
Int J Mater Form
DOI 10.1007/s12289-009-0402-3

ORIGINAL RESEARCH

Substructuring in the implicit simulation of single
point incremental sheet forming
The incrementally updated approach

A. Hadoush · A. H. van den Boogaard

Received: 23 August 2008 / Accepted: 2 March 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper presents a direct substructur-
ing method to reduce the computing time of im-
plicit simulations of single point incremental forming
(SPIF). Substructuring is used to divide the finite el-
ement (FE) mesh into several non-overlapping parts.
Based on the hypothesis that plastic deformation is
localized, the substructures are categorized into two
groups: the plastic—nonlinear—substructures and the
elastic—pseudo-linear—substructures. The plastic sub-
structures assemble a part of the FE mesh that is in
contact with the forming tool; they are iteratively up-
dated respecting all nonlinearities. The elastic substruc-
tures model the elastic deformation of the rest of the
FE mesh. For these substructures, the geometrical and
the material behaviour are assumed linear within the
increment. The stiffness matrices and the internal force
vectors are calculated at the beginning of each incre-
ment then they are statically condensed to eliminate
the internal degrees of freedom (DOF). In the iteration
process the condensed stiffness matrices for the elastic
substructures are kept constant. The condensed inter-
nal force vectors are updated by the multiplication of
the condensed stiffness matrices and the displacement
increments. After convergence, any geometrical and
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material nonlinearity for the elastic substructures are
nonlinearly updated. The categorization of substruc-
tures in plastic and elastic domains is adapted during
the simulation to capture the tool motion. The result-
ing, plastic and condensed elastic, set of equations is
solved on a single processor. In an example with 1600
shell elements, the presented substructuring of the SPIF
implicit simulation is 2.4 times faster than the classical
implicit simulation.

Keywords Substructuring · Incremental forming ·
Finite elements

Introduction

Single Point Incremental Forming (SPIF) is a displace-
ment controlled process performed on a CNC machine.
A clamped blank is deformed by the movement of
the tool that follows a prescribed toolpath [1, 2], a
sketch of SPIF is presented in Fig. 1. Because SPIF is
a dieless process, it is perfectly suited for prototyping
and small volume production. The simulation of SPIF
results in enormous computing times for two reasons.
First of all, the blank is deformed by a sequence of
small increments that requires thousands of numeri-
cal increments to be performed. Secondly, the small
contact area between the forming tool and the blank
requires a very fine FE mesh to capture the introduced
deformation. The extreme computing times currently
limit the applicability of FE simulations to very simple
academic samples.

The implicit simulation of SPIF provides a very good
agreement with experimental data [3]. For nonlinear
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Fig. 1 Schematic representation of the SPIF process

implicit simulations, the Newton–Raphson method is
often preferred because of its quadratic convergence
behaviour although every iteration is relatively ex-
pensive. The modified Newton–Rapshon method is
cheaper per iteration, but it shows only linear conver-
gence behaviour [4]. In SPIF simulation, it has been
noticed that the over all computing time by a modified
Newton–Raphson method is higher than the computing
time by a full Newton–Raphson method, because it re-
quires much more iterations per increment to converge.

The small sized tool plays a crucial role in the SPIF
process for both the physical process and the numerical
simulation. The small radius of the forming tool con-
centrates the strain at the zone of deformation in the
sheet under the forming tool [5, 6]. The deformation
in SPIF is modeled as localized plastic deformation
[7]. According to this hypothesis plastic deformation is
localized in a small zone in the region of the forming
tool surrounded by elastic deformation of the rest of
the blank. The small tool limits the numerical incre-
mental step size, even though the implicit scheme is
stable for much larger increment sizes. Using too large
increments results in simulating a large number of pen-
etrations instead of continuous incremental forming. In
a simulation, the localized plastic deformation that is
introduced by small increments results in a localized
strong nonlinearity and a global weak nonlinearity. The
strong nonlinearity is a combination of geometrical and
material nonlinearity and it is located in the vicinity
of the tool. The rest of the FE mesh will have a weak
geometrical nonlinearity.

The basic idea, presented in this paper, is to treat the
strong nonlinearity by a classical full Newton–Raphson
iterative procedure, while the elastic deformation of the
rest of the blank, the weak nonlinearity, is modeled

by linearized behaviour within the increment. After
convergence of each increment, the geometrical and
possibly small material nonlinearity are updated. This
approach combines the advantage of a fast convergence
for the highly nonlinear process in the plastic part with
a cheap calculation in the much larger elastic part of
the blank, significantly reducing the total computing
time. Similar approaches have been introduced in com-
putational mechanics and two of them are mentioned
here. The first approach is the subcycling in explicit
methods to overcome the problem of very small or very
stiff elements [8]. The second approach is the implicit-
explicit method, where part of the system Jacobian
matrix is treated implicitly and part explicitly [9].

Domain decomposition was adopted early in struc-
tural analysis. The basic idea of domain decomposition
is to divide the domain into subdomains. The sub-
domains are potentially solved by parallel computing.
The subdomains sustain compatibility with each other
by applying boundary conditions on the interfaces
connecting the subdomains. Explicit overlap of the sub-
domains is possible. Non-overlapping domain decom-
position is also known as the substructuring method
[10]. Domain decomposition and substructuring are
applied in nonlinear computational mechanics e.g. in
large scale, millions of DOFs, elastic–plastic FE analy-
sis of nuclear structures [11] and simulation of forming
processes: extrusion [12], forging with deformable tools
[13] and spinning [14].

The combined Newton–Raphson and condensed lin-
earized elastic (CNRCLE) treatment of SPIF simula-
tion is implemented by substructuring. The FE mesh
is divided into plastic substructures and elastic sub-
structures. The plastic substructures are treated by the
full Newton–Raphson method while the elastic sub-
structures are treated by the condensed linearized elas-
tic approach. The elastic substructures internal DOFs,
considered as slave DOFs, are statically condensed to
its external (master) DOFs resulting in a significant
reduction of the size of the system of equations (SOE).
The reduced SOEs of the remaining master DOFs
is formed by the assembly of the external DOFs of
all substructures and the internal DOFs of the plastic
substructures. The reduced SOEs is solved at once on a
single processor. The time reduction of the CNRCLE
calculation is obtained by the algorithm on a single
processor, not necessarily by parallel computing. The
CNRCLE algorithm can be modified to make use of
parallel computing, but that is not the focus of this
paper. The plastic-elastic substructure categorization
is adapted during the simulation to capture the tool
motion.
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Substructuring

In this paper, direct substructuring is considered as
a non-overlapping domain decomposition method. It
is a way to organise the static condensation of large
linear systems arising from the discretization of partial
differential equations [10]. Briefly, consider a linear
elastic FE mesh as shown in Fig. 2. The FE mesh is
divided into 4 equal substructures. By substructuring,
the initial SOEs is organised in 4 smaller SOEs. The
partitioned SOEs of each substructure is
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where u, k and f are the displacement vector, the stiff-
ness matrix and the force vector. The subscripts i and
e represent internal and external DOFs respectively.
The superscript s refers to substructure number, s =
1, 2, ..., n where n is the total number of substructures
in the FE model.

The internal (slave) DOFs are statically condensed
(block factorized) to their external (master) DOFs as
follows
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Such that the condensed form becomes
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Fig. 2 Substructuring a FE mesh
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kc and fc represent the condensed stiffness matrix and
force vector, respectively. The condensed stiffness ma-
trix in Eq. 4 represents what is known in substructuring
as the Schur complement. The condensed SOEs of each
substructure is presented in Eq. 3. A reduced global
SOE is assembled from the condensed SOEs of the
substructures. The reduced SOEs of the master DOFs
is representative of the initial SOEs, but smaller and
denser. The total number of unknown DOFs in the
reduced SOEs are equal to the number of unknown
DOFs at the substructure interfaces—the bold lines in
Fig. 2. The reduced SOE is solved at once, then the
internal DOFs of each substructure are evaluated by
Eq. 2. It is important to mention that the condensa-
tion and the evaluation of the internal DOFs of each
substructure can be done independently of the other
substructures.

The CNRCLE

Now, a nonlinear SOEs is considered. Consider for ex-
ample that an external force is applied at the lower left
part of the FE mesh shown in Fig. 2. If the force is large
enough it leads to a nonlinear response of the material
and the geometry. By assumption, the nonlinearity is
dominant in the lower left part of the FE mesh. A well
known implicit approach to solve the nonlinear SOEs
is the Newton–Raphson method [15]. In this section,
the implicit solution of the nonlinear SOEs is substruc-
tured. First, the Newton–Raphson method is summa-
rized, then the substructuring treatment is explained.
The Newton–Raphson method updates an incremental
displacement vector d with an iterative displacement
vector �d, using the tangent of the nonlinear SOEs
A(d) by solving

r(d) + A(d)�d = 0 (6)

where the residual r(d) defines the difference between
the internal forces and the external forces

r(d) = fint(d) − fext(d) (7)
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the Jacobian system matrix A(d) or in engineering
terms the effective tangent stiffness matrix is equal to

A(d) = ∂r
∂d

= ∂ fint

∂d
− ∂ fext

∂d
= kint − kext (8)

where kint and kext are the tangent stiffness matrix and
the load stiffness matrix, respectively. The linearized
model is solved for the iterative change of the nodal
displacements �d

�d = −A−1r (9)

the iterative change of the nodal displacements are
added to the total incremental nodal displacements

d j+1 = d j + �d (10)

where j is the iteration number. The new nodal
displacements are checked for convergence. If conver-
gence is not achieved, the linearized model is recalcu-
lated and solved for a new �d.

The nonlinear SOEs is substructured based on a
dominant nonlinearity in the lower left part of the
FE mesh. The FE mesh is divided into 4 equal sub-
structures. All the nonlinearity is located at the lower
left substructure, substructure number 1. At the first
iteration of each increment, the substructural residual rs

and the substructural effective tangent stiffness matrix
As are calculated for all substructures separately:
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The substructural linearized model becomes
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For substructures 2–4, rs and As contain the internal
force contribution only since there is no external force.
The iterative displacements for the internal nodes �ds

i
are expressed as function of the iterative displacements
of the nodes on the boundary of the substructure �ds

e

�ds
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The residual forces on the boundary nodes of substruc-
ture s can now be written in condensed form:

rs
c, j+1 = rs

c, j + As
c, j�ds

e (15)

where
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The global condensed linearized model (GCLM) of the
master DOFs is assembled of two contributions. The
first contribution consists of rs and As of the internal
and the external DOFs for substructure 1. For this
plastic substructure all DOFs are master DOFs. The
second contribution consists of the condensed rs

c and
As

c of the external DOFs for substructures 2–4. The
iterative displacement is solved by requiring r j+1 = 0
from the linearized model:(
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where the subscripts mi and me refer to the internal
DOFs contribution of substructure 1 and the external
DOFs contribution of all substructures, respectively.
The size of the GCLM is significantly reduced by the
condensation of the internal DOFs of substructures
2–4. The GCLM is solved for the unknown �dgclm at
once. The total incremental nodal displacements for the
master external and internal DOFs are updated by the
addition of the corresponding iterative increment �d.

dme, j+1 = dme, j + �dme (19)

dmi, j+1 = dmi, j + �dmi (20)

The residual of substructure 1 is recalculated using
Eq. 11, while the condensed substructural residual rs

c for
substructures 2–4 are updated linearly using Eq. 15. The
residual is checked for convergence by the mechanical
unbalance ratio criterion. The mechanical unbalance
ratio ψ is the ratio of the l2 norm of the residual to the
l2 norm of the internal force

ψ = ‖r‖
‖rint‖ (21)

In general, the convergence is not achieved after the
first iteration and more iterations are performed. The
difference in treatment of the substructures becomes
more clear after the first iteration. For substructure 1, rs

and As are recalculated by Eqs. 11 and 12. For substruc-
tures 2–4, the same value of As

c, that was calculated in
the first iteration by Eq. 16 is used for the following it-
erations. The residual rs

c of the first iteration is updated
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linearly as in Eq. 15 using As
c of the first iteration. The

condensed linear treatment of substructures 2–4 after
the first iteration significantly reduces the computing
time required for the rest of iterations. The reduction
of the computing time is a result of the repeated use of
As

c of the first iteration and the linear update of rs
c.

Substructures 2–4 are treated linearly within an
increment, but after convergence a final nonlinear eval-
uation is performed, based on the calculated displace-
ments. In this evaluation, small non-linearities in the
material response and geometrical non-linearities are
fully considered, to a large extend correcting small
errors due to the linearization.

Categorization

Considering SPIF, according to the localized plastic
deformation hypothesis the plastic deformation is lo-
calized in a small zone in the region of the forming
tool surrounded by elastic deformation of the rest of
the blank. For that reason, the tool location is used
to categorize the substructured FE mesh into plas-
tic substructures and elastic substructures. The plastic
substructures contain the major localized plastic de-
formation while the elastic substructures contain the
elastic deformation and any small non-localized plastic

Fig. 3 Substructuring 1600 triangular element into 25 substruc-
tures, the 4 substructures in the vicinity of the tool (the circle) are
plastic substructures and the others are elastic substructures

deformation if it occurs. A number of virtual cross
points are introduced in the FE mesh. The cross point
is a common node between 4 adjacent substructures. In
Fig. 3 the substructures are visualized with thick lines.
Each substructure is attached to at least one cross point.
The closest cross point to the tool center categorizes
the adjacent substructures as plastic substructures while
the rest of the substructures are categorized as elastic
substructures. The movement of the tool changes the
active cross point and as result the elastic–plastic sub-
structures distribution.

Implementation

The CNRCLE method is implemented in the in-house
implicit finite element code Dieka. Two tests are in-
troduced to investigate the accuracy of the CNRCLE
method. The first test focuses on the treatment of
geometrical nonlinearity in an elastic substructure. The
second test investigates the loading–unloading for a
FE mesh that is categorized into plastic and elastic
substructures.

Influence of geometrical nonlinearity

The focus of this test is to investigate the influence
of the linearization in an elastic substructure with re-
spect to geometrical nonlinearities. For this purpose,
an initially flat strip of 50 × 5 × 1.2 mm with elastic
material is modelled with 160 shell elements as plotted
in Fig. 4. The edge on the left of the strip is completely
clamped. The edge on the right is moved 5 mm upwards
while the rotation is suppressed. Four increment sizes
are considered 0.01, 0.1, 0.2 and 0.5 mm.

The finite elements of the strip are grouped in one
substructure. Two simulations are carried out per in-
crement size. In the first simulation, the geometrical
nonlinearity is treated iteratively like in the classical
implicit method (Iterative). In the second simulation
the substructure is selected as elastic. The geometri-
cal nonlinearity is neglected within the increment and
updated nonlinearly at the end of the increment as
explained in the CNRCLE method (Increment).

Fig. 4 The initial FE mesh of a strip (bottom) and the FE mesh
at the end of the deformation (top)
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Fig. 5 A comparison between the reaction force achieved by the
incremental update and the classical implicit approach (iterative)
for an increment size of 0.2 mm

To compare the results, the in-plane reaction force
(longitudinal) at the left edge for a displacement in-
crement of 0.2 mm is plotted in Fig. 5. The achieved
reaction force by the incremental approach has a very
good agreement with the classical implicit (iterative)
approach with a maximum error of 1.7%. The achieved
reaction by the incremental approach for the other in-
crement sizes has the same pattern, the error is plotted
in Fig. 6. As expected, the largest increment size of
0.5 mm gives the largest error of 4%. In ISF simulations
the displacement per increment will usually be much
smaller. Under these conditions, the incrementally lin-
earized approach can be considered valid.

Plastic loading and elastic unloading of a blank

In this test, the accuracy of the CNRCLE algorithm is
investigated in the simulation of tool penetration and
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Fig. 7 Tool forces for the CNRCLE and the classical implicit
approach in a penetration test

retraction on a clamped plate. This is representative for
the first and last stage of an ISF process. In the loading
stage the plate is deforming plastically near the tool. In
the unloading stage, the plate shows elastic spring back.

A deformation is introduced by moving a spherical
tool that is initially just in contact, 2 mm downwards.
Then the blank is relaxed by moving the tool away.
The deformation and the relaxation are performed in
20 increments and 5 increments respectively. The FE
mesh and position of the tool are shown in Fig. 3. The
4 substructures in the vicinity of the tool are plastic
substructures while the rest of the substructures are
elastic during the entire simulation. The simulation is
performed by the CNRCLE method and compared to
the classical implicit method without substructuring. To
compare the results, the calculated vertical force on the
tool is plotted in Fig. 7. The result of the CNRCLE
coincides with the classical implicit result.

Case study

To investigate the performance of the CNRCLE ap-
proach in speeding up the classical implicit simulation
of SPIF, the production of a 45◦ pyramidal shape is
simulated with both methods. The 20 mm deep pyramid
is made out of a 100 × 100 × 1.2 mm initially flat blank.
An analytical spherical tool of 10 mm radius is used.
The tool follows a counter clockwise tool path for 40
loops. At the start of each loop, the tool moves 0.5 mm
vertically downwards. At a fixed vertical position, the
tool performs the in-plane tool path. The simulation
finishes when the tool reaches the end of loop 40. The
blank edges are completely suppressed for the entire



Int J Mater Form

simulation. Each simulation is performed on one core
of a Sun Fire X4450 server with Intel Xeon X5365
3 GHz processors.

FE model

The numerical blank is discretized with 1600 triangular
shell elements. The element type is the discrete shear
triangle DST for bending, combined with a linear mem-
brane element. The element has 6 DOFs per node.
It has 3 integration points in plane and 5 in thick-
ness direction (total 15). For the CNMCLE simulation,
the elements are grouped in 100 substructures with
81 virtual cross points to categorize the elastic–plastic
substructure distribution. In order to focus on the sub-
structuring technique only, the material model is kept
as simple as possible. The isotropic yield behaviour of
the material is modelled with the von Mises criterion.
The work hardening is governed by the Swift relation:

σ = 500(ε + 0.00243)0.2 (22)

Where σ and ε are the flow stress and the equivalent
plastic strain respectively. The material has a Young’s
modulus of 200 GPa and Poisson’s ratio of 0.3. For
realistic calculation, the authors acknowledge that a
better material model is required, that includes the
anisotropic behavior of the sheet and the cyclic mode
of deformation.

Results and discussion

The CNRCLE method is 2.4 times faster than the clas-
sical implicit method. With CNRCLE, the simulation

Table 1 Performance in SPIF simulation

Classical CNRCLE

CPU (hours) 6.73 2.82
Number of increments 9064 9081
Incremental cost (seconds) 2.67 1.12

requires 2.82 hours to finish while it requires 6.73 h with
the classical implicit method, the performance of both
simulations are summarized in Table 1. A relative un-
balance force convergence criterion of 0.01 is used for
both simulations. The average cost of each iteration in
the classical implicit method is 0.6 s. For each iteration
in the classical implicit method, the major consumption
of the computing time is done by the calculation of
r and A and performing the stress update (50% and
28.6%, respectively). A direct solver is used to solve
the SOEs. For this particular case study the consumed
computing time by the direct solver is not significant
(5.3%) compared to the major consumptions. Each
increment requires on average 3 iterations to converge.

The computing time for calculating r and A and
performing the stress update scale almost linearly with
the number of elements in the model. This aspect
significantly contributes to the reduction in computing
time with the CNRCLE method. For the first iteration
in CNRCLE, the calculation of r and A requires the
same computing time as the classical implicit method,
since a nonlinear treatment is considered for all sub-
structures. Additional computing time is required in
the first iteration to perform the condensation. The
condensation requires 10% of the cost of an iteration
in the classical implicit approach. The stress update is
performed only for the plastic substructures, reducing
the required computing time by a factor RPT, where
RPT is the ratio of the number of elements in the

Fig. 8 Vertical displacement
for the classical implicit
method (left) and the
CNRCLE method (right)
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Fig. 9 Equivalent plastic
strain at the highest
integration point for the
classical implicit method
(left) and the CNRCLE
method (right)

plastic substructures to the total number of elements in
the model. In this case study, the number of element
in the plastic substructures is 64 and the total number
of element is 1600 making RPT = 0.04. The computing
time for the linear update of rs

c and the evaluation of ds
i

is small compared to the calculation of the plastic part
because it is just a matrix–vector multiplication. Each
iteration after the first iteration equals the iteration in
classical implicit method scaled roughly by RPT. At
the end of the increment, the stress is updated fully
nonlinearly for the elastic substructures. The increment
in CNRCLE method requires on average 2 iterations to
converge.

The condensation of the internal DOFs of the elastic
substructures is currently done by eliminating one DOF
at the time. The condensation cost becomes expensive
for larger substructures, e.g. the condensation of a sys-
tem that has twice the number of DOFs increases by
a factor 8. Of course, an expensive computing time for
the condensation reduces significantly the reduction of
the overall computing time. To maintain a significant
reduction in the computing time for larger substruc-
tures, a more efficient condensation algorithm has to be
implemented. A further reduction in computing time
can be obtained by using the same condensed As

c and
rs

c for the elastic substructures for several increments.
These options are subjects of ongoing research.

In Figs. 8 and 9 the displacements and equivalent
plastic strains, obtained with the classical approach and
with the CNRCLE approach are presented. The results
show a very good agreement. The vertical displace-
ment is plotted in Fig. 8 and shows a maximum value
of 19.95 mm for the classical implicit method. The
CNRCLE method achieved almost the same contour
distribution and less than 0.05% error for the maximum

value. The equivalent plastic strain for the highest plane
of integration points is plotted in Fig. 9, the maximum
achieved value is 0.855 for both methods. The contour
distribution for the CNRCLE is almost equal to the
contour distribution for the classical implicit method.

Conclusions

A nonlinear analysis method with substructuring was
presented for situations where strong local nonlinear-
ities are combined with only weak nonlinearities in a
large part of a model. The localized strongly nonlinear
zone may move over the model during the simulation.
This is typically the case in Single Point Incremental
Sheet Forming (SPIF).

In the presented case study for simulation of SPIF,
The CNRCLE method speeds up the implicit simu-
lation 2.4 times. A very good agreement of results
achieved with the CNRCLE method is found, in com-
parison with the results achieved with the classical
implicit method. Categorization of the substructures
into plastic substructures and elastic substructures fits
the SPIF nature of forming. In more complex SPIF
processes, where the deformation is more localized, the
efficiency of the discussed method can be expected to
be even higher.
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