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Abstract

We survey results and particular facts about (partial) ovoids, (partial) spreads,
m-systems, m-ovoids, covers and blocking sets in finite classical polar spaces.
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1 Finite classical polar spaces

The finite classical polar spaces are the geometries that are associated with non-degenerate
sesquilinear and non-singular quadratic forms on vector spaces over a finite field. Given
a projective space PG(d,q), then a polar space P in PG(d,q) consists of the projective
subspaces of PG(d,q) that are totally isotropic with relation to a given non-degenerate
sesquilinear form or that are totally singular with relation to a given non-singular quadratic
form. The projective space PG(d,q) is called the ambient projective space of P . In this
article, with “polar space” we always refer to “finite classical polar space”.

A projective subspace of maximal dimension in a polar space P is called a generator.
One can prove (see [44], Theorem 26.1.2) that all generators have the same dimension
r−1. We call r the rank of the polar space. A polar space of rank 1 only contains projective
points. There exist five different types of finite classical polar spaces, which are, up to
transformation of the coordinate system, described as follows:
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34 J. De Beule, A. Klein, and K. Metsch

• The elliptic quadric Q−(2n + 1,q), n ≥ 1, formed by all points of PG(2n + 1,q) which
satisfy the standard equation x0x1 + · · ·+ x2n−2x2n−1 + f (x2n,x2n+1) = 0, where f is a
homogeneous irreducible polynomial of degree 2 over Fq.

• The parabolic quadric Q(2n,q), n ≥ 1, formed by all points of PG(2n,q) which satisfy
the standard equation x0x1 + · · ·+ x2n−2x2n−1 + x2

2n = 0.
• The hyperbolic quadric Q+(2n+1,q), n≥ 0, formed by all points of PG(2n+1,q) which

satisfy the standard equation x0x1 + · · ·+ x2nx2n+1 = 0.
• The symplectic polar space W(2n+1,q), n≥ 0, which consists of all points of PG(2n+

1,q) together with the totally isotropic subspaces with respect to the standard symplectic
form θ(x,y) = x0y1− x1y0 + · · ·+ x2ny2n+1− x2n+1y2n.

• The hermitian variety H(n,q2), n≥ 1, formed by all points of PG(n,q2) which satisfy the
standard equation xq+1

0 + · · ·+ xq+1
n = 0.

In the above list, the polar space of a given type has rank 1 for the smallest n that is allowed.
Remark also that a quadric (also called an orthogonal polar space), and a hermitian variety,
is determined completely by its point set, and can be described as above as a set of points
whose coordinates satisfy an equation, which is of course derived from the sesquilinear or
quadratic form.

Let Q be a point of a polar space P . Then Q⊥ is the set of points whose coordinates are
orthogonal to Q with respect to the underlying sesquilinear or quadratic form1, so Q⊥ is the
set of points of a hyperplane TQ(P ), called the tangent hyperplane at Q to P , and Q⊥∩P
is necessarily the set of points of P that lie on a line through Q contained in P . For any
set A of points, A⊥ := ∩P∈AP⊥. The following result is fundamental in the theory of finite
classical polar spaces.

Result 1.1. Suppose that Pr is a finite classical polar space of rank r ≥ 2. Then for any
point P of Pr, the set P⊥ ∩Pr is a cone with base Pr−1 and vertex P, with Pr−1 a finite
classical polar space of rank r−1 of the same type as Pr.

From this theorem, it follows that the quotient space of a point P of Pr, i.e. the set of all
subspaces of Pr through P, is a polar space of rank r−1 of the same type as Pr.

We define θi(q) := qi+1−1
q−1 for all integers i≥ 0, i.e. the number of points in PG(i,q).

Theorem 1.2. The rank, the number of points, and the number of generators of all finite
classical polar spaces are given in Table 1.

Proof. We demonstrate the proof for Q+(2n + 1,q), the proofs for the other polar spaces
are, mutatis mutandis, the same.

We prove the results by induction on n. For n = 0, the hyperbolic quadric x0x1 = 0
contains two points on a line and 2 = (q0+1)(q1−1)

q1−1 . Formally, we set |Q+(−1,q)|= 0. Note
that this definition fits with the general formula. Now suppose that n ≥ 1. Take a line l of
Q+(2n + 1,q). Then l⊥ intersects Q+(2n + 1,q) in a cone over a Q+(2n− 3,q) which by
induction has a = q+1+q2 (qn−2+1)(qn−1−1)

q−1 points.
For each point P /∈ l⊥ there exists exactly one point R ∈ l with R ∈ P⊥ or P ∈ R⊥.

Now R⊥ intersects Q+(2n + 1,q) in a cone over a Q+(2n− 1,q) which by induction has

1When q is even, the quadratic form f determining P , determines a possibly singular symplectic form σ.
Two points P and Q are orthogonal with respect to f if, by definition, they are orthogonal with respect to σ.
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Substructures of finite classical polar spaces 35

polar space rank number of points number of generators
Q−(2n+1,q) n (qn+1 +1)θn−1(q) (q2 +1)(q3 +1) · · ·(qn+1 +1)

Q(2n,q) n (qn +1)θn−1(q) (q+1)(q2 +1)(q3 +1) · · ·(qn +1)
Q+(2n+1,q) n+1 (qn +1)θn(q) 2(q+1)(q2 +1) · · ·(qn +1)
W(2n+1,q) n+1 (qn+1 +1)θn(q) (q+1)(q2 +1) · · ·(qn+1 +1)

H(2n,q2) n (q2n+1 +1)θn−1(q2) (q3 +1)(q5 +1) · · ·(q2n+1 +1)
H(2n+1,q2) n+1 (q2n+1 +1)θn(q2) (q+1)(q3 +1) · · ·(q2n+1 +1)

Table 1: Rank, number of points and number of generators of finite classical polar spaces

b = 1+q (qn−1+1)(qn−1)
q−1 points. Thus |Q+(2n+1,q)|= (q+1)(b−a)+a = (qn+1)(qn+1−1)

q−1 =
(qn +1)θn(q).

Now we count the number of generators, again using induction on n. For n = 0 the 2
points of the hyperbolic quadric are its generators, hence it is a polar space of rank 1.

Now assume that n ≥ 1, and that Q+(2n− 1,q) is a polar space of rank n. Let P be
a point of Q+(2n + 1,q). Then P⊥ intersects Q+(2n + 1,q) in cone over a Q+(2n− 1,q).
Hence, by induction P lies on 2(q+1)(q2 +1) · · ·(qn−1 +1) generators. On the other hand,
a generator of Q+(2n−1,q) contains qn+1−1

q−1 points. Double counting gives for the number
g of generators in Q+(2n+1,q) the equation

g
qn+1−1

q−1
= |Q+(2n−1,q)|2(q+1)(q2 +1) · · ·(qn−1 +1).

Solving the equation yields the number of generators. Finally, the dimension of the genera-
tors of Q+(2n+1,q) is one more than the dimension of the generators of Q−(2n−1,q).

It is well known (see e.g. [43]) that the generators of Q+(2n+1,q) fall into two equiv-
alence classes, denoted by the sets G1 and G2. Recall that the rank of Q+(2n + 1,q) is
n + 1. The following result is well known and can be found in [44] (Theorem 22.4.12 and
its Corollary).

Result 1.3. Let g1 and g2 be distinct generators of Q+(2n+1,q). If n = 2s, then

dim(g1∩g2) =
{

0,2,4, . . . ,2s−2 if g1 and g2 belong to the same class
−1,1,3, . . . ,2s−1 if g1 and g2 belong to a different class;

and if n = 2s+1, then

dim(g1∩g2) =
{
−1,1,3, . . . ,2s−1 if g1 and g2 belong to the same class
0,2,4, . . . ,2s if g1 and g2 belong to a different class.

2 Morphisms of finite classical polar spaces

For q even, Q(2n,q) ⊆ PG(2n,q) has a nucleus, i.e. a point N ∈ PG(2n,q)\Q(2n,q) con-
tained in all tangent hyperplanes to Q(2n,q). Projecting the elements of Q(2n,q) from N
yields a polar space isomorphic to W(2n−1,q) (see e.g. [44]), so Q(2n,q) and W(2n−1,q)
are isomorphic when q is even. The existence of this isomorphism implies that any result
proved in one of these spaces, is also valid in the other one.
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36 J. De Beule, A. Klein, and K. Metsch

A duality δ between two rank 2 geometries S = (P ,L , I) and S ′ = (P ′,L ′, I′) is an
incidence preserving map from P to L ′, L to P ′, and from L ′ to P , P ′ to L , such that δ2 is
the identity mapping. There exist dualities between different types of finite classical polar
spaces of rank 2 [66].
• Q(4,q) is isomorphic to the dual of W(3,q). This means that interchanging the role of

the points and generators of Q(4,q) yields an incidence geometry isomorphic to W(3,q),
and vice versa. As a consequence, for q even, Q(4,q) and W(3,q) are self-dual.

• Q−(5,q) is isomorphic to the dual of H(3,q2).
Consider now Q+(7,q) and define a rank 4 incidence geometry Ω as follows. Ω =
(P ,L ,G1,G2), where P is the set of points of Q+(7,q) and L is the set of lines of Q+(7,q).
An element g1 ∈ G1 is incident with an element g2 ∈ G2 if and only if g1 ∩ g2 is a plane.
Incidence between other elements is symmetrized containment. A triality of the geometry
Ω is a map

τ : L → L ,P → G1,G1 → G2,G2 → P

preserving the incidence in Ω and such that τ3 is the identity. Trialities of Ω exist [44].
The dualities and the triality described here, are used frequently to construct substruc-

tures of a polar space from different ones, as we will see in the next sections.

3 Ovoids, spreads and m-systems

“Ovoids” of polar spaces are inspired by ovoids of the projective space PG(3,q) (see e.g.
[27]), and are defined for the first time in [75]. Also “spreads” occurred first in projective
spaces, and are transferred to polar spaces.

Let P be a finite classical polar space of rank r ≥ 2. An ovoid is a set O of points of P ,
which has exactly one point in common with each generator of P . A spread is a set S of
generators of P which constitute a partition of the point set of P .

Theorem 3.1. An ovoid in Q−(2n− 1,q), Q(2n,q), Q+(2n + 1,q) or W(2n− 1,q) has
qn +1 points. An ovoid of H(2n,q2) or H(2n+1,q2) has q2n+1 +1 points.

A spread of Q−(2n− 1,q), Q(2n,q), Q+(2n + 1,q) or W(2n− 1,q) contains qn + 1
generators. A spread of H(2n,q2) or H(2n+1,q2) contains q2n+1 +1 generators.

Proof. We demonstrate the proof for P = Q+(2n+1,q) as an example, the proof is analo-
gous for the other polar spaces.

By Theorem 1.2, Q+(2n + 1,q) has 2(q + 1)(q2 + 1) · · ·(qn + 1) generators. By
Result 1.1, the quotient space of a point is a Q+(2n − 1,q), hence, every point lies
in 2(q + 1)(q2 + 1) · · ·(qn−1 + 1) generators. Thus an ovoid must have [2(q + 1)(q2 +
1) · · ·(qn +1)]/[2(q+1)(q2 +1) · · ·(qn−1 +1)] = qn +1 elements.

By Theorem 1.2, Q+(2n + 1,q) has (qn + 1)θn(q) points. Each generator is a projec-
tive space of dimension n, that contains θn(q) points. Thus a spread must contain qn + 1
elements.

So in a polar space P , the size of an ovoid equals the size of a spread, this number is
denoted by µP .
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Substructures of finite classical polar spaces 37

3.1 Ovoids

Ovoids of finite classical polar spaces are rare, they seem to exist only in low rank, and for
many polar spaces of high rank, a non-existence proof for ovoids is known. One important
observation to show the non-existence of ovoids is the following lemma.

Lemma 3.2. If O is an ovoid of a finite classical polar space P of rank r ≥ 3, then O
induces an ovoid of a finite classical polar space of the same type of rank r−1

Proof. Consider any point Q 6∈ O of the polar space P . The quotient space on Q is a polar
space P ′ of rank r−1 of the same type. But each generator of P on Q contains exactly one
point of O, so O induces an ovoid of P ′.

Hence, if the non-existence of ovoids is proved for a polar space of a certain type in
some rank, the contraposition of Lemma 3.2 shows the non-existence in higher rank. In
the very rare cases where an ovoid of a polar space of rank r is induced by an ovoid of
a polar space of rank r + 1, applying Lemma 3.2 is called “slicing”. We now prove the
non-existence of ovoids of W(3,q), q odd.

Lemma 3.3. The polar space W(3,q) has ovoids if and only if q is even.

Proof. If q is even, then W(3,q) is isomorphic to Q(4,q), and an embedded quadric
Q−(3,q) in Q(4,q) yields an ovoid of W(3,q). Conversely, suppose that O is an ovoid
of W(3,q). Consider a line l of the ambient projective space PG(3,q) spanned by two
points of O. Since a generator of W(3,q) contains exactly one point of O, the line l is not a
generator of W(3,q). So |l∩O|= c ≥ 2. We count the pairs {(P,Q)|P ∈ l,Q ∈ O \ l}. For
any point P ∈ l \O, the q+1 generators of W(3,q) on P each meet O in exactly one point,
while on each point of O \ l, there is exactly one generator of W(3,q) meeting l in a point
not in O. It follows that (q+1−c)(q+1)+c = q2 +1. This is a contradiction unless c = 2.
But then in the plane P⊥ we see q + 1 points of O, which, together with P, constitute a set
H of q+2 points such that each line of P⊥ meets H in 0 or 2 points. So H is a hyperoval
of PG(2,q), and q must be even.

The non-existence of ovoids of Q−(5,q), W(5,q) and H(4,q2) can be proved using the
same technique.

Corollary 3.4. The polar spaces Q−(2n + 1,q), H(2n,q2), W(2n + 1,q), n ≥ 2, and
Q(2n,q), n≥ 3, q even, have no ovoid

Proof. Use Lemma 3.2 and the result for Q−(5,q), W(5,q) and H(4,q2), and use the iso-
morphism between W(2n−1,q), q even and Q(2n,q), q even, for the last case.

The non-existence of ovoids of P = Q(8,q), q odd, is proved in [37] by associating a
two-graph Γ to a hypothetical ovoid of P . It is shown that Γ is regular, and using known
relations between eigenvalues of the adjacency matrix of Γ, a contradiction follows rapidly.
Lemma 3.2 closes the case Q(2n,q), q odd, n≥ 4.

Conditions for the non-existence of ovoids of H(2n+1,q2) or Q+(2n+1,q) are shown
in [7, 64] by computing the p-rank of the incidence matrix of the points of a hypothetical
ovoid and the hyperplanes of the ambient projective space. These conditions, shown in
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polar space existence and/or known examples references
Q−(2n+1,q) n > 1: no [77]

Q(4,q) q odd prime: yes, and every ovoid is classical [4]
Q(4,q) q = 3h: Q(6,q) slices; 1 other example (q = 35) [45, 66, 82]; [67]
Q(4,q) q odd non prime: two infinite families [45, 82]
W(3,q) q even: classical, Tits ovoid for q = 22h+1 [69]+ [75], [85]
Q(6,q) q even; q > 3, q prime: no in both cases [77]; [65]+ [4]

q = 3h: two infinite families known [9, 45], [77]; [83]
Q(2n,q) n≥ 4: no (different proofs for q odd and even) [37]; [77]
Q+(3,q) several examples [43]
Q+(5,q) yes, equivalent with spreads of PG(3,q) [43]
Q+(7,q) q = 3h: known examples: from Q(6,q)

q = 2h : 1 infinite family; 1 other example (q = 8) [45]; [29]
q = ph, p≡ 2 mod 3, p prime, h odd: yes [45]
q≥ 5 prime: yes [11, 63]

Q+(2n+1,q) q = ph, p prime, pn >
(2n+p

2n+1

)
−

(2n+p−2
2n+1

)
: no [30], [7]

W(2n+1,q) q odd n = 1: no; all q, n > 1: no [77]
H(2n,q2) n≥ 2: no [77]
H(3,q2) yes, see spreads of Q−(5,q) [66, 78, 82]
H(5,4) no [19]

H(2n+1,q2) q = ph, p prime, p2n+1 >
(2n+p

2n+1

)2−
(2n+p−1

2n+1

)2
: no [64]

Table 2: Existence and non-existence results on ovoids

Table 2, leave open an infinite number of cases. We mention that Dye [30] gave an upper
bound on the size of partial ovoids of the polar spaces Q(2n,2), Q+(2n+1,2) and Q−(2n+
1,2), which implies the non-existence of ovoids in some cases, in particular for Q+(2n +
1,2) for n≥ 4.

In [46], it is shown that the polar space H(2n + 1,q2) has no ovoids if n > q3, and,
similarly, in [17], that Q+(2n + 1,q) has no ovoids if n > q2. This is weaker than the
earlier known conditions, but the proofs only use geometrical and combinatorial arguments.
Pushing a little bit further these arguments, it is shown in [19] that H(5,4) has no ovoid.

In [65], it is shown that Q(6,q), q > 3, has no ovoids if all ovoids of Q(4,q) are elliptic
quadrics. It is shown in [4] that this condition is satisfied for q odd prime. This leaves open
the existence or non-existence of ovoids of Q(6,q) when q = ph, p an odd prime, h > 1,
except for p = 3, where ovoids are known to exist, see below.

Ovoids of Q(4,q) and H(3,q2) can be constructed easily. The intersection with a hy-
perplane of the ambient projective space containing no generator, yields an ovoid. We call
such ovoids classical. For Q(4,q), H(3,q2) respectively, this is an elliptic quadric Q−(3,q),
a hermitian curve H(2,q2) respectively. However, in Q(4,q) (q non-prime), and in H(3,q2),
also non-classical ovoids exist. It is shown in [69, 75] that ovoids of W(3,q), q even, are
equivalent to ovoids of PG(3,q). So the Tits ovoid in PG(3,q), q even (see [85]) yields
an ovoid of W(3,q), q even, and hence yields an ovoid of Q(4,q), q even, which is non-
classical, [66]. For q odd non prime, infinite families of non-classical ovoids of Q(4,q)
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Substructures of finite classical polar spaces 39

are known. Ovoids of H(3,q2) are equivalent to spreads of Q−(5,q), of which many non-
classical examples are known, see Section 3.2.

The Klein correspondence is a bijective map from the line set of PG(3,q) to the point
set of the polar space Q+(5,q). Two lines of PG(3,q) have a point in common if and only if
they are mapped to two points of Q+(5,q) being contained in a common generator. Hence a
spread of PG(3,q) is mapped to a set of q2 +1 points of Q+(5,q) two by two not contained
in a common generator, so constituting necessarily an ovoid. Since many different families
of spreads of PG(3,q) are known (see e.g. [43]), there are many different examples of
ovoids of Q+(5,q). We mention that a regular spread of PG(3,q) corresponds to an elliptic
quadric Q−(3,q)⊂ Q+(5,q).

Only two infinite families of ovoids of Q(6,q) are known, for q = 3h, h≥ 1. Embedding
Q(6,q) as a hyperplane section in Q+(7,q), it is easily observed that an ovoid of Q(6,q)
induces an ovoid of Q+(7,q), and all known ovoids of Q+(7,q), q = 3h, arise from ovoids
of Q(6,q). But several (infinite families of) ovoids Q+(7,q), q 6= 3h, are known, and all of
them are not contained in a hyperplane section.

We now refer to Table 2 for an overview, including references.

3.2 Spreads

From the definition, it follows that ovoids of a polar space of rank 2 are spreads of the dual
of P . This immediately yields some examples of spreads in the rank two case. But we start
with a construction result in the symplectic polar space W(2n+1,q).

Consider the projective space PG(d,q). When (t +1) | (d +1), the multiplicative group
of Fqd+1 can be partitioned by cosets of the multiplicative group of Fqt+1 . Each such coset
is a Fq vector space, so we find a partition of PG(d,q) by t-dimensional projective spaces.
For d = 2n + 1 and t = n, we find a spread of PG(2n + 1,q) consisting of n-dimensional
subspaces. It is shown in [29] that there exists always a symplectic polarity φ of PG(2n +
1,q) such that all n-dimensional subspaces of this spread are totally isotropic with relation
to φ. This yields a spread of the polar space W(2n + 1,q), n ≥ 1, and, when q is even, a
spread of the polar space Q(2n + 2,q), n ≥ 1. The same result is also shown in [76] for
n = 2, with a proof that is extendable to general n.

The polar space Q+(4n + 1,q), n ≥ 1, has no spread, because by Result 1.3, at most
two generators can be skew. Consider now Q(4n+2,q), n≥ 1, as a hyperplane intersection
of Q+(4n + 3,q). Suppose that Q(4n + 2,q) has a spread S . Then each element π ∈ S is
contained in two generators of Q+(4n+3,q), one of each class, meeting in π. By Result 1.3,
the set S ′ of all generators of one class, meeting Q(4n+2,q) in an element of S , is a spread
of Q+(4n+3,q). Also, using hyperplane sections, the following proposition is easy to see.

Result 3.5. [43]. If the polar space Q+(2n+1,q),n≥ 2;Q(2n,q),n≥ 3;H(2n+1,q2),n≥
2, respectively, has a spread, then the polar space Q(2n,q),n ≥ 2;Q−(2n− 1,q),n ≥
3;H(2n,q2),n≥ 2, respectively, has a spread.

It is shown in [66] that any spread of PG(3,q) gives rise to a spread of Q−(5,q). Many
spreads of PG(3,q) are known, so this gives rise to many spreads of Q−(5,q), and, dually to
ovoids of H(3,q2). Finally, using the existence of a triality of Q+(7,q), one observes easily
that an ovoid of Q+(7,q) is equivalent to a spread of Q+(7,q). This has also consequences
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polar space existence and/or known examples references
W(2n+1,q),n≥ 1 yes; n = 1: also see ovoids of Q(4,q) [29], [76]; [66]

Q(2n,q),n≥ 2 q even: yes; n = 2: also see ovoids of Q(4,q) Section 2; [66]
Q(6,q) all known examples: see spreads of Q+(7,q) Result 3.5, [84]

Q−(2n+1,q),n≥ 2 q even: yes Result 3.5
Q−(5,q) yes, from spreads of PG(3,q) [66]

Q+(4n+3,q),n≥ 1 q even: yes: see spreads of Q(4n+2,q) and Theorem 1.3
Q+(4n+1,q) no [43]

Q+(3,q) yes [43]
Q+(7,q) all known examples: see ovoids of Q+(7,q) [84]
Q(4n,q) q odd: no [75, 80]

H(2n+1,q2) no [77, 80]
H(4,4) no, unpublished computer result of A.E. Brouwer

Table 3: Existence and non-existence results on spreads

for Q(6,q), since a spread of Q+(7,q) induces, using a hyperplane section, a spread of
Q(6,q). The non-existence of spreads of the polar spaces Q(4n,q), q odd and n > 1, and
H(2n+1,q2), n > 1 is proved for the first time in [80]. The proofs are purely geometric.

We refer now to Table 3 for an overview, including references.

3.3 m-Systems

Let P be a finite classical polar space of rank r ≥ 2. A partial m-system of P is a set
M = {π1, . . . ,πk} of m-dimensional subspaces of P , such that no generator of P containing
πi has any point in common with an element of M \ {πi}, for all elements πi ∈ M . If
|M | = µP, then the partial m-system is called an m-system. Remark that for m = 0, an
m-system is an ovoid of P , while for m = r−1, an m-system is a spread of P .

This definition is given by Shult and Thas in [71]. Within the scope of this article, it
is not possible to survey all existence and non-existence results of m-systems in a detailed
way. Therefore, we will give information on particular facts and refer to existing surveys.

Field reduction is an appropriate way to construct m′-systems from m-systems. Con-
sider the hermitian variety H(3,q2e), e odd, with associated hermitian form κ. With T the
trace map from Fq2e into Fq2 , it is easy to check that the map T ◦κ induces a hermitian form
on V (3e,q2), so there is a geometry morphism from H(3,q2e) to H(3e− 1,q2), mapping
points of H(3,q2e) to (e− 1)-dimensional subspaces of H(3e− 1,q2). We have seen that
H(3,q2e) has plenty of ovoids, and hence, H(3e−1,q2) has plenty of (e−1)-systems.

The first examples of m-systems, those described in [71], are actually obtained by field
reduction. Most known cases now are still found there, two cases are described in [72],
and two cases are described in [39], and we refer to [81] for a survey. Morphisms of finite
classical polar spaces based on field reduction are studied comprehensively in [33].

We discuss three sources of non-existence results on m-systems. The oldest results are
due to Shult and Thas, who obtain non-existence results on m-systems comparable with
the non-existence results on ovoids of Blokhuis and Moorehouse in [7, 64]. The following
results are shown in [73], and are essentially based on the computation of the p-rank of an
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incidence matrix in two ways.

Result 3.6 (see [73]). If the finite classical polar space P admits an m-system, then
(i) for P = Q+(2n+1,2h), 2n ≤

(2n+2
m+1

)
(ii) for P = Q(2n,q), q = ph, p an odd prime, pn ≤

((2n+1
m+1)+p−2

p−1

)
−

((2n+1
m+1)+p−4

p−3

)
(iii) for P = Q+(2n+1,q), q = ph, p an odd prime, pn ≤

((2n+2
m+1)+p−2

p−1

)
−

((2n+2
m+1)+p−4

p−3

)
(iv) for P = H(2n+1,q2), q = ph, p a prime, p2n+1 ≤

((2n+2
m+1)+p−2

p−1

)2
−

((2n+2
m+1)+p−4

p−3

)2

Recently, Sin showed in [74] an upper bound on the number of elements of a partial
m-system, using the p-rank approach of an incidence matrix in a more elaborate way. Let
N(n+1,r, p−1) be the number of monomials in n+1 variables of total degree r and with
(partial) degree at most p−1 in each variable. This number is equal to the coefficient of xr

in (1+ x+ · · ·+ xp−1)n+1.

Result 3.7 (see [74]). Let M be a partial m-system of a finite classical polar space P with
ambient projective space PG(n,q), q = ph, p prime. Then |M | ≤ 1+N(n+1,(m+1)(p−
1), p−1)h.

If the right hand side is smaller than µP , then this implies the non-existence of m-
systems in P . It is hard to compare both bounds in general. Both bounds imply non-
existence of m-systems for polar spaces of “high” rank, but for given m and q, Result 3.7
implies non-existence often for lower rank than Result 3.6. A careful analysis is done
in [74].

To describe the third non-existence result, we first have to go back to [71]. Suppose that
P ∈ {W(2n + 1,q),Q−(2n + 1,q),H(2n,q2)} and that M is an m-system of P . The point
set M̃ is the union of the elements of M as point sets. In [71], it is shown that M̃ is a
two intersection set with respect to the hyperplanes of the ambient projective space. This
implies that a strongly regular graph can be associated to M . Hamilton and Mathon study
this graph in [38] and compute its eigenvalues. This yields the following result.

Result 3.8. m-Systems of W(2n+1,q),Q−(2n+1,q),H(2n,q2) do not exist for n > 2m+1.

Hamilton and Mathon analyze their result and give examples for W(2n + 1,q), q even
and n odd, and Q−(2n + 1,q), n odd, showing that their bound is sharp in these cases.
They also give an example that shows that their bound is better in some cases than the
bound of [73]. Finally, the paper contains classification results for m-systems of W(2n +
1,2),Q−(2n+1,2), and Q+(2n+1,2) for m = 1,2,3, and 4, and applications.

A recent paper providing a general classification result is [6]. Bamberg and Penttila
give a complete classification of m-systems admitting an insoluble transitive collineation
group. There is no restriction on m, so their classification also holds for ovoids and spreads
satisfying the condition. This paper also contains a detailed overview of some construction
methods mentioned here, and a long list of references.

3.4 m-Ovoids

Let P be a finite classical polar space of rank r ≥ 2. An m-ovoid is a set O of points of P ,
which has exactly m points in common with each generator of P . Thas defined m-ovoids of
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generalized quadrangles in [79]. Before this introduction, Segre studied already m-ovoids
of Q−(5,q), but in the dual setting, i.e. as sets of lines of H(3,q2) covering each point m
times. Segre proved that m = q+1

2 , when q is odd, [70]. A line sets of H(3,q2) covering
each point exactly q+1

2 times is also called a hemisystem of H(3,q2). Segre also gives an
example of a hemisystem for q = 3, and it is only in [13] that hemisystems of H(3,q2)
are constructed for all odd q. In [12], m-ovoids of W(3,q) are constructed, for q odd and
m = q+1

2 and for q even and m ∈ {2, . . .q−1}.
Up to our knowledge, the first systematic treatise of m-ovoids of polar spaces is [5].

In this paper, m-ovoids are treated in a more general framework, related to i-tight sets and
intriguing sets of polar spaces. It is shown that m-ovoids of a polar space P , with P ∈
{H(2n,q2),Q−(2n + 1,q),W(2n + 1,q)} have two intersection numbers with relation to
hyperplanes of the ambient projective space. This gives rise to a strongly regular graph.
Expressing that one of the parameters must be larger than 0, yields the lower bound on m.
The following result is obtained in this way.

Result 3.9. Let P be H(2r,q2),Q−(2r +1,q),W(2r−1,q) respectively. If an m-ovoid of P
exists, then m≥ b, with b = (−3+

√
9+4q2r+1)

2q2−2 ,
(−3+

√
9+4qr+1)

2q−2 , (−3+
√

9+4qr)
2q−2 respectively.

The above bounds are larger than 1 for H(2r,q2) and Q−(2r + 1,q) for r ≥ 2 and for
W(2r− 1,q) for r > 2, for all q. Using a slicing argument that is in fact comparable with
Lemma 3.2, the authors obtain the following result.

Result 3.10. The following polar spaces do not admit a 2-ovoid: W(2r−1,q), q odd and
r > 2; Q−(2r +1,q), r > 2; H(2r,q2), r > 2; and Q(2r,q), r > 4.

Proof. Suppose that O is a 2-ovoid of the polar space P of rank r which is one of the
mentioned examples. Consider any point Q ∈ O. Then the quotient space on Q is a polar
space of rank r− 1 of the same type. Since all generators of P on Q meet O \ {Q} in
exactly one point, O induces an ovoid in this quotient space. The result now follows from
the non-existence of ovoids in the polar spaces mentioned.

4 Partial ovoids and partial spreads

Let P be a finite classical polar space. A partial ovoid of P is a set O of points of P with the
property that every generator of P contains at most one point of O. A partial ovoid is called
proper if it is not an ovoid. A (proper) partial ovoid is called maximal if it is not contained
in a partial ovoid of larger size. Clearly, a maximal proper partial ovoid is not an ovoid.

A partial spread of P is a set S of pairwise disjoint generators. A partial spread is called
proper if it is not a spread. A proper partial spread is called maximal if it is not contained
in a partial spread of larger size. Clearly, a maximal proper partial spread is not an spread.

Obviously, in the rank 2 case, (maximal) (proper) partial ovoids become (maximal)
(proper) partial spreads in the dual space. After non-existence proofs for ovoids, spreads
respectively, partial ovoids, partial spreads respectively, arise naturally, and then we are
interested in an upper bound on their size. Secondly, we wish to derive a lower bound on the
size in case of maximality. Finally, when ovoids, spreads respectively, exist, extendability
of proper partial ovoids, proper partial spreads respectively, is studied.
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polar space lower bound references
W(2n+1,q) q+1 (sharp) [10], [16]
Q(4,q), q odd 1.419q

[16, Theorem 2.2 (b)]Q(6,q), q ∈ {3,5,7}; q≥ 9 odd 2q; 2q−1
Q(2n,q), n≥ 4, q odd; Q(8,3) 2q+1; 2q

Q−(5,q), q = 2; 3; q≥ 4 6; 16; 2q+2
[16, Theorem 2.2 (c)]

Q−(2n+1,q) 2q+1
Q+(2n+1,q), n = 2; n≥ 3 2q; 2q+1 [16, Theorem 2.2 (a)]

H(3,q2), q odd; even q2 +1+ 4
9 q ; q2 +1 (sharp) [60]; [2]

H(2n+1,q2), n≥ 2 q2 +q+1 [15, Theorem 2.3]
H(2n,q2), n = 2; n≥ 3 q2 +q+1 [62]; [15, Theorem 2.2]

Table 4: Lower bounds on the size of maximal partial ovoids

4.1 Partial ovoids

The first series of results we mention are based on the use of a combinatorial approach also
found in [34], where Glynn derives a lower bound on the size of maximal partial spreads of
PG(3,q). Under the Klein correspondence, this is equivalent to a lower bound on the size
of maximal partial ovoids of Q+(5,q). But not only the result translates, also the proof, and
this proof can also be applied for partial ovoids of other polar spaces. This yields lower
bounds on the size of maximal partial ovoids of Q+(2n+1,q), n≥ 2, Q−(2n+1,q), n≥ 2
and Q(2n,q), n ≥ 3 and q odd. A proof can be found in e.g. [16]. Lower bounds for other
polar spaces obtained using a combinatorial approach, are also known. We refer to Table 4
for an overview.

Some upper bounds on the size of partial ovoids are derived from the non-existence
proofs of ovoids. This complicates the situation when ovoids are known to exist, or when
the existence or non-existence is not yet proved. Despite this complication, an upper bound
on the size of maximal proper partial ovoids of W(3,q), without any assumption on q, was
obtained in [47]. Recall that W(3,q) has ovoids if and only if q is even. In [80], an upper
bound on the size of partial ovoids in W(2n+1,q), n≥ 2, is obtained. In [16], this bound is
improved for n = 2, and using inductive arguments, this yields an upper bound for general n
that is better than the one in [80]. The inductive argument is valid in all polar spaces, so we
first describe now the low rank cases, and then give an overview of the inductive arguments.

The case Q(4,q), q odd, seems to be much harder. Currently, it is only known that
partial ovoids of size q2 always extend to ovoids and that maximal proper partial ovoids of
Q(4,q) of size q2−1, q = ph, p odd, do not exist for h > 1, and that examples are known for
q ∈ {3,5,7,11}. The non-existence result is shown in [14], and the proof is also presented
in [3, Corollary 6.9]. Furthermore, in [36], it is shown that if a maximal proper partial ovoid
of Q(4,q), q odd, of size q2 + 1− δ exists, δ <

√
q, then δ is even. Projection arguments

and the results known on proper partial ovoids of Q(4,q) for different values of q, yield an
upper bound on the size of maximal proper partial ovoids of Q(6,q) in [16].

A recent treatment of the case Q−(5,q) can be found in [15], where in fact the dual, i.e.
partial spreads of H(3,q2), are considered, and which is described below.

Upper bounds on the size of maximal proper partial ovoids of Q+(5,q) are under the
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polar space upper bound references
W(3,q) q2−q+1 [47]
W(5,q) 1+ q

2(
√

5q4 +6q3 +7q2 +6q+1−q2−q−1) [16]
Q(4,q), q odd q2 (see description above)

Q(6,q), q > 13, q prime q3−2q+1 [16]
Q(8,q), q odd, q not a prime q4−q

√
q [16]

Q−(5,q) 1
2(q3 +q+2) (sharp for q = 2,3) [15] ( [43])

H(3,q2) q3−q+1 (sharp) [47]
H(5,q2) q5 +1− (q2 + 1

4 q−1)/
√

2 [15]
H(4,q2) q5−q4 +q3 +1 [15]

Table 5: Upper bounds on the size of maximal proper partial ovoids in low rank polar spaces

polar space recursion references
W(2n+1,q) xn,q ≤ 2+(q−1)xn−1,q [16]
Q−(2n+1,q) xn,q ≤ 2+ qn+1

qn−1+1(xn−1,q−2) [46]
Q(2n,q) xn,q ≤ 1+q(xn−1,q−1) [16]

Q+(2n+1,q) xn,q ≤ 2+ qn−1
qn−1−1(xn−1,q−2) [16]

H(2n,q2) xn,q2 ≤ q2xn−1,q2 −q2 +1 [15]
H(2n+1,q2) xn,q2 ≤ q2xn−1,q2 −q2 +1 [15]

Table 6: Inductive bounds on the size of partial ovoids

Klein correspondence equivalent with upper bounds on the size of maximal proper partial
spreads of PG(3,q). For q not prime and not a square, the best upper bound is found in [52].
A comprehensive survey, also including results for q square and for q prime, can be found
in [61]. Improvements on parts of [61] can be found in [32]. Constructions of maximal
partial spreads of PG(3,q) can e.g. be found in the series of papers [40–42].

The best upper bound on the size of maximal proper partial ovoids of H(3,q2) is found
in [47], where the dual case is considered, i.e. maximal proper partial spreads of Q−(5,q),
using geometrical arguments. An analogous result for H(5,q2) is developed in [15], where
also an upper bound on the size of partial ovoids of H(4,q2) is obtained, which improves
an earlier result of [36].

Suppose that Pr is a polar space of a given type of rank r. If it has no ovoid, and an upper
bound on the size of a partial ovoid is known, then the argument used in Lemma 3.2 makes
it possible to deduce an upper bound for a partial ovoid of a polar space Pr+1. Inductive
bounds described in [15] and [16] are presented in Table 6, where xn,q denotes the upper
bound on the size of a partial ovoid in the corresponding classical finite polar space with
ambient projective space PG(2n,q) or PG(2n+1,q).

4.2 Partial spreads

Partial spreads require a different treatment than partial ovoids. On the one hand, counting
techniques like the one of Glynn mentioned above for maximal partial ovoids, applied in
rank 2 to obtain lower bounds, yield, dualizing, lower bounds on the size of maximal partial
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spreads. On the other hand, inductive bounds are not possible for spreads, so arguments
must be found for general rank.

We first mention results on lower bounds on the size of maximal partial spreads of polar
spaces. It is shown in [15] that any maximal partial spread of a polar space P has at least
t + 1 elements, where t + 1 is the number of lines through a point in the polar space P ′ of
rank 2 of the same type as P . For hyperbolic quadrics, this theorem yields a lower bound
of 2, which is improved in [15] for Q+(4n + 3,q) to q + 1. Better lower bounds for polar
spaces of rank 2 can, if applicable, be found in Table 4, by applying duality. For H(4,q2),
the following result is known.

Result 4.1 (see [62, Theorem 2.2]). A maximal partial spread of H(4,q2) contains at least
dq3 +q

√
q− q

2 −
3
8
√

q+ 7
8e elements.

As indicated, we start our overview of upper bounds with the case H(3,q2). The proof
relies on a geometric property of hermitian varieties that is useful in several cases.

Result 4.2 (see [80]). Let π1, π2 and π be mutually skew generators of H(2n+1,q2). Then
the points of π that lie on a line of H(2n + 1,q2), meeting π1 and π2, form a hermitian
variety H(n,q2) in π.

Theorem 4.3 (see [15]). A partial spread of H(3,q2) has at most 1
2(q3 +q+2) elements.

Proof. Suppose that S is a partial spread of H(3,q2) and that |S | = q3 + 1− δ. Then the
number of points of H(3,q2) not covered by lines of S is h = δ(q2 +1). We call these points
holes.

Consider triples (l1, l2,P), where l1 and l2 are different elements of S and where P is a
hole. We will estimate how many of these triples have the property that the unique line of
PG(3,q2) on P that meets l1 and l2 is a line of H(3,q2).

To do so, we consider a hole P. Then P lies on q + 1 lines of H(3,q2). If xi, i =
1, . . . ,q + 1, is the number of points on the i-th line on P covered by an element of S , then
we have ∑xi = |S | and hence

∑xi(xi−1)≥ (q+1)
|S |

q+1

(
|S |

q+1
−1

)
.

So we find a lower bound on the number of triples, using that the number of holes equals
δ(q2 +1).

Now choose a pair (l1, l2) of distinct spread elements. There are q2 +1 lines of H(3,q2)
that meet l1 and l2. These lines cover (q2 + 1)(q2 − 1) points of H(3,q2) not on l1 and
l2. By Result 4.2, every line of S\{l1, l2} contains q + 1 of these points. Thus there are
(q2 +1)(q2−1)− (|S |−2)(q+1) holes. Together with the lower bound, this gives

|S |(|S |−1)
[
(q4−1)− (|S |−2)(q+1)

]
≥ (q3 +1−|S |)(q2 +1)|S |

(
|S |

q+1
−1

)
.

After simplification, we obtain |S | ≤ 1
2(q3 +q+2).

Remarkably, this bound is sharp for q = 2 and q = 3, [29, 31]. But for q ≥ 4, we do
not know whether this bound is sharp. In [15], this proof is presented for partial spreads of
H(4n+3,q2) and also yields for n≥ 1 an upper bound.

Result 4.2 has an analogon for hyperbolic quadrics and symplectic polar spaces.
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Result 4.4 (see [48]). (i) Let g1, g2 and g3 be three mutually skew generators of Q+(4n+
3,q). Then the lines of g1 that lie in a totally isotropic 3-space intersecting g2, g3 in a
line, form a symplectic space W(2n+1,q) in g1.

(ii) Let g1, g2 and g3 be three pairwise skew generators of W(2n + 1,q), n ≥ 2. Let P
be the set of points P in g1 such that there exists a line in W(2n + 1,q) through P
intersecting g2 and g3.
For q even and n even, P forms a pseudo-polarity of g1.
For q even and n odd, P is either a pseudo-polarity or a symplectic polarity (depend-
ing on the relative position of g1, g2 and g3).
For q odd and n even, P is a parabolic quadric in g1.
For q odd and n odd, P is either an elliptic or hyperbolic quadric (depending on the
relative position of g1, g2 and g3).

In [48], these results are used to derive lower bounds on the size of maximal partial
spreads in these polar spaces.

Vanhove [86] obtained very recently an upper bound on the size of partial spreads of
H(4n+1,q2). The proof relies on a remarkable link to association schemes, combinatorial
structures consisting of a set Ω and a set of relations partitioning Ω×Ω, with high regularity.
In our case, if Ω is the set of generators of a polar space of rank d, and two generators g1
and g2 are i-related if the codimension of g1 ∩ g2 in g1 is i, then (Ω,(R0, . . . ,Rd)) is an
association scheme. A partial spread of the polar space is a clique in the relation Rd of this
association scheme.

The real algebra RΩ can be decomposed orthogonally in D + 1 subspaces Vi, all of
them eigenspaces of the relations R j of the association scheme. Define the matrix P = (Pi j),
where Pi j is the eigenvalue of R j for the eigenspace Vi. Then the dual matrix of eigenvalues
is defined as Q = |Ω|P−1.

Let a be the inner distribution vector of any subset X of Ω. Then it is shown in e.g. [28]
that every entry of aQ is non-negative. For X a clique in a relation R j, this yields an
upper bound on the size of X , which can be described only using the greatest and smallest
eigenvalue of R j [35]. Applied to this case, q2n+1 + 1 is found as upper bound on the size
of a partial spread. For other polar spaces, this method does not give non-trivial results.

Vanhove gives in [87] an alternative proof for this result, which is now purely geometric
and based on a clever generalization of steps taken in [22]. This method gives some insight
in case of equality, but this is not as far exploited yet as in [22], where it is shown that a
partial spread attaining the upper bound, gives rise to a second partial spread of the same
size.

Note that the upper bound q2n+1 + 1 on the size of a partial spread in H(4n + 1,q2) is
sharp. One sees easily that a spread of the symplectic polar space W(4n + 1,q) embedded
in H(4n+1,q2) extends to a partial spread of H(4n+1,q2). Maximality (proved earlier for
n = 1 in [1], and for general n in [51]) now follows from the upper bound.

Only for Q(4n,q), q odd, and Q+(4n + 1,q), it is proved, without further assumptions
on q, that spreads do not exist. This is clear for Q+(4n + 1,q) by Result 1.3. An upper
bound on the size of partial spreads of Q(4n,q), q odd, is proved in [36]. The upper bound
is related to the size blocking sets of PG(2,q) (see e.g. [8]), and is obtained by analyzing the
set of points of Q(4n,q) not covered by any element of the partial spread, and describing
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polar space upper bound references
Q(4n,q), q odd qn +1−δ, δ≥ ε, with q+1+ ε the size of the smallest [36]

non-trivial blocking set of PG(2,q)
Q+(4n+1,q) 2

H(3,q2) 1
2(q3 +q+2) (sharp for q = 2,3) [15] ( [31, 43])

H(4n+1,q2) q2n+1 +1 [22], [86], [87]
H(4n+3,q2) q4n+3−q3n+3(

√
q−1) [15]

Table 7: Upper bounds on the size of partial spreads

this set using characterization results on multiple weighted blocking sets (minihypers) of
the ambient projective space. Recent results on the latter objects can be found in [49].

Table 7 contains an overview of the cases where the non-existence of a spread is proved.
The existence of spreads of the polar space Q(6,q) and Q+(7,q) is not known for all

q. In this situation the difficulty is to find an upper bound on the size of a maximal partial
spread, without any assumption on the existence of spreads. Using the results on (maximal)
partial ovoids of Q+(7,q) and the triality map of Q+(7,q), the following result is derived
in [16].

Result 4.5. The polar space Q+(7,q) has no maximal proper partial spread of size q3 +
1−δ with 0 < δ < q+1.

Embedding Q(6,q) in Q+(7,q) as a hyperplane section, we find in [16] exactly the same
result for Q(6,q).

Upper bounds on the size of maximal proper partial spreads of Q(4,q) and Q−(5,q) are
found in Theorem 5.2 (a) and (b).

5 Covers and blocking sets

Let P be a classical finite polar space. A cover is a set C of generators such that every point
of P lie in at least one generator of C . A cover is minimal if it does not contain a smaller
cover. A blocking set is a set B of points with the property hat every generator contains at
least one point of B . A blocking set is minimal if it does not contain a smaller blocking set.

If P has rank 2, then clearly a blocking set of P is mapped by a duality on a cover of the
dual space of P . So as in the ovoid-spread case, dualities, and other morphisms, can play a
role in the construction of these objects from each other.

The study of blocking sets and covers is motivated in the same way as the study of
partial ovoids and partial spreads. Non-existence of ovoids motivates the study of the sets of
points blocking all generators. Existence of ovoids poses the question how large a blocking
set must be if it does not contain an ovoid. The motivation for the study of covers is of
course the same.

5.1 Covers

The study of covers is similar to the study of maximal partial spreads, but there are addi-
tional difficulties. We explain this with the following example.
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Consider a minimal cover C (or maximal partial spread) of Q(4,q) (or Q−(5,q)) with
q2 +1±δ (or q3 +1±δ) lines. Let w : P →N be the function that assigns to every point of
Q(4,q) (or Q−(5,q)) the number w(P) of lines of C through P. Let w′(P) = w(P)− 1 (or
w′(P) = 1−w(P) if we start from a partial spread).

From now on, we work with the weight function w′ and the arguments are the same
for covers and spreads. The only difference is that in the case of partial spreads we know
that w′ has range {0,1}. Let π be a hyperplane, every line of C meed π either in 1 or q+1
points, so

∑
P∈π

w′(P)≡ δ mod q .

This shows that for 1 ≤ δ < q, the weight function w′ defines a blocking set of the
ambient projective space, completely contained in P . For such blocking sets we have the
following result.

Lemma 5.1 (see [47, Lemma 2.1]). Consider in PG(4,q) a quadric that is a cone with
vertex a point P over a non-degenerate elliptic quadric Q−(3,q). Suppose that B is a set of
at most 2q points contained in this quadric. If every solid of PG(4,q) meets B, then one of
the following possibilities occurs:

(a) Some line of the quadric is contained in B, or,

(b) |B| > 9
5 q + 1, P ∈ B, and there exists a unique line l of the quadric that meets B in at

least 1+ 1
3 |B| points. This line has at most |B|−1−q points in B.

Applying this lemma to the weight function w′ shows immediately that for δ ≤ 4
5 q, the

corresponding blocking set contains a line. If w′ has range {0,1} (i.e. we start from a
partial spread), then an extra argument shows that (b) does not occur, so one finds a line for
all δ < q. We may conclude the following result.

Theorem 5.2. (a) Every partial spread of Q(4,q) of size q2 + 1− δ (δ < q) extends to a
spread.

(b) Every partial spread of Q−(5,q) of size q3 +1−δ (δ < q) extents to a spread.

(c) Let C be a cover of Q(4,q) of size q2 +1+δ (δ < 4
5 q). For every point P let w′(P)+1

be the number of lines of C through P. Then there exists δ (not necessarily different)
lines l1, . . . , lδ of Q(4,q) such that w′(P) is equal to the number of lines li through P.

(d) Let C be a cover of Q−(5,q) of size q3 +1+δ (δ < 4
5 q). For every point P let w′(P)+1

be the number of lines of C through P. Then there exists δ (not necessarily different)
lines l1, . . . , lδ of Q−(5,q) such that w′(P) is equal to the number of lines li through P.

In case of partial spreads, this theorem is exactly what we want. In case of covers, it
is unclear if (some of) the lines l1, . . . , lδ belong to the cover. If yes, then the cover is not
minimal, as the lines li consist entirely of multiple covered points. So, in order to transform
(c) and (d) into a bound for minimal covers that are not spreads, one has to show that that
all the lines li belong to the cover. For Q(4,q) this was done for small δ using a long and
complicated algebraic argument.
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Result 5.3 (see [47, Theorem 1.3]). Let q be odd. Then a cover of Q(4,q) contains at least

q2−q− 3
2 +

√
8q2+20q+25

2 ≈ q2 +0.414q lines.

For Q−(5,q) this is however not possible as Q−(5,q) has minimal covers of size q3 +2,
constructed in the following example.

Example 5.4. Consider a hermitian spread S of Q−(5,q), that is a spread translating to
a classical ovoid of H(3,q2) under the duality between Q−(5,q) and H(3,q2). Using this
duality, it is easy to see that such a spread is the union of q2 reguli Ri through a common
line. Let Ropp

i be the regulus opposite to Ri. Define S ′ := (S ∪Ropp
1 )\R1. Then S ′ is again

a spread. But this procedure can be repeated, and now S ′′ := (S ′ ∪Ropp
2 ) \R2 will be a

minimal cover of size q3 + 2. Clearly, one can construct minimal covers of any size in the
range q3 +2, . . . ,q3 +q2 using this method.

This is quite typical for covers and blocking sets of finite polar spaces. Using arguments
from the partial spread and partial ovoid case yield results similar to Theorem 5.2. Deciding
if the extra lines (or points) are already inside the cover (or blocking set) is the hard part.

5.2 Blocking sets

Suppose that Pr is a polar space of rank r of a given type. In most cases where the non-
existence of ovoids of Pr−1 is proved, the smallest minimal blocking sets of Pr are known.
To describe the examples, we introduce a truncated cone. Suppose that π is any subspace
in PG(n,q), and O any point set contained in π′, a subspace skew to π. The truncated cone
π∗O, O ⊆ π⊥ \π is the set of all points on all lines connecting a point of π and a point of O,
minus the points of π. Table 8 lists the smallest minimal blocking sets of polar spaces for
which the non-existence of ovoids is proved, except for W(2n + 1,q), q odd, and H(5,4).
A d-dimensional subspace of PG(n,q) is denoted as πd .

The result on blocking sets of the polar spaces W(2n+1,q), n ≥ 2 is found by Metsch
[58]. It classifies the smallest minimal blocking sets when q is even, and shows a lower
bound on the size when q is odd. Apart from this lower bound, nothing is known. Indepen-
dently, De Beule and Storme treated the case n = 2 and q even in [24].

Another interesting open case is to determine the smallest minimal blocking sets of
Q(2n,q), q odd, q not prime and q 6= 3. It is conjectured (see e.g. [65]) that Q(2n,q) has
ovoids if and only if q = 3h, and it is expected that the smallest minimal blocking sets
always are truncated cones π∗n−3O, O an ovoid of Q(4,q), when q 6= 3h.

In the spaces Q+(2n + 1,q), q ∈ {2,3}, n ≥ 4, not only the smallest minimal blocking
sets are known. In [26] and [23], the geometrical arguments used to study blocking sets
enable to classify the two smallest minimal blocking sets of Q+(2n + 1,2), n ≥ 3, and the
three smallest minimal blocking sets of Q+(2n+1,3), n≥ 3.

For Q(4,q), the smallest blocking sets are ovoids. Clearly, a truncated cone π∗0C , C a
conic, is a minimal blocking set of Q(4,q) different from an ovoid. But up to now, for q
even, minimal blocking sets different from an ovoid of size s, s < q2 +1+ q+4

6 , are excluded
[68]. For q odd, q prime, only minimal blocking sets of size q2 +2 are excluded [20]. The
smallest minimal blocking sets of Q(6,3) different from an ovoid are truncated cones π∗0O,
O an ovoid of Q(4,3) [25]. Blocking sets of W(3,q), q odd, are dually the same as covers
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polar space example references
W(2n+1,q), q even, n > 2 π∗n−2O, O an ovoid of W(3,q) [58], [24]

Q(2n, p), p > 3 odd prime, n > 2 π∗n−3Q−(3,q) [18]
Q−(2n+1,q), n≥ 2 π∗n−2Q−(3,q) [53]

H(2n,q2), n≥ 2 π∗n−2H(2,q2) [21]
Q(2n,3), n≥ 4 π∗n−4O, O an ovoid of Q(6,3) [25]

Q+(2n+1,q), q ∈ {2,3}, n≥ 4 π∗n−4O, O an ovoid of Q+(7,q) [26], [23]

Table 8: Smallest minimal blocking sets

of Q(4,q), q odd, so we refer to Result 5.3. Finally, minimal blocking sets of H(3,q2),
dually minimal covers of Q−(5,q), are constructed with size in the range q3 +2, . . . ,q3 +q2

in Example 5.4.
Let now P be a finite classical polar space of rank r. A blocking set with respect to the s-

dimensional spaces of P is a set of points of P blocking all s-dimensional spaces, s≤ r−1,
contained in P . When s = r− 1, we are considering blocking sets. We have seen that in
some cases the smallest blocking sets are truncated cones with base an ovoid of a polar
space of low rank, so the existence or non-existence of ovoids, which is not completely
known for all polar spaces, complicates the work. However, more can be done for blocking
sets with respect to s-spaces for 1 ≤ s < r−1. The basic observation is that s-dimensional
spaces of P also are s-dimensional subspaces of the ambient projective space, and these
are all blocked by a subspace of the ambient projective space of codimension s. In many
cases, it can be shown that a blocking set with respect to s-dimensional subspaces of P can
be constructed from an intersection of P with a subspace of the ambient projective space
of codimension s . All results we describe here, are based on results found in the series of
papers [50, 53–57, 59]. The following general result for quadrics is proved in [57].

Result 5.5. Let Q be a non-degenerate quadric and d the dimension of its generators.
Assume that s < d when Q is not elliptic, and assume s ≤ d otherwise. Then the smallest
(minimal) blocking sets with respect to the s-dimensional spaces of Q have the form (T \
T⊥)∩Q for a suitable subspace T of the ambient projective space of codimension s.

The suitability of the subspace T refers to its intersection type with Q , which we will
describe in detail below. The size of the constructed blocking set is dependent on the inter-
section type, hence it is not surprising that in some cases minimal blocking sets are obtained
that are not the smallest. Result 5.5 leads to the classification of blocking sets with respect to
s-dimensional spaces below a given size. Table 9 surveys known results for quadrics. Each
line must be interpreted as: a blocking set B of the space P with respect to its s-dimensional
spaces, with size smaller than the given size, contains one of the given examples. Only for
Q−(2n + 1,q) the shown result includes the result for the smallest minimal blocking sets
with respect to its generators.

The following result and corollary for H(2n+1,q2) is proved in [59].

Result 5.6. Consider H(2n+1,q2) and an integer s, 1≤ s < n. Concerning the cardinalities
of the minimal blocking sets of H(2n + 1,q2) with respect to s-spaces, the sets (T \T⊥)∩
H(2n+1,q2), T a subspace of the ambient projective space PG(2n+1,q2) of codimension
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polar space dimension s given size structure
Q+(2n+1,q) 2≤ s≤ n−1 (qn +qs−2 +1)θn−s(q) π∗s−3Q−(2(n− s)+3,q)
Q+(2n+1,q) 1 (qn−1 +1)θn−1(q) Q(2n,q) or

P∗Q+(2n−1,q)
Q(2n,q) 1≤ s≤ n−2 (qn +qs−1 +1)θn−s−1(q) π∗s−2Q−(2(n− s)+1,q)

Q−(2n+1,q) 2≤ s≤ n−2 (qn+1 +qs +1)θn−s−1(q) π∗s−1Q−(2(n− s)+1,q)

Table 9: Blocking sets with respect to s-spaces

s, provide the two smallest cardinalities when s ∈ {1,2} and the s−2 smallest cardinalities
when s≥ 3.

Corollary 5.7. The smallest blocking sets of H(2n+1,q2) with respect to s-spaces, 1≤ s <
n, are truncated cones π∗s−2H(2n+2−2s,q2).

Consider the embedding of H(2n,q2) in H(2n + 1,q2) as a hyperplane section. It is
clear that a point set B ⊂ H(2n,q2) is a blocking set of H(2n,q2) with respect to s-spaces,
1 ≤ s ≤ n− 1, if and only if B is a blocking set of H(2n + 1,q2) with respect to (s + 1)-
spaces. So by Corollary 5.7 we know the smallest blocking sets of H(2n,q2) with relation
to s-spaces, 1 ≤ s < n− 1. Recall that the case s = n− 1 for H(2n,q2) is described in the
fourth line of Table 8. Finally, the case W(2n + 1,q), q odd, is completely open. Even the
smallest blocking sets with respect to lines of W(2n+1,q), q odd, are not known.
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