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Abstract

When a complex structural system must be analyzed for its response to
dynamic excitation, some form of substructure coupling method, or com-
ponent mode synthesis (CMS) method, is usually employed. It is generally
necessary to perform some form of vibration test to validate the separate
substructure math models, which are then coupled together for the system
analysis. When such tests are performed, it is important to give special
attention to the way that the substructure is supported and the way that
it is excited. A new substructure system identification algorithm, which
produces a linear, viscous-damped, reduced-order physical model (i.e., A/,
C, and /f), is described in this paper, and the results of numerical sim-
ulations used to test the proposed new algorithm are presented. Of par-
ticular interest is the comparison between the results obtained by using
the ordinary least-squares (OLS) method and those based on the total
least-squares (TLS) method.

1 Introduction

When a structural system (e.g., the Space Shuttle Orbiter plus pay loads)
must be analyzed for its response to dynamic excitation, some form of sub-
structure coupling method, or component mode synthesis (CMS) method,
is usually employed (e.g., Craig & Bampton,[l] NASA[2]). It is frequently
necessary to perform some form of vibration test to validate the separate
substructure math models, which are then coupled together for the system
analysis. When such tests are performed, it is important to give special
attention to the way that the substructure is supported and the way that
it is excited (e.g., Muhlbauer, Troidl, & Dillinger,[3] Admire, Tinker, &
Ivey,[4] Chung, Sernaker, & Peebles[5]).
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A proposed new substructure system identification (SSID) method[6]
produces a linear, viscous-damped, reduced-order physical model (i.e., M,
C, and K), with all substructure interface-DOF entries included. In the
vibration test used to acquire frequency response functions (FRFs), all
interface degrees of freedom where the substructure is connected to the
carrier structure are either subjected to active excitation or are supported
by a test stand with the reaction forces measured. Although several meth-
ods have been proposed in the past for so-called direct parameter iden-
tification of mass, damping, and stiffness matrices from test data (e.g.,
Craig, Kurdila, & Kim,[7] Leuridan, Brown, & Allemang,[8] Balmes[9]),
none has specifically addressed the identification of substructure matri-
ces that include all of the information necessary for coupling components
together.

This paper presents the results of numerical simulations used to test
the SSID algorithm, with "noise" included in the simulated vibration test
data. The simulations examine the algorithm's ability to identify valid
reduced-order structural models using frequency response functions cov-
ering a limited frequency range. Of particular interest is the comparison
between the results obtained by using the ordinary least-squares method
and those based on the total least-squares method.

2 Substructure system identification theory

Assume that the substructure has viscous damping and that the total num-
ber of motion transducers (accelerometers) is at least twice the expected
number of normal modes in the frequency range of interest. Every inter-
face degree of freedom is to have a co-located force/accelerometer pair.
In addition, there are to be motion sensors (accelerometers) at selected
interior degrees of freedom (DOFs).

Let the equations of motion in physical coordinates and the output
equation be

M x + Cx + Kx = Dp(t)

y = x

where x E R^* is the displacement vector; p € R*** is the input force
vector; y € R*** is the output measurement vector; M, C, and K are
the system mass, damping, and stiffness matrices; and D is the force
distribution matrix. For the present discussion, we will assume that the
above W*-degree-of-freedom model represents a reduced-order model of
the structure. Let the coordinates be partitioned in the following manner:

(2)
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where / stands for forced DOFs (i.e., DOFs where there is an active force
input); r stands for reaction DOFs (i.e., interface DOFs where the tested
substructure reacts against the support structure); i stands for interior
DOFs (i.e., not a DOF where and active force is applied or a reaction
is measured); and b stands for boundary DOFs, the combination of /-
coordinates and r-coordinates. These sets of coordinates are illustrated in
Fig. 1.
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(a) Substructure model - in-service configuration.
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(b) Substructure model - vibration test configuration.

Figure 1: Substructure model - in-service configuration and test configu-
ration.

Let us consider the complex frequency response of the substructure
due to excitation at frequency w&, but with the interior DOFs force-free.
Then,

pj"kt (3)
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(From Eq. 3 onward, the vectors can be complex.) The complex displace-
ment response can be written as

Xfc(f) = XK)ê ' (4)

After some manipulation, the following equation is obtained for estimating
the matrices C, AT, D/ and /),.:

[C AT

where
(5)

C = D/=M~*Df , and . (6)

and the // matrices are measured FRF matrices. Section 3 summarizes the
ordinary least-squares method and the total least-squares method, which
were used for solving Eq. 5 for the examples presented in Section 4.

From the identified "hat" matrices we wish to determine the substruc-
ture matrices M, C, A% and D, especially the first three. The first step
is to perform an eigensolution using the "hat" matrices identified from
Eq. 5. Let N, = 27V*, and define the state variable

and the following state matrices:

(7)

C I
I 0

B.=
K 0
0 -/

and D, = (8)

Then the following eigenproblem is solved for the complex eigenvalues X,
and the complex eigenvectors 0?:

[\,A, + B,]8, = 0 r=l,...,N. (9)

To determine the system matrices A/, C, and A\ a mode-superposition
representation of the complex frequency response can be employed. Let
the state matrices A, and B, be defined by
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£?]•*-[?!] c«)J L J

It can be shown that orthogonality holds in the following form:[6]

L8 = diag(5r)

3.0 = diag(6,)

From the solution of the following mode-superposition frequency re-
sponse equation, least-squares estimates of the jV, modal parameters a^
are obtained.

! ) 12

1/fil

f",

Equation 12 is the key equation that is required for obtaining estimates of
the system matrices M, C, and K. It is used to obtain least-squares esti-
mates of the Ng modal parameters a,.. (For the simulations in Section 4,
ordinary least-squares solutions and total least-squares solutions are com-
pared.) The corresponding modal parameters 6,. can then be computed
from

lr = -\r~CLr (13)

With these values of a? and 6,., the state matrices /I, and B^ defined by
Eqs. 10, can be computed by using Eqs. 11. Finally, the system matrices
M, C, and K are obtained by referring to Eqs. 10 and extracting the
appropriate partitions of the ,4, and B, matrices.
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3 Least-squares equation solvers

The solutions of the systems of linear, algebraic equations, Eqs. 5 and 12,
are the key mathematical steps in the substructure system identification
algorithm for accurately identifying the substructure. The method of so-
lution can have a drastic effect on the resulting identified system. The
methods of solution used for the numerical simulations in Section 4 were
the (ordinary) least-squares (OLS) method and the total least-squares
(TLS) method. A brief description of these methods is provided here.

The least-squares method and more recent total least-squares method
are mathematical modeling procedures used to solve an under-determined
or over-determined system of linear equations. Both parameter identifica-
tions in Section 2, Eqs. 5 and 12, can be cast in the form

AX = B (14)

where A is a m x n data matrix, X is a n x d matrix of unknowns, and B is
a m xd matrix of observations. The approximate sign is used to emphasize
that the data (i.e., A and/or B) may be contaminated by noise. If there is
no noise in the data, then Eq. 14 will be an equality. The least-squares and
total least-squares methods seek solutions that minimize the error between
the true system model and the measured data. The solution obtained
depends on the error model and the weighting of the data used by each
method. If the noise does not match the error model, a biased estimate
of the solution will result. The error models assume that the errors are
uncorrelated random variables with zero mean and equal variance.

Perhaps the best known method of solution for an over-determined
system of linear equations is the least-squares method. For simplicity,
consider the case when d = 1. In the classical least squares approach, the
measurements of the variables in the data matrix A are assumed to be free
of error, and all errors are confined to the observation vector 6. A least-
squares estimation could also be performed assuming that the observation
vector is known exactly, but that the data matrix contains errors. The
classical least-squares solution will result in an unbiased estimate if the
error model is of the form

Ax= b= {&Q + A&} (15)

The classical least-squares estimate is equivalent to minimizing the sum
of the squares of the differences between the elements of the measured
observation vector 6 and an estimated observation vector b. The least-
squares problem seeks to minimize ||6 — b\\2 where b is the orthogonal
projection of 6 onto the range of A, R(A). This amounts to perturbing
the observation vector 6 by a minimum amount A6 so that 6=6 — A6
lies in the R(A). The minimum pertubation, A6, is the called the least-
squares correction. The resulting estimation, assuming that A is of full
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rank, is

z = (Â )-̂ 6̂ (16)

The main assumption made in the classical least-squares estimation
is that errors only occur in the observation vector 6, and that the data
matrix A is noise-free. However, this assumption is frequently unrealistic:
sampling errors, modeling errors, instrument errors and human errors may
imply inaccuracies of the data matrix A as well. This will cause the least-
squares solution to a yield biased estimate.

The total least-squares method was developed to provide estimates
from a linear system of equations where both the data matrix A and the
observation matrix B are assumed to contain errors. [10] The error model
for the total least-squares method is of the form

[Ao + &A]X = {5o + A£} (17)

The total least-squares problem is formulated by rewriting Eq. 14 as a
homogenous, linear system of equations:

=° (18)

The total least-squares formulation seeks to minimize the Frobenius norm
\\[A-B] - [A-,B]\\F, subject to B G R(A), where A and B are the total
least-squares approximations of A and B required to obtain a compatible
set. The Frobenius norm, || • ||/r, is a measure of the size of a matrix; it is
similar to the 2-norm, which measures the size or length of a vector.

The solution to this system of homogenous linear equations is orthog-
onal to the row space of the augmented data matrix, that is, the solution
lies in the null space of the augmented data matrix. The nullspace of a
matrix consists of all vectors X such that (A; B}X = 0. There are numer-
ous methods that can be used to divide the augmented data matrix into a
system subspace and a null subspace, but the numerically stable singular
value decomposition is the method that is most often used.

The singular value decomposition of matrix [A] B] can be computed

o' v (19)0 L.2 J [ 1/21 V22 J ^ '

where U is an m x m matrix whose columns are called the left singular
vectors, £ is an m x (n + d) diagonal matrix whose elements are called
the singular values, and V is an (n + d) x (n + d) matrix whose columns
are called the right singular vectors. When the rank of matrix [A\B\ is
greater than n, the set is incompatible and the last d singular values,
<M.i,".,0Vi+<*, are not equal to zeros. To obtain a compatible set, the
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rank of [A] B] must be reduced to n. The best rank n approximation of
[A; B] is given by

where the last d singular values of £ are zero. These are the smallest
singular values, which are due mainly to the noise in the data. The matrix
[,4; B] is the minimal correction to the augmented matrix [A] B}. The right
singular vectors corresponding to the last d singular values define the null
space of the augmented matrix and form the total least-squares solution.
After being properly scaled, the total least-squares solution is

X = -VnV£ (20)

4 Numerical example

The parallel-beam "payload simulator" in Fig. 2 will be used to illustrate
the SSID system identification procedure described in Section 2. A finite
element (FE) model of the simulator, reduced from 54 DOFs to the 18
z-translational DOFs, was used as the "true" system. Modal damping at
a level of 2% was added to obtain a damping matrix for the FE model.
The payload simulator was hung from soft springs ("bungee cords") at
nodes 11, 13, 14, and 16; and was excited in the z direction at all three
interface nodes: 4, 8, and 18. (Examples that employ measured reactions
are given in Craig, Cutshall & Blades,[6] Craig,[12] and Craig, Blades &
Cutshall.[13]) Identification of both a full-order model and a reduced-order
model are illustrated.

Bun gee Cords

Figure 2: Payload simulator.
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4.1 Identification of the full-order model

The first simulation is of the full-order model without any noise on the
simulated FRF data. The SSID identification was based on 256 frequency
lines uniformly spaced from 0.5 Hz to 2000 Hz. The undamped natural fre-
quencies of the 18-DOF system, which range from 1.15 Hz to 8597 Hz, were
all identified exactly (to within 7-digit accuracy), even though two of the
undamped natural frequencies are well above the 2000 Hz upper limit of
the FRF data. All simulations were programmed using MATLAB™[14].

Figures 3a through 3c show the percent errors in individual terms of
the mass, damping, and stiffness matrices of the 18-DOF full-order model.
Figure 4 shows a comparison between an exact driving-point FRF and the
corresponding FRF for the identified full-order model.

4.2 Identification of reduced-order models

System identification tests of real structures are typically based on (some-
times triaxial) measurements taken at 25 to 500 nodes, whereas finite
element models of the (infinite-DOF) structures are generally of the or-
der of 1000 to 100,000 DOFs. In order to test the performance of the
SSID algorithm in identifying reduced-order models, simulated tests were
performed on the payload simulator by eliminating the FRF test data at
four nodes (2, 3, 6, 7), reducing the system from an 18-DOF system to a
14-DOF system.

The first reduced-order simulation was run without added measure-
ment noise in order to examine the effect of spatial filtering of the data.
The SSID identification was based on simulated FRF data generated at
1021 frequency lines equally spaced at 0.5 Hz between 2 Hz and 512 Hz.
Since spatial filtering to obtain a reduced-order model introduces bias er-
ror in the data, the total least-squares method was used, even though
there was no random "measurement noise" added for this case. Based on
the SSID-identified 14-DOF reduced-order model, twelve of the fourteen
undamped natural frequencies were identified to within 0.5%. Figure 5
shows a comparison of an exact driving-point FRF and the corresponding
FRF based on the SSID-identified 14-DOF reduced-order model.

Next, in order to simulate actual test conditions, noise was added to
produce "measured" FRFs for a simulated 14-DOF reduced-order test.
Random noise was added to the magnitude and phase of the "measured"
FRFs, with the amount of noise specified in terms of the maximum per-
centage of the RMS magnitude of each FRF and a maximum angle error
on phase. Signal averaging was employed in these simulations, just as
averaging would be employed in an actual test. The two least-squares
methods discussed in Sect. 3, the ordinary least-squares (OLS) method
and the total least-squares (TLS) method, were used to solve the two
over-determined sets of equations, Eqs. 5 and 12.
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(a) Mass matrix error.

Cokjmn Number

(b) Damping matrix error.

(c) Stiffness matrix error.

Figure 3: Percent errors in elements of the substructure matrices.
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Figure 4: A driving-point FRF of the 18-DOF full-order model.
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Figure 5: Exact driving-point FRF and FRF based on reduced-order SSID
model (no noise).
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Simulated FRF data was generated at 1021 frequency lines equally
spaced at 0.5 Hz between 2 Hz and 512 Hz. For these simulations 3%
amplitude noise and 3° phase noise was added to generate "measured"
FRFs. These FRFs were averaged over N = 100 samples.

In Table 1, the natural frequencies generated from the OLS- and TLS-
estimated 14-DOF M and K matrices are compared to the first fourteen
exact undamped natural frequencies of the full-order (18-DOF) system
and to the SSID-identified undamped natural frequencies based on noise-
free (NF) FRFs.

Table 1. Natural frequencies (Hz) of 14-DOF reduced-order models.

[Mode] Exact j NF [ % Err ] OLS

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1.1543
6.0384
10.783
18.127
106.08
127.27
129.38
151.52
299.12
304.16
604.31
606.90
1212.4
1214.0

1.1564
6.0489
10.783
18.127
106.38
127.27
129.49
151.90
299.14
319.93
602.88
606.21
—
—

0.18
0.17
0.00
0.00
0.28
0.00
0.08
0.25
0.01
5.18
0.24
0.11
—
—

1.1360
6.0372
10.791
17.932
101.42
119.54
126.22
152.23
—
—

L ~~
—
—
—

% Err

1.58
0.02
0.07
1.07
4.40
6.07
2.44
0.05
—
—
—
—
—
—

TLS

1.3771
5.9258
10.728
18.121
106.02
126.76
129.19
151.60
272.08
300.57
—
—
—
—

% Err

19.30
1.86
0.51
0.03
0.06
0.40
0.15
0.05
9.04
1.18
—
—
—
—

Figure 6a shows a comparison between an exact driving-point FRF and
the corresponding FRF based on the OLS-identified reduced-order model.
Figure 6b shows a comparison between an exact driving-point FRF and
the corresponding FRF based on the TLS-identified reduced-order model.
These results are very encouraging, since they indicate that the SSID
algorithm can, indeed, be used to identify reduced-order models.

5 Conclusions; Future research

An algorithm for identifying the system matrices M, C, and K using
frequency-response data that includes reaction forces between the test
substructure and the test stand as well as active forces has been presented.
The algorithm was tested using simulated data for an 18-DOF model
of a payload simulator. With simulated noise-free data, the proposed
algorithm exactly identified the full-order model and also did an excellent
job of identifying a 14-DOF reduced-order model. With simulated noisy
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(a) Driving-point FRF based on 14-DOF OLS-identified model.
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(b) Driving-point FRF based on 14-DOF TLS-identified model.

Figure 6: Frequency response functions for the 14-DOF simulated re-
duced-order vibration test.
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data the algorithm still identified acceptable reduced-order substructure
system matrices. Total least-squares solutions proved to be much better
than ordinary least-squares solutions.

The relationship of reduced-order-model testing to analytical model
order reduction is a subject of research at the present time. Further testing
of the proposed algorithm will involve increasing the size of the simulation
models, and then applying the algorithm to real test data.
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