substreams (rather than
trading chunks). To our knowledge, this is the only
P2P live streaming framework that supports different
video coding schemes and explicitly addresses the in-
centive issue. The design can be used as a framework
for an open P2P live streaming system.

• We examine the possible integration of the proposed
substream trading scheme with different video coding
schemes: single-layer coding with and without simul-
cast, layer coding, and MDC.

• Using traces for peer dynamics from a real-world P2P
live streaming system, we evaluate the performance of
substream trading using both single-layer video and
layered video. We show that it is self-scaling, has high
efficiency, provides differentiated service, low start-up
latency, synergies among peers with different Internet
access rates, and protection against free-riders.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses our fundamental design decisions. Section 3
presents the design of the substream trading system. We
consider integration of the substream trading mechanism
with different video coding schemes in Section 4, and de-
lineate pros and cons of each. In Section 5, we evaluate the
performance of single-layer video and layered video systems
based on trace-driven simulations. We discuss related work
in Section 6 and conclude in Section 7.

2. FUNDAMENTAL DESIGN CHOICES
For a live P2P video distribution, there is a source (anal-

ogous to the initial seed in BitTorrent) and a group of peers
watching the video. We refer to the source and the group of
peers as a torrent. The source encodes and divides the cap-
tured video into chunks, and disseminates the video chunks
into the P2P torrent. Each peer receives chunks from the
source or from other peers (or from both the source and
peers). The video source may only have modest upstream
Internet access (perhaps less than 1 Mbps), using cable mo-
dem, DSL, Wi-Fi, or 3G wireless networks.

2.1 Tree or Mesh?
There is a debate in the literature on which architecture

(tree vs. mesh) is more suitable in P2P live streaming. With
a tree approach, peers are organized into a single tree or
multiple trees [4, 17, 3, 26]. The source pumps video chunks
through the trees. The tree structure can be optimized to
efficiently disseminate video chunks. However, performance
with trees can suffer from peer churn, and trees can be dif-
ficult to manage in a highly dynamic P2P environment.

With a mesh approach, peers self-organize into a mesh
as a function of their available bandwidth and content. If
there is an overlay link between two peers in the mesh, those
two peers are said to be partners. In a decentralized fashion,
peers form and update partnerships, and explicitly exchange
content availability information with their partners. Based
on this information, peers select what content to request
from their partners. Currently all of the large-scale indus-
trial deployments (PPLive, PPStream, UUSee, and so on)
use a mesh design. The most important feature of the mesh
approach is that the dynamic overlay is very robust to peer
churn, due to the loose relationship among peers. It has
further been reported that mesh overlay outperforms tree



or multiple tree from several perspectives [15]. We therefore
adopt a mesh overlay in our design.

2.2 Chunk or Substream?
With a mesh overlay, a key design consideration is what

is the basic content unit for notifying, selecting, requesting
and delivering. One widely adopted approach is to divide a
video into chunks, with each chunk consisting 1-4 seconds of
video. Such a chunk-based design reduces the dependency
of a peer on a particular partner: a peer can request a chunk
from any of its partners who has this chunk. This flexibility
further increases the robustness of a system to peer churn.
Additionally, it allows a peer to use its upload bandwidth
with fine granularity. A peer with low upload bandwidth
can serve a chunk to its partner, even though it may take
a relatively long time. However, this chunk-based design
has a playback lag and overhead trade-off [31, 11]. To re-
duce the playback lag, a peer has to send data availability
notifications frequently; otherwise, the lag will normally be
large.

Recently, substream-based approaches have been proposed
to mitigate this problem [31, 11]. In these proposals, the
video is first divided into multiple substreams by simply time
dividing a single layer video. For example, assume there
are totally S substreams, substream s will contain chunks s,
s+S, s+2S, ..., from the coded video chunk stream. A sup-
plier informs its partners of the substreams it has available.
A receiver then determines which substreams should be ob-
tained from which suppliers. When a supplier is assigned
to send a receiver a particular substream, it forwards any
received chunk belonging to this substream to the receiver
immediately, without explicit chunk request notifications.
This significantly reduces the playback lag. Additionally,
signaling overhead is reduced by batching the notifications
of chunks into substreams. As with a chunk-based mesh de-
sign, this design is robust to peer churn. The substreams can
be very thin so as to efficiently use the upload bandwidth
of peers. In many ways, the substream design provides the
best features of trees (which have small playback lags) and
chunk-based meshes (which are robust to high churn rates).
In this work, we adopt the substream-based mesh approach.

In [31, 11], the focus is on showing that a substream ap-
proach, where single-layer video is time-divided into sub-
streams, can provide superior overhead and lag performance
as compared with a chunk-based mesh approach. Incentives
and video coding are not considered in [31, 11]. Our con-
tribution is very different. With the ultimate goal of de-
signing a framework for an open P2P live streaming system,
we develop a tit-for-tat incentive scheme – substream trad-
ing – for a broad-class of substream systems, which include
single-layer video, layered video, and MDC. Using real-world
traces, we show that substream trading provides incentives
through differentiated service.

3. SYSTEM DESIGN
Our goal now is to design an open P2P live streaming

system in the context of a mesh-substream design. As dis-
cussed in the Introduction, for an open design, it is criti-
cal that there be an incentive to encourage peers to upload
substreams to other peers. In this section, we describe a de-
sign framework that not only provides the desired incentives,
but also has the flexibility to support a variety of substream
types.

3.1 Mesh Overlay with Substreams
The source encodes a video into S substreams, with the

rate of each substream denoted by r. The substreams can
be generated by time dividing a single-layer video, by layer
coding, by MDC or by some other schemes. Each substream
is further divided into chunks of ∆ seconds. At any given
instant of time, a peer participating in a torrent will receive
a subset of the S substreams from one or more other peers
in the torrent (including possibly the source); this same peer
will redistribute zero or more of the substreams it receives to
other peers. In order for a peer to request substreams from
other peers, it needs a mechanism for discovering other peers
in the torrent (a peer discovery service) and a mechanism for
determining which substreams these discovered peers have.
Figure 1 shows a simple mesh-substream system with one
source, two substreams, and four peers.
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Figure 1: A simple illustration of a mesh-substream
system.

As with BitTorrent, peer discovery can be provided by a
tracker, in which case the source and all peers participating
in the torrent register with the tracker, and discover other
peers in the torrent by querying the tracker. As currently
done by Azureus BitTorrent clients, peer discovery can also
be provided by a DHT, by gossiping peer lists, or by a combi-
nation of trackers, DHT and gossiping. The problem of peer
discovery is orthogonal to the problems considered here.

After a newly arriving peer P obtains a list of other peers
participating in a torrent from the peer discovery service,
it contacts peers on the list, searching for partners, with
whom peer P establishes overlay links. For two partners, it
is possible that (i) both serve substream(s) to each other;
(ii) only one serves substream(s) to the other; (iii) or neither
serves substream(s) to the other. Typically, a peer selects its
partners based on some policy, which is referred as a partner
selection problem.

After having found a sufficient number of partners (on
the order of the number of substreams), peer P selects sub-
streams from its partners and the partners sequentially push
the video chunks of their selected substreams to peer P. Peer
P requests “maps” from its partners periodically, indicating
what content they currently have. In BitTorrent, the maps
indicate the data chunks that a peer has available for shar-
ing. In our case, the maps indicate the substreams a peer
has. For peer P, each of its partners may have more than one
substream, and each substream may be available on more
than one partner. Given the partners and their substream
availabilities, a critical problem of peer P is therefore to de-
termine which substreams should be obtained from which
partners. We refer this problem as a substream selection
problem. If a particular substream is re-assigned to the same
partner, peer P will not send the request notification to that
partner, and the partner keeps forwarding the chunks from
the previously selected substream to peer P.

From time to time, peer P may have to drop partners



that do not have sufficient upload bandwidth or video con-
tent, based on some policy. This is referred as a partnership
maintenance problem. After peer P drops partners, it will
try to find replacement partners from the peer list. Note
that there are two time scales in this process. In the longer
time scale, peers modify their partners; at the shorter time
scale, with the set of partners fixed, peers select substreams
from their partners.

3.2 Substream Trading
The essence of our scheme is substream trading: two part-

ners exchange substreams with each other in a tit-for-tat
fashion. In pure tit-for-tat substream trading, peer P sends
n substreams to Q if and only if Q sends n different sub-
streams to P. One simple observation is that if all peers use
pure tit-for-tat, then each peer receives a number of sub-
streams that is exactly equal to the number of substreams
it uploads to other peers; thus, a peer with higher upload
contribution is more likely to trade more substreams and
eventually obtain better quality. But as we will soon see,
pure tit-for-tat is impractical and inflexible; we will need to
augment it with mechanisms that address a number of crit-
ical issues. In the following sections, we explore these issues
in detail.

Peer P and peer Q may trade only one substream (single
substream trading) or more than one substream (multiple
substream trading) with each other. Multiple substream
trading can be considered as a set of single substream trad-
ing. For example, if peer P trades two substreams with peer
Q, then for peer P, peer Q can be considered to be two vir-
tual partners, Q1 and Q2. P trades only one substream with
each of the two virtual partners. If the partnership between
P and one of the virtual partners breaks up, then peer P
and peer Q will simply reduce to the single substream trad-
ing. For this reason, in the following sections, we discuss the
proposed schemes based on single substream trading.

3.2.1 Partner selection
Recall that the video is encoded into S substreams at the

source. We denote the configured maximum upload rate of
peer P as bandwidth C, which varies from peer to peer. To
simplify notation, assume throughout that C is a multiple of
r. Thus, the peer is able to trade up to T = min(C/r, S) sub-
streams. When a peer is trading less than T substreams and
has spare bandwidth, it will search for additional partners
for trading. When peer P meets another peer Q that also
has spare bandwidth, the two peers should decide whether to
establish the partnership. These two peers can simply agree
on forming a partnership without a specific policy. However,
after forming the partnership, these two peers may not be
able to trade substreams properly. For example, in a lay-
ered video system, a high bandwidth peer cannot trade with
a low bandwidth peer for a high video layer.

To avoid establishing a partnership with an unsuitable
partner, peer P may have to pre-screen the candidates be-
fore forming the partnership. To this end, peer P can pre-
check the substream availability of the candidate peer Q, by
requesting the substream map from peer Q. Since substream
trading is a two-way process and both peer P and peer Q
have to make such a decision, they exchange their substream
maps for partner selection. With the substream maps from
peer Q and its existing partners, peer P can decide whether
peer Q can introduce additional substreams or not. This is

achieved by using a substream selection algorithm that will
be described in Section 3.3.

If both peer P and peer Q have at least one needed sub-
stream for each other, they will select each other as partners.
If not, they have to decide whether to form a partnership.
For peer P, if peer Q does not have any substream that peer
P needs currently, it does not necessarily mean that Q is
not a suitable partner of P. This is because peer Q may ob-
tain the needed substreams of P after a while, from its other
partners. There is a dilemma here. If they select each other
as partners, they cannot trade immediately; if they don’t
form a partnership and keep searching, it may be possible
for both of them to find partners for immediate trading, but
that is costly in terms of time and overhead. Thus, peer
P and peer Q should make a decision whether to form a
partnership, if they cannot trade substreams immediately.

We make the observation that a peer with fewer sub-
streams, and accordingly less ability for trading, has higher
motivation to form such a partnership. This is because a
peer with less substreams available may take a long time to
find a partner that needs its substreams and form an imme-
diate trading partnership. Following this philosophy, we pro-
pose a simple scheme, which we will use in our trace-driven
simulation analysis of substream trading. Assume that peer
P has sP substreams and peer Q has sQ substreams. In this
scheme, peer P (peer Q) agrees to form a partnership with
probability pP (pQ). If both peer P and peer Q agree on
forming a partnership, they will establish the partnership;
otherwise, they search for new peers. In this scheme, pX (X
represents P or Q) is simply given by:

pX = (
S − sX

S
)γ , (1)

where γ is a control parameter. Note that a newcomer with
sX = 0 always agrees on forming such a partnership, since
it does not have any substream to trade.

3.2.2 Partnership maintenance
After peer P and peer Q form a partnership, they request

substream maps and select substreams from each other. Af-
ter substream selection, it is possible that peer P and peer Q
enter into a non-trading relationship, i.e., not both partners
have the needed substreams by each other. In our design,
if only peer P has a substream that peer Q wants, peer P
will deliver it for free. This shares some similarities with
“optimistic unchoke” in BitTorrent, where a peer uploads
without requiring reciprocation. It addresses the situation
where a peer is willing to contribute to the system but does
not have any start-up content. If P and Q cannot transfer
from the non-trading relationship to a trading relationship
(i.e., both partners have the needed substreams available by
each other) within a time threshold Wn seconds, they will
break the partnership. Both peer P and peer Q periodically
request substream maps and re-select substreams from each
other.

For partners with a trading relationship, both of them
monitor the trading procedure with each other. We use
a double-sliding window approach to evaluate a partner’s
performance. With this approach, the peers count the num-
ber of downloaded chunks and correspondingly calculate the
download rates from their respective partners within each of
the two time sliding windows, with one being shorter than
the other. Denote the lengths of the sliding windows to be



Ws and Wl, where Ws < Wl. We denote the download rates
within the two sliding windows as rs and rl, respectively. If
a partner serves constantly, both rates rs and rl should be
equal to r. However, due to Internet jitter or a temporary
content deficiency, a partner may not be able to deliver with
a rate r constantly, especially over a short time scale. To
handle this, we introduce tolerance factors for both sliding
windows, and consider a partner to provide sufficiently good
service quality if rs ≥ α ∗ r and rl ≥ β ∗ r. The shorter win-
dow is used to detect a highly incapable or uncooperative
partner quickly. It typically needs a smaller tolerance fac-
tor α, e.g., α = 0.5. The larger window is used to detect
long-term bandwidth or content deficiency. Since time Wl

is long enough to smooth out Internet jitter, β should be
close to 1.0. If a peer detects that a partner cannot pass
the double-sliding window test, it will seek a replacement
partner.

3.3 Substream Selection

P1 P3

P2 P

(100,101,94) (101,94,100)

(95,102,95) (98,97,96)

(a)

P1 P3

P2 P

(1,1,0) (1,0,1)

(0,1,0)

(b)

Figure 2: (a)Substream maps; (b)Abstracted sub-
stream maps.

In our substream trading system, a peer should deter-
mine that which substreams should be obtained from which
partners. Before substream selection, the peer periodically
requests substream maps from all its partners. Figure 2(a)
shows the typical substream maps of peer P and its part-
ners P1, P2, and P3. As an example, the substream map
of P1 indicates that it has three substreams, and the se-
quence numbers of the last chunks from substreams 1, 2,
3 are 100, 101, 94, respectively. Assume that there is no
chunk loss during the transmission (e.g., by using the TCP
connections for chunk delivery, or by inserting sufficient FEC
chunks), the sequence number of the last chunk is sufficient
to indicate the chunk availability of a particular substream.
For P1, although it has three substreams available, only sub-
streams 1 and 2 can be pulled by peer P, since peer P already
has more chunks from substream 3 than P1. Thus, in Fig-
ure 2(b), only substreams 1 and 2 are indicated as available
in P1. Note that this automatically eliminates possible loops
while delivering a substream in a mesh network. We record
this processed data availability of partners in abstracted sub-
stream maps, as shown in Figure 2(b).

With the above definition, we can formulate the substream
selection problem as an optimization problem. Assume a
peer has N partners 1, . . . , N for requesting substreams. The
set of available substreams in partner n is defined as Sn. Let
xsn = 1 denote that substream s is received from partner n.
Since a partner can send at most one substream to a peer
(with the virtual partner definition), xsn is subject to the
following constraint:

∑

s∈Sn

xsn ≤ 1, n = 1, . . . , N.

Furthermore, since a substream only needs to be sent from
one partner, we have the following constraint as well:

∑

n

xsn ≤ 1, s = 1, . . . , S.

By substream selection, a peer tries to maximize the re-
ceived video quality. With different video coding schemes,
the importance of each substream could be different. For ex-
ample, with single-layer coding and MDC, the substreams
have equal importance, and the peer only needs to maxi-
mize the number of received substreams; while with layer
coding, the substreams have unequal importance, and the
peer needs to take into account the importance of differ-
ent substreams and maximize the received video quality. To
reflect the importance of substreams, we assign weights to
each substream, with a larger weight indicating a more im-
portant substream. With these weights, the optimal sub-
stream selection problem can be converted to maximizing
the weighted sum of all substreams as follows:

max

S∑

s=1

wsxsn

s.t
∑

s∈Sn

xsn ≤ 1, n = 1, . . . , N,

∑

n

xsn ≤ 1, s = 1, . . . , S, (2)

where ws denotes the weight of substream s. This is the
classical maximum weight matching problem in a bipartite
graph as shown in Figure 3, which can be solved with a
complexity of O(S3) [6]. We will give examples of an ap-
propriate assignment of weights for single-layer video and
layered video in Section 4.

Substream 1 Substream 2 Substream S

Partner 1 Partner 2 Partner N...

...

Figure 3: A bipartite graph representing the sub-
stream selection algorithm.

3.4 Altruistic Peers
A peer is altruistic at any given time if its aggregate up-

load rate is higher than its aggregate download rate. With
the presence of altruistic peers, bandwidth-deficient peers
can possibly receive video at rates higher than their contri-
butions. We do not force a peer to donate bandwidth. We
assume that a bandwidth-rich peer will only consider donat-
ing if it is receiving all substreams (i.e., the full video rate)
and still has surplus upload bandwidth.

Assume a peer is willing to contribute upload bandwidth
C where C/r > S. This peer can donate C/r−S substreams,
i.e., it can provide other peers substreams without reciproca-
tion. In our design, it is the benefactor that determines who
will be its beneficiaries. For simplicity, an altruistic peer can
randomly select its beneficiaries. A biased donation can also
be used. For example, the benefactor can first donate the
substreams to its existing partners, and then other peers.



As we will see in Section 5, such a biased scheme helps to
combat free-riders.

4. VIDEO CODING
In this section, we show how substream trading can be ap-

plied to a variety of different video coding schemes, including
single-layer video, layered video, MDC, and simulcast.

4.1 Single-Layer Video
Let us first consider single-layer video, which is currently

used by most P2P video applications, including all the pop-
ular live P2P industrial deployments, such as PPLive, PP-
Stream, and Coolstreaming. Single-layer video is widely
adopted because of its high coding efficiency and its sim-
ple design.

With single-layer video, a video is time-divided into S sub-
streams each of rate r. If a peer receives all S substreams, it
can reconstruct the video perfectly; otherwise, the peer will
reconstruct a corrupted video due to losses of video chunks.
One approach to conceal the loss is to simply repeat the
latest correctly reconstructed video frame until a new video
frame can be reconstructed correctly. (This usually occurs
when chunks containing the next I-frame are received, where
I-frames are frames that are coded without referencing to
previous frames.) This leads to frame freeze and discontin-
uous video playback. With substream trading, if the upload
bandwidth of a peer is higher than the video rate, it can
trade all substreams and obtain a continuous video play-
back; otherwise, it can only trade part of substreams and
obtain a less continuous video playback. This provides the
basic incentives for peers to contribute upload bandwidth.

Note that not all peers in a single-layer system are neces-
sarily self-supported, with an upload bandwidth higher than
the video rate. If no peer contributes at a rate higher than
the video rate, the peers with low upload bandwidth cannot
receive all S substreams. This may discourage such peers
from using the application. But as in BitTorrent, where
peers do not always immediately quit after receiving the en-
tire file, we expect to see some altruistic behavior in P2P
live streaming [30].

With single-layer video, substreams have equal impor-
tance. Thus, the weight for each substream for selection
can be defined as ws = 1, s = 1, . . . , S.

4.2 Layered Video
Layer coding encodes a video into several layers with nested

dependency, i.e., layer n is only useful if layers 1 through n−
1 are all available. More received layers reconstruct the video
with higher fidelity in terms of amplitude/temporal/spatial
resolutions.

Layered video has been suggested for many multimedia
client-server applications, mainly to address the bandwidth
heterogeneity of the receivers, and the temporal variation of
the sustainable receiving rate, due to either Internet conges-
tion or wireless channel fading. However, to date, there has
been no widely deployed network application that uses lay-
ered video. The primary reason for this is that the original
layered codecs were much less efficient than the correspond-
ing single-layer codec – to achieve the same video quality,
layered video required a substantially higher bit rate than
single-layered video.

In recent years, significant advances have been made in
layer coding. Now H.264/SVC (layer coding) achieves a rate-

distortion performance comparable with H.264/AVC (single-
layer coding), with the same visual reproduction quality typ-
ically achieved at +/- 10% bit rate [29]. It is reported that
a real-time system with H.264/SVC encoder and decoder
has been successfully implemented [28]. Thus, thanks to
these recent advances, layer coding is a viable candidate for
P2P live streaming systems. Furthermore, layered video is
a particularly useful concept for P2P, even more so than for
client-server. In P2P, layered video responds to heteroge-
neous upload rates as well as heterogeneous download rates
and congestion.

With substream trading, a peer with a higher upload con-
tribution will trade more layers and consequently obtain a
better video quality. Furthermore, with layered video, even
a small number of layers can lead to passable video quality
without discontinuity. Peers with low upload bandwidth can
therefore be self-sustaining and less dependent on altruistic
peers.

To reflect the layer dependencies, the weights for sub-
stream for selection can be set to ws = 2S−s, s = 1, . . . , S.
With these weights a lower layer is more important than the
sum of all its upper layers, which is consistent with layered
coding.

4.3 MDC
Like layered video, MDC generates multiple substreams.

But unlike layered video, each of the substreams is of equal
importance, so that video quality is only a function of the
total number of substreams received and not of which sub-
streams are received. Because all substreams have equal
importance, designing a P2P live streaming system using
MDC (rather than layered video) is appealing and more
straightforward. A number of recent papers have investi-
gated combining a large number of MDC substreams with
P2P to create P2P video streaming systems [3, 17, 24, 16].
Like layered video, the proposed substream trading can be
applied with MDC. In this case, the ws for each description
should be equal.

The efficiency of MDC depends on the trade-off among
the achievable qualities with different number of descriptions
[27]. MDC is inherently inefficient when a large number of
descriptions are created. Among the few proposed methods
for generating a large number of descriptions (> 4), MD-
FEC [22] together with scalable video coding, and temporal
subsampling [8], both introduce significant (> 60%) over-
head, compared with single-layer video. The inefficiency of
MDC largely prevents its usage in practical P2P live stream-
ing systems. For this reason, we do not further consider
MDC in this paper.

4.4 Simulcast
With simulcast, the video source encodes a video into mul-

tiple independent streams by using single-layer coding, with
each stream having a different rate. Each stream then gets
distributed within a separate torrent, with no interaction
among the torrents. Compared to layered video, simulcast
requires more source bandwidth. For example, a set of 5
video simulcast streams, from 200 kbps to 1 Mbps with a
200 kbps step size, would minimally require 3 Mbps at the
source; the corresponding layered design would minimally
require 1 Mbps. When the sources are residential broad-
band connections, this becomes a critical issue. When the
sources have a sufficient upload capacity to support several
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Figure 4: Evolution of number of users viewing a
TV channel in the PPLive network.

torrents, the substream trading can be applied within each
torrent, as discussed in the single-layer video system. How-
ever, such a design would suffer from lack of sharing across
the simulcast streams, as we briefly discuss in Section 5.3.

5. TRACE-DRIVEN SIMULATION
We conduct extensive simulations to evaluate the perfor-

mance of the single-layer system and the layered system with
substream trading. We also investigate the impact of cheat-
ing behavior.

5.1 Simulation Setup
We developed a packet-level discrete-event simulator in

C++. With this simulator, all actions are performed at the
packet-level, including the video chunk flow and signaling
between peers. In our simulations, we assume that the end-
to-end bandwidth bottleneck is at the access links and not in
the Internet core. We do not simulate the delay induced by
routing in the Internet core; instead, we randomly assign the
end-to-end propagation delay between each pair of peers to
be between tens of milliseconds to hundreds of milliseconds.
Such an abstraction speeds up the simulation and we believe
it can still give us an accurate evaluation of the system. Al-
though real Internet experiments in principle could provide
more accurate evaluations, it is difficult, if not impossible,
to have a controllable environment that can support a large
number of concurrent residential peers, which is a key design
consideration in P2P networks.

Peer dynamics are simulated by traces collected from a
real-world P2P live streaming system – PPLive [20, 9]. The
traces record the arrival and departure times of the users for
different channels. We select the trace of a popular Chinese
TV channel, CCTV3, to drive our simulations. This one-day
trace was collected from Nov 22nd 17:43, 2006 to Nov 23rd
17:43, 2006, and there were totally more than 100,000 video
sessions during this period. Figure 4 shows the evolution of
number of users viewing this channel. This trace covers a
variety of typical scenarios in P2P live video networks, such
as small systems (less than 200 concurrent users), large sys-
tems (more than 9000 concurrent users), short video sessions
(shorter than one minute), long video sessions (longer than
16 hours), and flash crowds.

In our simulations, the upload bandwidth of the source
is set to 2 Mbps. The upload capacities of peers are as-
signed randomly according to the distribution of Table 1.
To come up with an accurate bandwidth distribution of In-

ternet users, we jointly consider the measurement studies
in [10] and [7]. The overall distribution of residential peers
and Ethernet peers is obtained from [10], while the detailed
bandwidth distribution of residential peers is obtained from
[7]. We exclude modem peers and ISDN peers due to their
low upload and download capacities. Note that the upload
capacities of Internet users are highly heterogeneous. Be-
cause peers may not be willing to contribute their entire
upload bandwidth, in our simulations we assume that the
peers only contribute portions of their upload bandwidth
for trading, which are indicated in Table 1. For example,
the 256 kbps peers contribute 150 kbps for trading.

The playback lag between the peers and the source is set
to ten seconds. Every one second, a peer exchanges sub-
stream maps with its partners. Accordingly, the peer re-
selects the substreams based on the most recent substream
maps. The substream maps and request notifications can
be piggy-backed in the video chunks. The tolerance period
Wn for the non-trading relationship is set to ten seconds.
We set the monitoring sliding window Ws and Wl to 10 sec-
onds and 30 seconds, and set the tolerance rate factors α
and β to 0.5 and 0.9, respectively. In a layered system, it
is less likely for two partners in a non-trading relationship
to switch to a trading relationship. Parameter γ in (1) is
therefore set to one for the single-layer system and is set to
three for the layered system. In our simulations, a peer can
at most contact eight peers to check if they are the suitable
partners during one second. If we let a peer contact more
peers simultaneously, it can locate the partners faster. But
this will introduce higher overhead.

5.2 Single-Layer System
In this section, we investigate the substream trading sys-

tem with single-layer video. We begin by assuming all peers
in the system follow the proposed protocol, without tamper-
ing with the protocol to maximize their own benefits. We
then consider free-riding and cheating behavior of peers.

5.2.1 Differentiated services
We evaluate the single-layer video system in two scenar-

ios. In the first scenario, the system is underloaded and
the supplied bandwidth (i.e., average upload bandwidth of
the entire system) is higher than the demanded bandwidth
(i.e., the video rate). In the second scenario, the system
is overloaded and the supplied bandwidth is lower than the
demanded bandwidth. To represent video continuity, we in-
troduce received chunk ratio, which is defined as the ratio
between the number of received video chunks and the num-
ber of encoded video chunks.

With the upload bandwidth distribution shown in Table 1,
the average contributed upload bandwidth in the system is
about 540 kbps. To investigate both the underloaded and
overloaded scenarios, we consider two video rates, 500 kbps
and 700 kbps. The encoded videos are time divided into 10
and 14 substreams, respectively, with the rate of each sub-
stream being 50 kbps. Each chunk has a size corresponding
to ∆ = 250 ms. We assume all peers become altruistic if
they obtain the video at the full rate. In our simulations,
the altruistic peers prefer to donate first to their trading
partners.

In Figure 5, we show the CDF of the received chunk ra-
tio for different upload bandwidths. From the ten types of
peers (see Table 1), five types of peers are shown in the



Table 1: Peer upload bandwidth distribution (kbps)
Total upload bandwidth (kbps) 256 320 384 448 512 640 768 1024 1500 > 3000

Distribution (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 1.4 14.9

Contributed upload bandwidth 150 250 300 350 400 500 600 800 1000 1000
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Figure 5: Cumulative distribution of received chunk
ratio. (a) Underloaded scenario; (b) Overloaded sce-
nario.

figure, including the peer type with the lowest upload band-
width (256 kbps), the peer type with the highest upload
bandwidth (> 3000 kbps), the peer types with modest up-
load bandwidth and with many peers (448 kbps and 1024
kbps) and the peer type with the fewest peers (640 kbps).
Figure 5(a) shows the results of the underloaded scenario.
We observe that almost all peers have a high received chunk
ratio that is close to 1.0, indicating that all peers can receive
a continuous video quality. But we emphasize that the video
qualities of the low bandwidth peers are highly dependent
on the altruistic behavior of the high bandwidth peers.

Figure 5(b) shows the CDF of the received chunk ratio
under the overloaded scenario. In this case, the upload
bandwidth in the system cannot support the video rate for
all peers. On average, each peer can at most receive 77%
(540/700) of the video chunks. This means that some peers
will have very discontinous video quality. With our sub-
stream trading design, the peers that have an upload contri-
bution higher than 700 kbps are self-supported and receive
continuous video quality. This is verified in the figure, where
the peers with 1024 kbps and higher upload bandwidth can
receive almost all video chunks. For the peers whose upload
contribution is lower than 700 kbps, the received chunk ratio
increases with their upload contribution. This incentivizes
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Figure 6: Cumulative distribution of the received
chunk ratio for free-riders.

peers to contribute more upload bandwidth.

5.2.2 Free-riding and cheating
We now consider free-riding and cheating behavior. As

observed in BitTorrent, uncooperative users may tamper
with the BitTorrent protocol to maximize their downloading
speed [30]. Similarly, in an open P2P live streaming sys-
tem, a free-rider may try to receive the same video quality
as regular peers with minimum upload bandwidth. An open
P2P live streaming system should be able to discourage free-
riding, by providing minimum video quality for free-riders.

We assume the free-riders try to receive the video rate
without contributing any upload bandwidth. In our simula-
tions, we consider one type of cheating, where the free-riders
untruthfully announce that they have high upload band-
width for trading but do not have any content currently.
In another words, a free-rider is always pretending to be a
newcomer to the system. It is possible for free-riders to es-
tablish a partnership with a non-trading relationship with
other peers and get served for free during the tolerance time
Wn, and then keep jumping around and cheating. We now
examine whether a free-rider can receive good video qual-
ity under the overloaded scenario. In our simulations, we
randomly select 10% of peers as free-riders and assume free-
rider establishes partnerships with up to 14 peers.

Figure 6 shows the CDF of the received chunk ratio of
the free-riders. We observe that even with cheating, the
free-riders get a very low received chunk ratio. Several fea-
tures of our design assist to discourage free-riders. First,
since a free-rider has no content and bandwidth to trade,
it will be dropped by its partners after Wn seconds. Sec-
ond, after a free-rider is dropped, it cannot find replacement
partners quickly. As defined in (1), a peer with more sub-
streams available has a lower probability of forming a part-
nership with a non-trading relationship with another peer.
The free-rider will typically need to try several times to find
a new partner. With the above two features, it is unlikely
for free-rider to simultaneously find a large number (e.g.,
14) of partners and receive the full video rate. Furthermore,
since altruistic peers prefer to donate spare bandwidth to
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Figure 7: Behavior of typical peers.

their trading partners, it is less likely of a free-rider to get
the donation. Additionally, compared with a regular peer,
a free-rider has much higher overhead of searching partners
and maintaining partnerships.

We nevertheless acknowledge that it may be possible for
a free-rider to obtain an acceptable chunk ratio if it continu-
ously establishes partnerships with many peers (� 14). This
will come at the cost of increased overhead. This situation is
similar to BitTorrent [12, 14, 19, 23], it appears impossible
to fully defend against free-riders in a single-layer system.
However, for layered system, we will see even greater robust-
ness to free-riders.

5.2.3 Summary of single-layer system
The single-layer video substream trading system has the

following properties:

• In an overloaded system, where it is not possible for
all peers to get acceptable quality, the peers that up-
load at rates higher than the video rate do receive all
substreams and have maximal quality.

• In an underloaded system where some peers have up-
load capacity lower than the video rate and others
higher than the video rate, the system provides maxi-
mal quality to all peers, provided that the high-capacity
peers are altruistic.

• Unless free-riders are extremely zealous about cheat-
ing, free-riders obtain poor-quality video.

5.3 Layered System
We now investigate substream trading with layered video.

In our simulations, the video is encoded into 20 layers, with
each layer being 50 kbps and the full video rate being 1
Mbps. For this system, since each peer has a maximum
upload rate of 1 Mbps or less, none of the peers can be
altruistic.

5.3.1 Differentiated service
Figure 7 shows the number of decodable layers of five ran-

domly selected video sessions during their first 20 minutes.
We observe that each peer receives a number of layers that is
commensurate with its upload contribution. All peers reach
a stable state within 100 seconds. Once a peer reaches its
stable state, the video quality is generally smooth, without
significant variation.

Figure 8 shows the CDF of the received video rates across
all video sessions. We observe that almost all peers receive a
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Figure 8: Cumulative distribution of average useful
download rate.

video rate that is commensurate with their upload contribu-
tions. This demonstrates that substream trading provides
differentiated services in a layered video system. Further-
more, the system has no bias for the different peer types.
For example, the peers with 640 kbps upload bandwidth,
which only make up 1.4% of the peer population, also ob-
tain a video quality that is commensurate with their upload
contributions.

5.3.2 Video quality
The received video rate can largely determine the received

video quality. However, in addition to a high received video
rate, it is desirable to receive continuous and smooth video
quality. Unlike single-layer coding, which needs to receive
the full video rate to decode and play a video, layer cod-
ing can provide basic video quality if only the base layer is
received. For simplicity, we assume the base layer is fully en-
capsulated in layer 1, and a discontinuity occurs only if the
video chunks of layer 1 cannot be received correctly. In our
simulation, we observe that all video sessions receive more
than 99.99% of video chunks from layer 1; thus, the peers
rarely experience playback discontinuity.

With layered video, a receiver may receive varying number
of layers, which degrades the user experience. We introduce
a smoothness index to evaluate video smoothness in our sim-
ulations. The smoothness index is defined as follows:

Φ =
1

t − 1

t∑

i=2

|a(i) − a(i − 1)|
a(i − 1)

, (3)

where a(i) is the number of received layers in time slot i, and
t is the duration of a video session in terms of time slots. The
smoothness index indicates how frequently and dramatically
the number of received layers is changing. When Φ is larger,
the video is less smooth. In our simulations, we set the
length of a time slot equal to the chunk duration ∆.

Figure 9 shows the CDF of the smoothness index of the
selected video sessions. We observe that the smoothness
index is very low for all peer types. (A smoothness index
of 0.005 is extremely low, and most peers have an index
much lower than 0.005.) This verifies that peers receive
very smooth video quality, which can also be observed in
Figure 7. Note that although the highest upload bandwidth
peers have slightly larger smoothness index, this does not
mean these users see more variation of video quality than
the low bandwidth peers. When a large number of layers
is received on average, the quality is already very good and
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Figure 10: Cumulative distribution of start-up delay
across all video sessions.

having slightly more or less number of layers does not pro-
duce as much variation in video quality, as in the case where
on average a low number of layers are received.

5.3.3 Start-up delay
In P2P live streaming, start-up delay is the time from

when a channel is selected until actual playback starts on
the screen. This is a critical performance issue, particularly
for users who do a lot of channel surfing. Before playback
can begin, a peer needs to build an initial reservoir of video
chunks to deal with Internet jitter and peer churn. With
single-layer video, a peer needs to build the initial reservoir
for all substreams; but with layered video, the peer only
needs to build the initial reservoir for layer 1. In our sim-
ulations, if a peer finishes building the reservoir of video
chunks for the next three seconds, it starts decoding and
playing the video. Figure 10 shows the CDF of the start-up
delay for both the single-layer video system (with 500 kbps
video rate) and layered video system. We observe that the
start-up delay of the layered video system is significantly
shorter than that of the single-layer video system. This is
because with layered video, only layer 1 is needed to build
the initial reservoir and provide passable video quality.

5.3.4 Interaction across peer types
A natural question is whether the resulting layered system

essentially creates a stratified system, where peers of the
same type primarily share among each other and do not
share with peers of other types. To explore this issue, for
each peer, we record the download traffic from peers that
have higher upload bandwidth (denoted as Higher), peers
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Figure 11: Interaction across peer types.

that have the same upload bandwidth (denoted as Equal),
and peers that have lower upload bandwidth (denoted as
Lower), and normalize by the peer’s total download traffic.
We average these values over all peers with the same upload
bandwidth, and plot them in Figure 11. We observe that
for all five types of peers, there exists a large amount of
interaction across peer types. This is especially true for the
peer types that have relatively few members, e.g., the peers
with 640 kbps upload bandwidth.

Recall that with simulcast, peer types are separated into
different simulcast torrents and there is no interaction across
peer types. P2P live streaming with layer trading, however,
as shown in Figure 11, provides major synergies across peer
types. For example, a low-bandwidth peer may serve a high-
bandwidth peer with a lower layer. More importantly, with
layer trading, a peer type with a small number of members
can easily find partners outside its type for trading. This can
greatly improve the overall quality of service for the system.

5.3.5 Free-riding and cheating
We investigate free-riding and cheating in the layered video

system. We consider the same type of cheating as discussed
in the single-layer video system. In order to receive the full
video rate (1 Mbps), a free-rider attempts to locate 20 part-
ners simultaneously. Figure 12 shows the video quality of
free-riders in the layered video system. Figure 12(a) plots
the behavior of a typical free-rider. We observe that free-
riders rarely receive video at an average rate higher than 200
kbps. Figure 12(b) shows the CDF of the smoothness index
of the free-riders. Most free-riders have a smoothness index
that is ten times higher than that of the regular peers, which
verifies that the free-riders receive very variable video qual-
ity. This is because the free-riders are frequently dropped by
their partners. On average, a free-rider is dropped by one of
its partners every 0.6 second, leading to a high overhead for
locating and managing partners. The low video quality and
high overhead cost should largely discourage free-riders.

With our proposed partner selection mechanism, it is less
likely for a free-rider to establish partnerships with high up-
load bandwidth peers. Even though a free-rider can locate a
large number of partners, most of these partners will be low
upload bandwidth peers. With layered video, since these
partners only have lower layers, the free-rider can only ob-
tain the lower layers and consequently low video quality.
Therefore, the layered system is more robust to free-riders.

5.3.6 Summary of layered video system
The layered video substream trading system has been
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Figure 12: Video quality of free-riders. (a) Behavior
of typical free-riders; (b) Cumulative distribution of
smoothness index.

shown to have many desirable properties:

• It provides differentiated service – the video quality
that a peer receives is commensurate with its upload
rate. Thus peers have an incentive to upload as much
as they can.

• For non-freeriding peers, there is little variation in
video quality due to fluctuations in the received num-
ber of layers.

• The start-up delay is small, and significantly shorter
than the start-up delay of single-layer system.

• Peers in different upload bandwidth categories syner-
gistically share layers with each other.

• Aggressive free-riders receive the video at a low rate
with relatively high quality fluctuations.

6. RELATED WORK
Over the past few years, there has been a number of pro-

posals for live P2P video in the research community [4, 17,
3, 26, 32]. None of these papers, however, addresses built-in
(tit-for-tat) incentives or the design of open P2P stream-
ing systems. Within the context of cooperative peers, Sung
et al. have recently proposed an MDC-based multiple-tree
scheme that uses a novel taxation scheme to provide differen-
tiated services [24]. However, this proposal does not include
built-in incentives, assumes cooperative peers, and further-
more uses MDC encoding (which is inherently inefficient as
discussed in Section 4.3).

There are three very recent proposals on using tit-for-tat
incentives in the context of P2P live video streaming. In a
workshop paper, we proposed a tit-for-tat scheme for layered
video for chunk-based systems [13]. The scheme proposed in
this paper has several advantages over that in [13]. First, in
this paper we trade substreams rather than chunks, which
significantly reduces playback lag and overhead. Second,
the framework of this paper can be applied to a variety of
coding schemes, including layer coding, MDC, and single-
layer coding. Mol et al. propose an MDC-based multiple-
tree scheme that employs tit-for-tat incentives [16]. Each
description is distributed over a separate tree, and peers be-
longing to different trees exchange descriptions with each
other. This approach is based on MDC (which is inher-
ently inefficient), cannot be easily adapted to layered video
or single-layer video, and restricts a peer to trade only the
description corresponding to the tree to which it belongs.
Finally, Pianese et al. propose a chunk-based mesh-pull
scheme with single-layer video [18]. The scheme applies a
combination of tit-for-tat and donation strategies to provide
incentives. In particular, peers with higher upload contribu-
tion have more buffered data and are more robust to peer
dynamics. However, this scheme is limited to single-layer
video and has low throughput.

Unlike [13] [16] [18], the current proposal provides a frame-
work for providing incentives in live P2P video streaming
systems. This framework can accommodate a variety of
coding schemes. Furthermore, the framework has been opti-
mized for performance, providing differentiated service, high
throughput, resiliency to churn, and short start-up delays.
The scheme proposed here can serve as a blueprint for an
open P2P live video streaming system.

7. CONCLUSION
We have argued that built-in incentives are critical for the

design of an open P2P live video streaming system. In this
paper, we proposed a framework with live video streaming
which has built-in incentives and can accommodate a variety
of video coding schemes. In particular, we have shown that
substream trading with layered video has many desirable
properties, including differentiated service, short start-up
delays, synergies across peer types, and protection against
free-riders.

We are currently in the process of developing an open-
source client that employs substream trading; it can be used
with either layered video or with single-layer video with mul-
tiple substreams.
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