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Piazza della Scienza 3, I-20126 Milano, Italy
eINFN, Sezione di Milano-Bicocca,

Piazza della Scienza 3, I-20126 Milano, Italy

E-mail: hesong17@gmail.com, fengli.lin@gmail.com,

jiaju.zhang@mib.infn.it

Abstract: We investigate a weak version of subsystem eigenstate thermalization hypoth-

esis (ETH) for a two-dimensional large central charge conformal field theory by comparing

the local equivalence of high energy state and thermal state of canonical ensemble. We eval-

uate the single-interval Rényi entropy and entanglement entropy for a heavy primary state

in short interval expansion. We verify the results of Rényi entropy by two different replica

methods. We find nontrivial results at the eighth order of short interval expansion, which

include an infinite number of higher order terms in the large central charge expansion. We

then evaluate the relative entropy of the reduced density matrices to measure the difference

between the heavy primary state and thermal state of canonical ensemble, and find that

the aforementioned nontrivial eighth order results make the relative entropy unsuppressed

in the large central charge limit. By using Pinsker’s and Fannes-Audenaert inequalities, we

can exploit the results of relative entropy to yield the lower and upper bounds on trace dis-

tance of the excited-state and thermal-state reduced density matrices. Our results are con-

sistent with subsystem weak ETH, which requires the above trace distance is of power-law

suppression by the large central charge. However, we are unable to pin down the exponent

of power-law suppression. As a byproduct we also calculate the relative entropy to measure

the difference between the reduced density matrices of two different heavy primary states.
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1 Introduction

According to eigenstate thermalization hypothesis (ETH) [1, 2], a highly excited state of a

chaotic system behaves like a high engergy microcanonical ensemble thermal state. More

precisely, it states that (i) the diagonal matrix element Aαα of a few-body operator A with

respect to the energy eigenstate α change slowly with the state in a way of suppression by

the exponential of the system size; (ii) the off-diagonal element Aαβ is much smaller than

the diagonal element by the factor of exponential of the system size. This will then yield

that the expectation value of the few-body observable in a generic state |φ〉 behaves like

the ones in the microcanonical ensemble

〈A〉φ − 〈A〉E ∼ e−O(S(E)), (1.1)

where the subscript E denotes microcanonical ensemble state with energy E and S(E) is

the system entropy.

Recently, a new scheme called subsystem ETH has been proposed in [3, 4], in contrast

to the old one which is then called local ETH. The subsystem ETH states that the reduced

density matrix ρA,φ of a subregion A for a high energy primary eigenstate |φ〉 are universal
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to the reduced density matrix ρA,E for microcanonical ensemble thermal state with some

engery E up to exponential suppression by order of the system entropy, i.e.,

t(ρA,φ, ρA,E) ∼ e−O(S(E)), (1.2)

where t(ρA,φ, ρA,E) denotes the trace distance between ρA,φ and ρA,E . As the subsystem

ETH is a statement regarding the reduced density matrices, their derived quantities such

as correlation functions, entanglement entropy and Rényi entropy should also satisfy some

sort of the subsystem ETH. In this sense, the subsystem ETH is strongest form of ETH,

i.e., stronger than local ETH.

The above discussions of ETH are all based on the comparison of energy eigenstate

and the microcanonical ensemble state. In [5], there are discussions of generalizing the

ETH to the comparison with the canonical ensemble state, based on the observation of

the local equivalence between the canonical and microcanonical states [6]. In this case,

the energy eigenstate and canonical ensemble thermal state should also locally alike in

the thermodynamic limit. This was called weak ETH in [5], in which, however, there is no

exact bound on weak ETH for general cases. Despite that, some of the results in [6] showed

that the thermal states of canonical and microcanonical ensembles are locally equivalent

up to power-law suppression of the dimension of Hilbert space. Based on all the above, we

may expect that the weak ETH will at least yield

〈A〉φ − 〈A〉β ∼ [S(β)]−ã, t(ρA,φ, ρA,β) ∼ [S(β)]−b̃, (1.3)

where the subscript β denotes canonical ensemble with inverse temperature β, S(β) is the

canonical ensemble entropy, and ã and b̃ are some positive real numbers of order one. More

specifically, it was argued in [7] that ã = 1 and was verified in [8] by numerical simulation

for some integrable model. However, for generic models it was mathematically shown

that ã = 1/4 [5]. We expect b̃ should also behave similarly. We will call the 2nd inequality

in (1.3) the subsystem weak ETH, which inherits both the subsystem ETH and weak ETH.

For a conformal field theory (CFT) with there are infinite degrees of freedom, which

is in some sense the thermodynamic limit, as required for the local equivalence between

canonical and microcanonical states. Moreover, the nonlocal quantities like entanglement

entropy and Rényi entropy do not necessarily be exponentially suppressed [3, 4]. In fact

the primary excited state Rényi entropy in two-dimensional (2D) CFT is not exponentially

suppressed in the large central charge limit [3, 9]. All of these motivate us to check the

validity of weak ETH for a 2D CFT of large central charge c.

In this paper we investigate the validity of the subsystem weak ETH (1.3) for a 2D

large c CFT. In this case, the worldsheet description of an excited state |φ〉 for a CFT living

on a circle of size L corresponds to an infinitely long cylinder of spatial period L capped

by an operator φ at each end. On the other hand, the thermal state of a CFT living on

a circle with temperature T has its worldsheet description as a torus with temporal circle

of size β = 1/T . In the high temperature limit with L � β, the torus is approximated

by a horizontal cylinder. Naively the vertical and horizontal cylinders should be related

by Wick rotation and can be compared after taking care of the capped states. This is

indeed what have been done in [10, 11] by comparing the two-point functions two light
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operators of large c CFT, and in [12, 13] for the single-interval entanglement entropy.

These comparisons all show that the subsystem weak ETH holds. However, in [3, 9] the

one-interval Rényi entropy for small interval of size `� L are compared by ` expansion up

to order `6 and it was found that one cannot find a universal relation between β and L to

match the excited-state Rényi entropy with the thermal one in the series expansion of `.1

Moreover, in the context of AdS/CFT correspondence [14–17], a large N CFT is dual

to the AdS gravity of large AdS radius, and so the subsystem ETH implies that the

backreacted geometry by the massive bulk field is approximately equivalent to the black

hole geometry for the subregion observer. Especially, for AdS3/CFT2 the CFT has infinite

dimensional conformal symmetries as the asymptotic symmetries of AdS space [18], along

with ETH it could imply that the infinite varieties of Bañados geometries [19] dual to the

excited CFT states are universally close to the BTZ black hole [20]. Although the Newton

constant GN may get renormalized in the 1/c perturbation theory, and then obscure the

implication of our results to the above issue, we still hope that our results can provide as

the stepping stone for the further progress.

As discussed in [3], the validity of subsystem ETH depends on how the operator prod-

uct expansion (OPE) coefficients scale with the conformal dimension of the eigen-energy

operator in the thermodynamic limit. This means that the subsystem ETH could be vio-

lated for some circumstances. In this paper we continue to investigate the validity of ETH

for a 2D large c CFT by more extensive calculations, and indeed find the surprising results.

According to Cardy’s formula [21] the thermal entropy is proportional to the central charge

c, and so we just focus on how various quantities behave in large c limit. We calculate the

entanglement entropy and Rényi entropy up to order `8 in the small ` expansion. We then

find that there appear subleading corrections of 1/c expansion at the order `8. Because

the appearance of these subleading corrections at order `8 is quite unexpected, we solidify

the results by adopt two different method to calculate them. These methods are (i) the

OPE of twist operators [22–25] on cylinder, or equivalently on complex plane; and (ii)

2n-point correlation function on complex plane [26–32]. By both the two methods we get

the same results. Moreover, we turn the comparison of the entanglement entropy into the

relative entropy between reduced density matrices for excited state and thermal state by

the modular Hamiltonian argument in [3]. Then, the above discrepancy yields that the

relative entropy is of order c0.

Based on the above results, we use the Fannes-Audenaert inequality [33, 34] and

Pinsker’s inequality by relating the trace distance to entanglement entropy or relative

entropy, to argue how the trace distance of the reduced density matrices of the excited and

thermal states scales with the large c. Our results are consistent with the subsystem weak

ETH. However, we lack of further evidence to pin-down the exact power-law suppression,

i.e., unable to obtain the exponent b̃ in (1.3).

Finally, using the replica method based on evaluating the multi-point function on a

complex plane, as a byproduct of this project we explicitly calculate the relative entropy to

measure the difference between the reduced density matrices of two different heavy primary

states.

1Note that in [3] no large c is required, and they just require the excited state to be heavy.
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The rest of the paper is organized as follows. In section 2 we briefly review the known

useful results about Rényi entropy, entanglement entropy and relative entropy, and also

evaluate the relative entropy between chiral vertex state and thermal state in 2D free

massless scalar theory. In section 3 we calculate the excited state Rényi entropy in two

different replica methods in the short interval expansion. Using these results, in section 4

we check the subsystem weak ETH. We find that the validity of the subsystem weak ETH

depend only on whether the large but finite effective dimension of the reduced density

matrix exists and if yes how it scales with c. In section 5 we evaluate the relative entropy of

the reduced density matrices to measure the difference of two heavy primary states. Finally,

we conclude our paper in section 6. Moreover, in appendix A we give some details of the

vacuum conformal family; in appendix B we give the results of OPE of twist operators,

including both the review of the formulism and some new calculations; and in appendix C

we list some useful summation formulas.

2 Relative entropy and ETH

In this section we will briefly review the basics of relative entropy and then ETH. In the

next section, the relative entropy between the reduced density matrices of heavy state and

thermal state will be evaluated for large central charge 2D CFT to check the validity of

ETH. We will end this section by calculating the relative entropy of a toy example CFT,

namely the 2D massless scalar.

2.1 Relative entropy

Given a quantum state of a system denoted by the density matrix ρ, then the reduced

density matrix on some region A is given by

ρA = trAcρ. (2.1)

where Ac is the complement of A. One can then define the Rényi entropy

SA,n = − 1

n− 1
log trAρ

n
A, (2.2)

and the entanglement entropy

SA = −trA(ρA log ρA), (2.3)

which is formally equivalent to taking n→ 1 limit of the Rényi entropy.

In this work we will focus on the holomorphic sector of a 2D CFT of central charge c,

and the Rényi entropy for a region A of size `, i.e., A = [−`/2, `/2], for a vacuum state it

is known [22]

Sn,L =
c(n+ 1)

12n
log

(
L

πε
sin

π`

L

)
, (2.4)

where L is the size of the spatial circle on which the CFT lives. Similarly, the Rényi entropy

of a thermal state with temperature 1/β for a CFT living on a infinite straight line is

Sn,β =
c(n+ 1)

12n
log

(
β

πε
sinh

π`

β

)
. (2.5)
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Taking n→ 1 limit, one can get the corresponding entanglement entropy straightforwardly.

For simplicity, in this paper we only consider the contributions from the holomorphic sector

of CFT, and the anti-holomorphic sector can be just added for completeness without com-

plication. Also we will not consider the subtlety due to the boundary conditions imposed

on the entangling surface [35, 36].

For subsystem ETH it is to compare the reduced density matrices between a heavy

state and the excited state, and in this paper we consider the Rényi entropy difference,

the entanglement entropy difference, and the relative entropy, as well as the trace distance.

The relative entropy is defined as

S(ρ′A‖ρA) = trAρ
′
A log ρ′A − trAρ

′
A log ρA. (2.6)

where ρA and ρ′A are the reduced density matrixes over region A for state ρ and ρ′, re-

spectively. Note that the relative entropy is not symmetric for its two arguments, i.e.,

S(ρ′A‖ρA) 6= S(ρA‖ρ′A). One may define the symmetrized relative entropy

S(ρ′A, ρA) = S(ρ′A‖ρA) + S(ρA‖ρ′A), (2.7)

to characterize the difference of the two reduced density matrices, but one should be aware

that it is not a “distance”.2

One can also express the relative entropy as follows:

S(ρ′A‖ρA) = 〈HA〉ρ′ − 〈HA〉ρ − S′A + SA. (2.8)

where the modular Hamiltonian HA is defined by

HA ≡ − log ρA. (2.9)

The modular Hamiltonian is in general quite nonlocal and known only for some special

cases [29, 36–38]. One of these cases fitted for our study in this paper is just the case

considered for the Rényi entropy (2.5) of a thermal state, and the modular Hamiltonian is

given by [38]

HA,β = −β
π

∫ `/2

−`/2
dx

sinh π(`−2x)
2β sinh π(`+2x)

2β

sinh π`
β

T (x) (2.10)

where T (x) is the holomorphic sector stress tensor of the 2D CFT.

In this paper we will check the subsystem weak ETH for a normalized highly and

globally excited state3 created by a (holomorphic) primary operator φ of conformal weight

hφ = cεφ acting on the vacuum, i.e., |φ〉 = φ(0)|0〉. The first step to proceed the comparison

for checking ETH is to make sure the excited state and the thermal state have the same

energy, and this then requires

〈φ|T |φ〉L = 〈T 〉β . (2.11)

2We thank the anonymous referee for pointing this out to us.
3In this paper, we mainly focus on global excited states which are quite different from so called locally

excited states studied in, for examples, [39–42].
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The right hand side of the above equation is just the Casimir energy of the horizontal

worldsheet cylinder

〈T 〉β = −π
2c

6β2
. (2.12)

and the left hand side is given by (A.16). Thus, (2.11) yields a relation between the inverse

temperature β and the conformal weight hφ (or εφ) [10, 11]

β =
L√

24εφ − 1
. (2.13)

Moreover, the relation (2.11) and (2.10) ensure 〈HA,β〉φ = 〈HA,β〉β so that [3]

S(ρA,φ‖ρA,β) = −SA,φ + SA,β . (2.14)

2.2 ETH

ETH states that a highly excited state of a chaotic system behaves thermally. One way to

formulate this is to compare the expectation values of few-body operators for high energy

eigenstate and the thermal state, as explicitly formulated in (1.1). This is called the local

ETH in [4] in contrast to a stronger statement called subsystem ETH proposed therein,

which is formulated as in (1.2) by comparing the reduced density matrices, i.e., requiring

that trace distance between the two reduced states should be exponentially suppressed by

the system entropy. The trace distance for two reduced density matrices ρ′A, ρA is defined as

t(ρ′A, ρA) =
1

2
trA|ρ′A − ρA|, (2.15)

and by definition 0 ≤ t(ρ′A, ρA) ≤ 1.

In the paper we compare the energy eigenstate and canonical ensemble state, and so

it is about the local weak ETH and subsystem weak ETH. As the subsystem weak ETH

is stronger than local weak ETH, it could be violated for the system of infinite number

of degrees of freedom. However, we do not directly calculate the trace distance but the

Rényi entropies and entanglement entropies for both heavy state and thermal state of

canonical ensemble. After doing this, we can then use some inequalities to constrain the

trace distance with the difference of the Rényi entropies or relative entropy, thus check the

validity of subsystem weak ETH.

Here are three such kinds of inequality. First, the Fannes-Audenaert inequality [33, 34]

relating the difference of entanglement entropy, ∆SA := SA,φ − SA,β to the trace distance

t := t(ρA,φ, ρA,β) as follows:

|∆SA| ≤ t log(d− 1) + h, (2.16)

with h = −t log t− (1− t) log(1− t) and d being the dimension of Hilbert space HA for the

effective degrees of freedom in subsystem A. On the other hand, there is the Audenaert

inequality for the Rényi entropy of order 0 < n < 1 [34]

|∆Sn| ≤
1

1− n
log[(1− t)n + (d− 1)1−ntn], (2.17)
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with ∆Sn := Sn,φ − Sn,β . Both the right hand sides of (2.16) and (2.17) are vanishing at

t = 0, are log(d − 1) at t = 1, monotonically increase at 0 < t < 1 − 1
d , monotonically

decrease at 1 − 1
d < t < 1, and have a maximal value log d at t = 1 − 1

d . Since d is very

large, the right hand sides of (2.16) and (2.17) are approximately monotonically increase at

0 < t < 1. Finally, we also need Pinsker’s inequality to give upper bound on trace distance

by the square root of relative entropy, i.e.

t ≤
√

1

2
S(ρA,φ‖ρA,β). (2.18)

By using (2.16) we see that |∆SA| gives the tight lower-bound on the trace distance if

the d is finite, thus the validity of subsystem weak ETH can be pin down by the scaling

behavior of |∆SA| with respect to the system entropy. This is no longer true if d is infinite

as one would expect for generic quantum field theories, then both (2.16) and (2.17) are

trivially satisfied and can tell no information about the trace distance [3, 4]. However, it is

a subtle issue to find out how the effective dimension d of the reduced density matrix scale

with the large c and if it is finite once a UV cutoff is introduced. We will discuss in more

details in section 4.

2.3 A toy example

We now apply the above formulas to a toy 2D CFT, the massless free scalar. This CFT

has central charge c = 1 so that it makes less sense to check subsystem weak ETH. Despite

that, we will still calculate the relative entropy between excited state and thermal state,

and the result can be compared to the large c ones obtained later.

Let the massless scalar denoted by ϕ, and from it we can construct the chiral vertex

operator [43]

Vα(z) = eiαϕ(z), (2.19)

with conformal weight

hα =
α2

2
. (2.20)

Choosing α� 1 we can create the highly excited state as follows:

|Vα〉 = Vα(0)|0〉. (2.21)

The Rényi entropy for the state |Vα〉 was calculated before in [27, 28, 32], and the result is

the same as (2.4) for the vacuum state, no matter what the value α is. Thus, the relative

entropy (2.14) can be obtained straightforwardly and the result is

S(ρA,α‖ρA,β) =
1

6
log

β sinh π`
β

L sin π`
L

. (2.22)

In figure 1 we have plotted the results as a function of `/L for various β/L. We see that

the relative entropy is overall larger for heavier excited state. Note that α appears in (2.22)

implicitly through

β =
L√

12α2 − 1
. (2.23)
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β/L=0.2

β/L=0.4

β/L=0.6

β/L=0.8

0.2 0.4 0.6 0.8 1.0
ℓ/L

0.5

1.0

1.5

2.0

S(ρA,α||ρA,β)

Figure 1. Relative entropy (2.22) as a function of `/L in comparing the reduced density ma-

trices for chiral primary state and thermal state of 2D massless scalar. Note that the higher the

temperature is, the larger the relative entropy becomes.

3 Excited state Rényi entropy

We now consider the 2D CFT with large central charge, which can be also thought as dual

CFT of AdS3. We aim to calculate the Rényi entropy Sn,φ for a highly excited state |φ〉,
i.e., the conformal weight hφ is order c for short interval `� L so that we can obtain the

results with two different methods based on short interval expansion up to order (`/L)8.

The first method is to use OPE of twist operators on the cylinder to evaluate the

excited state Rényi entropy [22–25]. We have used this method in [9] to get the result up

to order (`/L)6 and find that the subsystem ETH is violated for n 6= 1 but holds for n = 1,

i.e., the entanglement entropy. In this paper we calculate up to order (`/L)8 and find

nontrivial violation of subsystem ETH at the new order. For consistency check we also use

the other two methods to calculate and obtain the same result. The second method is to

use the multi-point correlation functions on complex plane [26–32]. As in [9], we focus on

the contributions of the holomorphic sector of the vacuum conformal family. Some details

of the vacuum conformal family are collected in appendix A.

3.1 Method of twist operators

By the replica trick for evaluating the single-interval Rényi entropy, we get the one-fold

CFT on an n-fold cylinder, or equivalently an n-fold CFT, which we call CFTn on the

one-fold cylinder. The boundary conditions of the CFTn on cylinder can be replaced by

twist operators [22]. Thus, the partition function of CFTn on cylinder capped by state |φ〉
can be expressed as the two-point function of twist operators, i.e.

trAρ
n
A,φ = 〈Φ|σ(`/2)σ̃(−`/2)|Φ〉cyl, (3.1)

with the definition Φ ≡
∏n−1
j=0 φj and the index j marking different replicas. This is

illustrated in figure 2.

Formally and practically, we can use the OPE of the twist operators to turn the above

partition function into a series expansion, and the formal series expansion for the excited

– 8 –
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state Rényi entropy is

Sn,φ =
c(n+ 1)

12n
log

`

ε
− 1

n− 1
log

(∑
K

dK`
hK 〈ΦK〉Φ

)
. (3.2)

The details about the OPE of twist operators [23–25] is reviewed in appendix B. In arriving

the above, we have used (B.2) and the fact that 〈ΦK〉Φ ≡ 〈Φ|ΦK |Φ〉cyl is a constant.

Further using the properties for the vacuum conformal family and its OPE in ap-

pendix A and B, i.e., specifically (A.16), (B.9), (B.10) and (B.14), we can obtain the

explicit result of the short interval expansion up to order (`/L)8 as follows:

Sn,φ=
c(n+1)

12n
log

`

ε
+
π2c(n+1)(24εφ−1)`2

72nL2
−
π4c(n+1)

[
48(n2+11)24ε2φ−24(n2+1)εφ+n2

]
`4

2160n3L4

−
π6c(n+1)

[
96(n2−4)(n2+47)ε3φ+36(2n4+9n2+37)ε2φ−24(n4+n2+1)εφ+n4

]
`6

34020n5L6

+
π8c(n+1)`8

453600(5c+22)n7L8

{
c
[
64(13n6−1647n4+33927n2−58213)ε4φ

−64(n2+11)(13n4+160n2−533)ε3φ−48(9n6+29n4+71n2+251)ε2φ

+120(n2+1)(n4+1)εφ−5n6
]
−5632(n2−4)(n2−9)(n2+119)ε4φ

−2816(n2−4)(n2+11)(n2+19)ε3φ−128(15n6+50n4+134n2+539)ε2φ

+528(n2+1)(n4+1)εφ−22n6
}

+O((`/L)9). (3.3)

Note that the result up to order (`/L)6 is just proportional to c, and agrees with the result

obtained previously in [3, 9]. At the order (`/L)8, however, novel property appears. There

appears a nontrivial 5c+22 factor in the overall denominator, which yields infinite number

of higher order subleading terms in the 1/c expansion for large c. These subleading terms

come from the contributions of the quasiprimary operator A defined by (A.1) at level four

of the vacuum family. We will obtain the same result for other method in subsection 3.2.

Instead of working on the cylinder geometry, we can also work on complex plane by

conformal map, as shown in figure 2. The cylinder with coordinate w is mapped to a

complex plane with coordinate z by a conformal transformation z = e2πiw/L. The partition

function then becomes a four-point function on complex plane

trAρ
n
A,φ =

(
2πi

L

)2hσ

〈Φ(∞)σ(eπi`/L)σ̃(e−πi`/L)Φ(0)〉C . (3.4)

Using (B.2) for the OPE of twist operators on complex plane, we get the excited state

Rényi entropy

Sn,φ=
c(n+1)

12n
log

(
L

πε
sin

π`

L

)
− 1

n−1

[∑
K

dKCΦΦK(1−e2πi`/L)hK 2F1(hK ,hK ;2hK ;1−e2πi`/L)

]
.

(3.5)

Using (A.13), (B.5), (B.6), (B.7), (B.8), (B.14), (B.15) we can reproduce (3.3).

3.2 Method of multi-point function on complex plane

In the second method we use the formulism of multi-point function on complex plane,

see [26–32]. The idea is illustrated in figure 3. Using the state/operator correspondence,
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|Φ〉

〈Φ|

|Φ〉

〈Φ|

σ
˜

σ Φ

Φ

σ
˜

σ
⟹ ⟹

n-fold cylinder one-fold cylinder one-fold complex plane

Figure 2. This figure illustrates how OPE of twist operators on a cylinder and that on a complex

plane are related. The one-fold CFT on a one-fold CFT on an n-fold cylinder is equivalent to an

n-fold CFT on a one-fold cylinder. The boundary conditions of the n-fold CFT can be replaced by

the insertion of a pair of twist operators [22]. The cylinder with twist operators can be mapped to

a complex plane with twist operators.

we map the partition function on the capped n-fold cylinder into the two-point function

on the n-fold complex plane Cn, i.e., formally

trAρ
n
A,φ

trAρnA,0
= 〈Φ(∞)Φ(0)〉Cn . (3.6)

We then map each copy of complex plan into a wedge of deficit angle 2π/n by the following

conformal transformation

f(z) =

(
z − eπi`/L

z − e−πi`/L

)1/n

. (3.7)

The two boundaries of each wedge correspond to the intervals just right above or below

the interval A. Gluing all the n wedges along the boundaries, we then obtain the one-fold

complex plane C so that the above two-point function on Cn becomes a 2n-point function

on a one-fold complex plane C, i.e.

〈Φ(∞)Φ(0)〉Cn =

(
2i

n
sin

π`

L

)2nhφ
〈 n−1∏
j=0

(
e2πi( `

nL
+ 2j
n

)φ(e2πi( `
nL

+ j
n

))φ(e2πi j
n )

)〉
C
. (3.8)

Based on the above, it is straightforward to see that

Sn,φ(`) = Sn,φ(L− `), (3.9)

which is expected for a pure state.

Formally, the OPE of a primary operator with itself is given [44]

φ(z)φ(w) =
1

(z − w)2hφ
Fφ(z, w). (3.10)
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|Φ〉

〈Φ|

Φ

Φ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ
ϕ⟹ ⟹

n-fold cylinder n-fold complex plane one-fold complex plane

Figure 3. This figure illustrates the replica method of multi-point function on complex plane [26–

32]. Firstly, one has the one-fold CFT on an n-fold cylinder in excited state |Φ〉. Then, by

state/operator correspondence one gets a two-point function on an n-fold complex plane Cn. Lastly,

by a conformal transformation one gets a 2n-point function on a one-fold complex plane. In the

last part of the figure we use n = 5 as an example.

with

Fφ(z, w) =
∑
X

CφφX
αX

∞∑
r=0

arX
r!

(z − w)hX+r∂rX (w), arX =
CrhX+r−1

Cr2hX+r−1

, (3.11)

where the summation runs over all the holomorphic quasiprimary operators {X} with each

X being of conformal weight hX , and Cyx denotes the binomial coefficient.

In a unitary CFT, the operator with the lowest conformal weight is the identity oper-

ator, and so in z → w limit

Fφ(z, w) = 1 + · · · . (3.12)

Putting (3.10) in (3.8) and using [22]

trAρ
n
A,0 =

(
L

πε
sin

π`

L

)−2hσ

, (3.13)

we get the excited state Rényi entropy

Sn,φ=
c(n+1)

12n
log

(
L

πε
sin

π`

L

)
−

2nhφ
n−1

log
sin π`

L

nsin π`
nL

− 1

n−1
log

〈n−1∏
j=0

Fφ
(
e2πi( `

nL
+ j
n

),e2πi j
n
)〉
C
.

(3.14)

We now perform the short-interval expansion for (3.14) up to order (`/L)8 by consider-

ing only the contributions from the vacuum conformal family, i.e., including its descendants

up to level eight, see appendix A. For n = 2 there is a compact formula

S2,φ=
c

8
log

(
L

πε
sin

π`

L

)
−4hφ log

sin π`
L

2sin π`
2L

−log

[∑
ψ

C2
φφψ

αψ

(
sin

π`

2L

)2hψ

2F1

(
hψ,hψ;2hψ;sin2 π`

2L

)]
.

(3.15)
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Using the details in the appendix A, we can obtain the explicit result as follows4

S2,φ=
c

8
log

`

ε
+
π2c(24εφ−1)`2

48L2
−
π4c(180ε2φ−30εφ+1)`4

1440L4
−
π6c(945ε2φ−126εφ+4)`6

90720L6

+
π8c[5c(83160ε4φ−7560ε3φ−1890ε2φ+255εφ−8)−2(22680ε2φ−2805εφ+88)]`8

2419200(5c+22)L8

+
π10c[5c(1372140ε4φ−124740ε3φ−14355ε2φ+2046εφ−64)−44(8595ε2φ−1023εφ+32)]`10

239500800(5c+22)L10

+O((`/L)12). (3.16)

To perform the short-interval expansion Rényi entropy of general rank n, i.e., (3.14),

to order `m, we have to calculate a series of j-point correlation functions with j =

1, 2, · · · , bm/2c. To order `8 the number of these multi-point correlation functions can

be counted in each order by the following:

∞∏
k=2

1

(1− xk)n
= 1 + nx2 + nx3 +

n(n+ 3)

2
x4 + n(n+ 1)x5 +

n(n+ 1)(n+ 11)

6
x6

+
n(n2 + 5n+ 2)

2
x7 +

n(n+ 3)(n2 + 27n+ 14)

24
x8 +O(x9). (3.17)

These multi-point correlation functions are listed in table 1, and we note that many of

them are trivially vanishing. Putting the results of appendix A in (3.14), we reproduce the

Rényi entropy (3.3).

4 Check subsystem weak ETH

We now can use the result in the previous section to check the subsystem weak ETH for the

2D large c CFT. We first take the n→ 1 limit of the excited state Rényi entropy (3.3) and

the thermal one (2.5) up to order (`/L)8 to get the corresponding entanglement entropy.

We then have

SA,φ=
c

6
log

`

ε
+
π2c(24εφ−1)`2

36L2
− π

4c(24εφ−1)2`4

1080L4
+
π6c(24εφ−1)3`6

17010L6
− π8c`8

226800(5c+22)L8

[
5c(24εφ−1)4

+2(8110080ε4φ−1013760ε3φ+47232ε2φ−1056εφ+11)
]
+O((`/L)9), (4.1)

and

SA,β =
c

6
log

`

ε
+
π2c`2

36β2
− π4c`4

1080β4
+

π6c`6

17010β6
− π8c`8

226800β8
+O((`/β)10). (4.2)

It is straightforward to see that (4.1) fails to match with (4.2) at order (`/L)8 under the

identification of inverse temperature and conformal weight by the relation (2.13), and the

discrepancy is

SA,β − SA,φ =
128π8cε2φ(22εφ − 1)2`8

1575(5c+ 22)L8
+O((`/L)9). (4.3)

4Since CφφX = 0 for a bosonic operator X with odd integer conformal weight, using results in the

appendix A we can get the result up to order (`/L)19. However higher order results are too complicated to

be revealing. We just write down the result up to order (`/L)11.
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order multi-point function ? ? ? ? ? number number

0 1 �×××× 1 1

2 T ×�××× n n

3 ∂T ×�× n n

A ××� n

4 TT ��� n(n−1)
2

n(n+3)
2

∂2T ×�× n

∂3T ×� n

5 ∂A ×× n n(n+ 1)

T∂T �� n(n− 1)

B, D ×× 2n

TA ×� n(n− 1)

6
TTT �� n(n−1)(n−2)

6 n(n+1)(n+11)
6∂4T ×� n

∂2A ×× n

T∂2T , ∂T∂T �� 3n(n−1)
2

∂5T , ∂3A, ∂B, ∂D × 4n

7
T∂3T , ∂T∂2T � 2n(n− 1) n(n2+5n+2)

2T∂A, ∂TA × 2n(n− 1)

TT∂T � n(n−1)(n−2)
2

E , H, I × 3n

TB, TD × 2n(n− 1)

AA � n(n−1)
2

TTA � n(n−1)(n−2)
2

8 TTTT � n(n−1)(n−2)(n−4)
24

n(n+3)(n2+27n+14)
24

∂6T , ∂4A, ∂2B, ∂2D × 4n

T∂4T , ∂T∂3T , ∂2T∂2T � 5n(n−1)
2

T∂2A, ∂T∂A, ∂2TA × 3n(n− 1)

TT∂2T , T∂T∂T � n(n− 1)(n− 2)

Table 1. All the multi-point functions we have to consider in obtaining the excited state Rényi

entropy up to order (`/L)8. In the 1st column it is the order from which each multi-point function

starts to contribute. In the 2nd column listed are the multi-point functions, and for simplicity

we have omitted the correlation function symbol 〈· · ·〉C and the positions of the operators, which

should be e2πij1/n, e2πij2/n, · · · . The j’s take values from 0, 1, · · · , n − 1 with constraints that

can be figured out easily. For example, TTA denotes the three-point functions on complex plane

〈T (e2πij1/n)T (e2πij2/n)A(e2πij3/n)〉C with 0 ≤ j1,2,3 ≤ n−1 and the constraints j1 < j2, j1 6= j3, j2 6=
j3. In the 3rd column we mark the answers to several questions. For the 1st question we mark

� if the multi-point functions are non-vanishing and we × if they are vanishing. The 2nd, 3rd,

4th and 5th questions are for the calculation of (5.2) in section 5, and they are about whether

the multi-point functions are non-vanishing or vanishing after the insertion, respectively, of the

operators T , A, B and D. In the 4th and 5th columns are the numbers of the multi-point functions

as counted by (3.17). Note that the table is similar to but different from table 2 which counts the

CFTn quasiprimary operators.
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From (2.14) we know that this is nothing but the relative entropy S(ρA,φ‖ρA,β). Note that

this discrepancy is of order c0 in the large c limit, and also there are infinite number of

subleading terms in large c expansion.

Based on the result (4.3), we then use the inequalities (2.16), (2.17), and (2.18) to esti-

mate the order of the trace distance in large c limit and check the validity of ETH. We have

obtained the Rényi entropy, entanglement entropy and relative entropy firstly in expansion

of small `, and then in expansion of large c. Focusing on the order of large c, we have

∆SA ∼ O(c0),

∆Sn ∼ O(c),

S(ρA,φ‖ρA,β) ∼ O(c0), (4.4)

and we assume that these orders still apply when 0 < `/L < 1 is neither too small nor too

large. From (2.16), (2.17), and (2.18) we get respectively

t ≥ O(c0)

log d
,

d ≥ eO(c),

t ≤ O(c0). (4.5)

From the first inequality of (4.5), the lower bound of the trace distance t, which is crucial

for the validity of subsystem weak ETH, depends on if the effective dimension d of the

subsystem A is strictly infinite or how it scales with c. It is a subtle issue to determine

d for generic CFTs. We will raise this as an interesting issue for further study, but now

consider some interesting scenarios.5

If d is strictly infinite, from (4.5) we get

0 ≤ t ≤ O(c0), (4.6)

which is trivial and gives no useful information. It is also possible there exists a large

but finite effective dimension d of the subsystem A that satisfies (2.16), (2.17) and so

satisfies (4.5). The Cardy’s formula [21] and Boltzmann’s entropy formula Ω(E) ∼ eS(E)

state that the number of states at a specific high energy is eO(c). It is plausible that for both

the reduced density matrices ρA,φ and ρA,β only eO(c) components are nontrivial and other

components are even smaller than exponential suppression. Then we get the tentative result

d ∼ eO(c). (4.7)

If this is true, from (4.5) we get

O(c−1) ≤ t ≤ O(c0). (4.8)

Both (4.6) and (4.8) are consistent with the subsystem weak ETH (1.3). However, it

lacks further evidence to obtain the power of suppression.

5In [4], instead a similar proposal to our first inequality of (4.5) for subsystem weak ETH, i.e., t ∼
d e−

1
2
S(E) is used as the definition for the effective dimension d. We understand this as the working

definition because the spectrum of the density matrix for the CFT should be continuous without further

coarse-graining.
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5 Relative entropy between primary states

In this section we present some byproducts of this paper obtained by using the same

method as the one in subsection 3.2 [26–32], which has also been used to calculate the

relative entropy [28, 30–32]. We will calculate the relative entropy S(ρA,φ‖ρA,ψ), the 2nd

symmetrized relative entropy S2(ρA,φ, ρA,ψ), and the Schatten 2-norm ‖ρA,φ − ρA,ψ‖2 be-

tween the reduced density matrices of two primary states |φ〉 and |ψ〉 in the short interval

expansion, where ψ is similar to φ and is the primary field of conformal weight hψ = cεψ.

To calculate the relative entropy S(ρA,φ‖ρA,ψ), we first need to calculate the “n-th

relative entropy”

Sn(ρA,φ‖ρA,ψ) =
1

n− 1

(
log trAρ

n
A,φ − log trA(ρA,φρ

n−1
A,0 )

)
. (5.1)

and then take n→ 1 limit.

We have already calculated trAρ
n
A,φ as illustrated in figure 3 of in subsection 3.2,

and this inspires us to calculate trA(ρA,φρ
n−1
A,ψ ) as illustrated in figure 4. Similar to the

manipulation in subsection 3.2, in the end we can obtain the formal result

trA(ρA,φρ
n−1
A,ψ )

trAρnA,0
=〈Ψφ(∞)Ψφ(0)〉Cn =

(
sin π`

L

nsin π`
nL

)2(hφ+(n−1)hψ)〈
Fφ
(
e2πi `

nL ,1
)n−1∏
j=1

Fψ
(
e2πi( `

nL
+ j
n

),e2πi j
n
)〉
C
,

(5.2)

Here Ψφ ≡ φ0
∏n−1
j=1 ψj , with φ existing in one copy and ψ existing in the other n−1 copies.

The explicit result up to order (`/L)8 is

Sn(ρA,φ‖ρA,ψ)=2c(εφ−εψ)log
sin π`

L

nsin π`
nL

+
π4c(εφ−εψ)(n+1)(n2+11)`4

45n4L4

(
nεφ+(n−2)εψ

)
+
π6c(εφ−εψ)(n+1)`6

2835L6n6
(
8n(n2−4)(n2+47)ε2φ+8(n−3)(n2−4)(n2+47)ε2ψ

+8n(n2−4)(n2+47)εφεψ+3n(2n4+9n2+37)εφ+3(n−2)(2n4+9n2+37)εψ
)

− π
8c(εφ−εψ)(n+1)`8

28350(5c+22)n8L8

[
c
(
4n(13n6−1647n4+33927n2−58213)ε3φ

+4(n−2)(13n6+40n5−1567n4+4400n3+42727n2−42840n−143893)ε3ψ

+4n(13n6−1647n4+33927n2−58213)ε2φεψ

+4(n−2)(13n6−40n5−1727n4−4400n3+25127n2+42840n+27467)εφε
2
ψ

−4n(n2+11)(13n4+160n2−533)ε2φ (5.3)

−4(n−2)(n2+11)(13n4−10n3+140n2−190n−913)ε2ψ

−4(n2+11)(13n5−3n4+160n3−10n2−533n−227)εφεψ

−3n(9n6+29n4+71n2+251)εφ−3(n−2)(9n6+29n4+71n2+251)εψ
)

−352n(n2−9)(n2−4)(n2+119)ε3φ−352(n−4)(n2−9)(n2−4)(n2+119)ε3ψ

−352n(n2−9)(n2−4)(n2+119)ε2φεψ−352n(n2−9)(n2−4)(n2+119)εφε
2
ψ

−176n(n2−4)(n2+11)(n2+19)ε2φ−176(n−3)(n2−4)(n2+11)(n2+19)ε2ψ

−176n(n2−4)(n2+11)(n2+19)εφεψ−8n(15n6+50n4+134n2+539)εφ

−8(n−2)(15n6+50n4+134n2+539)εψ
]
+O((`/L)9).
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|Ψϕ〉

〈Ψϕ|

Ψϕ

Ψϕ

⟹
ϕ
ϕ⟹

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

⟹

n-fold cylinder n-fold complex plane one-fold complex plane

Figure 4. The calculation of trA(ρA,φρ
n−1
A,ψ ). Here Ψφ ≡ φ0

∏n−1
j=1 ψj , with φ existing in one copy

and ψ existing in the other n− 1 copies.

By taking n→ 1 limit we get

S(ρA,φ‖ρA,ψ)=
8π4c(εφ−εψ)2`4

15L4
−

32π6c(εφ−εψ)2
(
8(εφ+2εψ)−1

)
`6

315L6

+
8π8c(εφ−εψ)2`8

1575(5c+22)L8

(
5c(288ε2φ+1568ε2ψ+576εφεψ−48εφ−128εψ+3) (5.4)

+2(7040ε2φ+21120ε2ψ+14080εφεψ−880εφ−1760εψ+41)
)
+O((`/L)9).

To order `6 the result is in accord with [30, 31].

Using the above result we can obtain S(ρA,ψ‖ρA,φ) by swapping εφ and εψ in (5.4).

After that we can get the symmetrized relative entropy

S(ρA,φ,ρA,ψ)=
16π4c(εφ−εψ)2`4

15L4
−

64π6c(εφ−εψ)2(12(εφ+εψ)−1)`6

315L6

+
16π8c(εφ−εψ)2`8

1575(5c+22)L8

[
5c(928(ε2φ+ε2ψ)+576εφεψ−88(εφ+εψ)+3) (5.5)

+2
(
14080(ε2φ+ε2ψ)+14080εφεψ−1320(εφ+εψ)+41

)]
+O((`/L)9).

Note that if we take εψ = 0, we can obtain S(ρA,φ‖ρA,0), S(ρA,0‖ρA,φ) and S(ρA,φ, ρA,0)

which characterize the difference of the excited state |φ〉 and the vacuum state |0〉. More-

over, all the above results show nontrivial subleading 1/c corrections at the order (`/L)8.

The n-th relative entropy for n 6= 1 is not positive definite so that it cannot used

as the measure for the difference of two quantum states. However, it turns out the 2nd

symmetrized relative entropy S2(ρ, ρ′) is positive definite because it can be written as

S2(ρ, ρ′) = log
trρ2trρ′2

[tr(ρρ′)]2
. (5.6)

Thus, S2(ρ, ρ′) can be used as a difference measure between two quantum states. In fact

it is directly related to the overlap of the two density matrices

F(ρ, ρ′) =
[tr(ρρ′)]2

trρ2trρ′2
. (5.7)
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Note that the 2nd symmetrized relative entropy S2(ρ, ρ′) is vanishing if and only if two

density matrices are identical ρ = ρ′ and is infinite for two orthogonal density matrices

tr(ρρ′) = 0.

More general, one can also use Schatten n-norm to measure the difference of two

density matrices

‖ρ− ρ′‖n = [tr(|ρ− ρ′|n)]1/n. (5.8)

For n = 1 it is just the trace distance, and for n = 2 we have

‖ρ− ρ′‖2 = [trρ2 + trρ′2 − 2tr(ρρ′)]1/2, (5.9)

Below we will calculate both S2(ρA,φ, ρA,ψ) and ‖ρA,φ−ρA,ψ‖2 by following the similar

trick used in the previous subsection. In fact, the ingredients needed to carry out the

calculations such as trAρ
2
A,φ and trA(ρA,φρA,ψ) have all been done already in previous

sections. Packing them up, we then obtain the formal results as follows:

S2(ρA,φ,ρA,ψ) = log

{[∑
X

C2
φφX

αX

(
sin

π`

2L

)2hX

2F1

(
hX ,hX ;2hX ;sin2 π`

2L

)]

×
[∑
X

C2
ψψX

αX

(
sin

π`

2L

)2hX

2F1

(
hX ,hX ;2hX ;sin2 π`

2L

)]

÷
[∑
X

CφφXCψψX
αX

(
sin

π`

2L

)2hX

2F1

(
hX ,hX ;2hX ;sin2 π`

2L

)]2}
, (5.10)

‖ρA,φ−ρA,ψ‖2 =

(
L

πε
sin

π`

L

)−c/16{( sin π`
L

2sin π`
2L

)4hφ
[∑
X

C2
φφX

αX

(
sin

π`

2L

)2hX

2F1

(
hX ,hX ;2hX ;sin2 π`

2L

)]

+

(
sin π`

L

2sin π`
2L

)4hψ
[∑
X

C2
ψψX

αX

(
sin

π`

2L

)2hX

2F1

(
hX ,hX ;2hX ;sin2 π`

2L

)]
(5.11)

−2

(
sin π`

L

2sin π`
2L

)2(hφ+hψ)[∑
X

CφφXCψψX
αX

(
sin

π`

2L

)2hX

2F1

(
hX ,hX ;2hX ;sin2 π`

2L

)]}1/2

.

Then, in the short interval expansion we obtain the explicit results as follows:

S2(ρA,φ,ρA,ψ) =
π4c(εφ−εψ)2`4

8L4

[
1+

π2`2

12L2
+
π4(5c+24−20c(εφ+εψ)(11εφ+11εψ−1))`4

160(5c+22)L4

+
π6(145c+764−1260c(εφ+εψ)(11εφ+11εψ−1))`6

60480(5c+22)L6
+O((`/L)8)

]
, (5.12)

‖ρA,φ−ρA,ψ‖2 =
π2
√
c(c+2)(εφ−εψ)2`2

4L2

(
`

ε

)−c/16[
1+

π2(c+4)(c+2−12c(εφ+εψ))`2

96(c+2)L2
+O((`/L)4)

]
.

We see that both of them have nontrivial large c corrections though with different struc-

tures.

6 Conclusion and discussion

ETH is a fundamental issue in quantum thermodynamics and its validity for various sit-

uation should be scrutinized. An interesting version of ETH was proposed very recently

in [3, 4], the so-called subsystem ETH which requires the difference between high energy

state and microcanonical ensemble thermal state over all a local region should be expo-

nentially suppressed by the entropy of the total system. This can be further relaxed to
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the so-called subsystem weak ETH, which compares the high energy state and canonical

ensemble thermal state. To be precise, the trace distance of the reduced density matrices

should be power-law suppressed.

In this paper we check the validity of subsystem weak ETH for a 2D large c CFT.

We evaluate the Rényi entropy, entanglement entropy, and relative entropy of the reduced

density matrices to measure the difference between the heavy primary state and thermal

state. We use these results and some information inequalities to get the bounds for the

trace distance in large c limit, and find

O(c0)

log d
≤ t ≤ O(c0). (6.1)

The upper bound is trivial. The lower bound depends on how the effective dimension d of

the subsystem scales with c, which is subtle to determine. Instead of using the relation (6.1)

as a definition of d, see, e.g., [4], we treat it as an open issue and consider the possible

interesting scenarios. One of these is that d satisfies Fannes-Audenaert inequality and at

the same time yields nontrivial lower bound of t. It is plausible that

d ∼ eO(c). (6.2)

If this is true, the trace distance would be power-law suppressed so that it is consistent

with the subsystem weak ETH.

We have to say we do not have a concrete proof that the result (6.2) is correct. The

validity of the subsystem weak ETH really depends only on whether the large but finite

effective dimension exists and if yes how it scales with the large central charge. It is an

open question, and it is possible one has to calculate the trace distance explicitly to find

the answer.

As pointed out in [9], the mismatch of the Rényi entropies of excited state and canonical

ensemble thermal state at order `4 originates from the mismatch of the one-point expecta-

tion values of the level 4 quasiprimary operator A. The same reason applies to the mismatch

of entanglement entropies, and the non-vanishing of relative entropy at order `8 in this pa-

per. One possible resolution is that the excited state should be compared to the generalized

Gibbs ensemble thermal state [45–50], instead of the ordinary canonical thermal state. In

fact, there are an infinite number of commuting conserved charges in the vacuum confor-

mal family [51, 52], and in the generalized Gibbs ensemble one can also use noncommuting

charges [47]. We will discuss about it in more details in a work that will come out soon [53].6

Acknowledgments

We thank Huajia Wang for an initial participation of the project. We would like to thank

Pallab Basu, Diptarka Das, Shouvik Datta, Sridip Pal for their very helpful discussions. We

thank Matthew Headrick for his Mathematica code Virasoro.nb, which can be downloaded

6We thank a JHEP referee for discussions about higher order conserved charges in KdV hierarchy and

the generalized Gibbs ensemble.

– 18 –



J
H
E
P
0
8
(
2
0
1
7
)
1
2
6

at http://people.brandeis.edu/~headrick/Mathematica/index.html. JJZ would like

to thank the organisers of The String Theory Universe Conference 2017 held in Milan,

Italy on 20-24 February 2017 for being given the opportunity to present some of the re-

sults as gongshow and poster, and thank the participants, especially Geoffrey Compère,

Debajyoti Sarkar and Marika Taylor, for stimulating discussions. SH is supported by Max-

Planck fellowship in Germany and the National Natural Science Foundation of China Grant

No. 11305235. FLL is supported by Taiwan Ministry of Science and Technology through

Grant No. 103-2112-M-003-001-MY3 and No. 103-2811-M-003-024. JJZ is supported by

the ERC Starting Grant 637844-HBQFTNCER.

A Some details of vacuum conformal family

We list the holomorphic quasiprimary operators in vacuum conformal family to level 8. In

level 2, we have the quasiprimary operator T , with the usual normalization αT = c
2 . In

level 4, we have

A = (TT )− 3

10
∂2T, αA =

c(5c+ 22)

10
. (A.1)

In level 6, we have the orthogonalized quasiprimary operators

B = (∂T∂T )− 4

5
(∂2TT )− 1

42
∂4T, D = C +

93

70c+ 29
B, (A.2)

with the definition

C = (T (TT ))− 9

10
(∂2TT )− 1

28
∂4T, (A.3)

and the normalization factors are

αB =
36c(70c+ 29)

175
, αD =

3c(2c− 1)(5c+ 22)(7c+ 68)

4(70c+ 29)
. (A.4)

In level 8 we have the orthogonalized quasiprimary operators

E = (∂2T∂2T )− 10

9
(∂3T∂T ) +

10

63
(∂4TT )− 1

324
∂6T,

H = F +
9(140c+ 83)

50(105c+ 11)
E , (A.5)

I = G +
81(35c− 51)

100(105c+ 11)
E +

12(465c− 127)

5c(210c+ 661)− 251
H,

with the definitions

F = (∂T (∂TT ))− 4

5
(∂2T (TT )) +

2

15
(∂3T∂T )− 3

70
(∂4TT ), (A.6)

G = (T (T (TT )))− 9

5
(∂2T (TT )) +

3

10
(∂3T∂T )− 13

70
(∂4TT )− 1

240
∂6T,

and the normalization factors are

αE =
22880c(105c+ 11)

1323
,

αH =
26c(5c+ 22)(5c(210c+ 661)− 251)

125(105c+ 11)
, (A.7)

αI =
3c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)

2(5c(210c+ 661)− 251)
.
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In this paper we need the structure constants

CTTT = c, CTTA =
c(5c+ 22)

10
, (A.8)

and the four-point function on complex plane

〈T (z1)T (z2)T (z3)T (z4)〉C=
c2

4

(
1

(z12z34)
4+

1

(z13z24)
4+

1

(z14z23)
4

)
+c

(z12z34)2+(z13z24)2+(z14z23)2

(z12z34z13z24z14z23)2
,

(A.9)

with the definitions zij ≡ zi − zj .
Under a general coordinate transformation z → f(z), we have the transformation rules

T (z)=f ′2T (f)+
c

12
s, A(z)=f ′4A(f)+

5c+22

30
s

(
f ′2T (f)+

c

24
s

)
,

B(z)=f ′6B(f)− 8

5
sf ′4A(f)− 70c+29

1050
sf ′4∂2T (f)+

70c+29

420
f ′2(f ′s′−2f ′′s)∂T (f)

− 1

1050

(
28(5c+22)f ′2s2+(70c+29)(f ′2s′′−5f ′f ′′s′+5f ′′2s)

)
T (f)

− c

50400

(
744s3+(70c+29)(4ss′′−5s′2)

)
,

D(z)=f ′6D(f)+
(2c−1)(7c+68)

70c+29
s

(
5

4
f ′4A(f)+

5c+22

48
s

(
f ′2T (f)+

c

36
s

))
,

E(z)=f ′8E(f)− 4510

567
sf ′6B(f)+

50

567
sf ′6∂2A(f)− 25

63
f ′4(f ′s′−2sf ′′)∂A(f)

+
4

63
f ′2(25sf ′′2+5f ′2s′′+98s2f ′2−25f ′f ′′s′)A(f)+

105c+11

7938
sf ′6∂4T (f)

− 105c+11

1134
f ′4(f ′s′−2sf ′′)∂3T (f)+

1

5670
f ′2
(
9(105c+11)(f ′2s′′+5sf ′′2−5f ′f ′′s′)

+10(120c+77)s2f ′2
)
∂2T (f)− 1

2268

(
(105c+11)(2s(3)f ′3−30sf ′′3−18f ′2f ′′s′′+45f ′f ′′2s′)

+10(120c+77)sf ′2(f ′s′−2sf ′′)
)
∂T (f)+

1

79380f ′2
(
8(3570c+2629)sf ′4s′′

−5(2940c+2563)f ′4s′2+12(1225c+9449)s3f ′4+700(120c+77)sf ′2f ′′(sf ′′−f ′s′)
+5(105c+11)(105sf ′′4+2s(4)f ′4−28s(3)f ′3f ′′+126f ′2f ′′2s′′−210f ′f ′′3s′)

)
T (f)

+
c

952560

(
(105c+11)(10ss(4)+63s′′2−70s(3)s′)+451s(20ss′′−25s′2+52s3)

)
, (A.10)

H(z)=f ′8H(f)− 8

5
sf ′6D(f)+

91(5c+22)(5c(210c+661)−251)

540(70c+29)(105c+11)
sf ′6B(f)

− 5c(210c+661)−251

540(105c+11)
sf ′6∂2A(f)+

5c(210c+661)−251

120(105c+11)
f ′4(f ′s′−2sf ′′)∂A(f)

+
1

150(105c+11)
f ′2
(
(5c(210c+661)−251)(5f ′f ′′s′−5sf ′′2−f ′2s′′)

−8(25c(21c+187)−951)s2f ′2
)
A(f)− (5c+22)(5c(210c+661)−251)

9000(105c+11)
s2f ′4∂2T (f)

+
(5c+22)(5c(210c+661)−251)

3600(105c+11)
sf ′2(f ′s′−2sf ′′)∂T (f)

+
5c+22

108000(105c+11)

(
3(5c(210c+661)−251)(−20s2f ′′2−8sf ′2s′′+5f ′2s′2+20sf ′f ′′s′)
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−8(15c(210c+2273)−7357)s3f ′2)T (f)− c(5c+22)s

1296000(105c+11)
(104(465c−127)s3

+3(5c(210c+661)−251)(4ss′′−5s′2)),

I(z)=f ′8I(f)+
(3c+46)(5c+3)(70c+29)

3(5c(210c+661)−251)
s

(
D(f)f ′6+

5(2c−1)(7c+68)

8(70c+29)
s

(
f ′4A(f)

+
5c+22

90
s

(
f ′2T (f)+

c

48
s

)))
.

In the above equations, we have the definition of Schwarzian derivative

s(z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

, (A.11)

and the shorthand notations

f ′ ≡ f ′(z), f ′′ ≡ f ′′(z), s ≡ s(z), s′ ≡ s′(z), s′′ ≡ s′′(z), s(3) ≡ s(3)(z), · · · . (A.12)

For a general primary operator φ with conformal weight hφ and normalization factor

αφ = 1, we have the structure constants

CφφT = hφ, CφφA =
hφ(5hφ + 1)

5
, CφφB = −

2hφ(14hφ + 1)

35
,

CφφD =
hφ[(70c+ 29)h2

φ + (42c− 57)hφ + (8c− 2)]

70c+ 29
, CφφE =

4hφ(27hφ + 1)

63
,

CφφH = −
2hφ

(
10(105c+ 11)h2

φ + (435c− 218)hφ + 55c− 4
)

25(105c+ 11)
, (A.13)

CφφI =
hφ

5c(210c+ 661)− 251

(
(5c(210c+ 661)− 251)h3

φ + 6(c(210c− 83) + 153)h2
φ

+ (c(606c− 701)− 829)hφ + 6c(18c+ 13)− 6
)
.

For a general holomorphic quasiprimary operator X , the non-vanishing of CφφX require

that X is bosonic and its conformal dimension hX is an even integer, and this leads to

CφφX = CφXφ. We have the three-point function on complex plane

〈φ(∞)∂rX (z)φ(0)〉C =
(−)r(hX + r − 1)!

(hX − 1)!

CφφX
zhX+r

. (A.14)

For a general operator X , we denote its expectation value on a cylinder with spatial period

L in excited state |φ〉 as 〈X 〉φ = 〈φ|X |φ〉cyl. From translation symmetry in both directions

of the cylinder, we know that 〈X 〉φ is a constant. So for r ∈ Z and r > 0, we have

〈∂rX〉φ = 0. (A.15)

By mapping the cylinder to a complex plane, using (A.10) and (A.13) we get the expectation

values

〈T 〉φ=
π2(c−24hφ)

6L2
, 〈A〉φ=

π4(c(5c+22)−240(c+2)hφ+2880h2
φ)

180L4
, 〈B〉φ=−2π6(31c−504hφ)

525L6
,

〈D〉φ=
π6

216(70c+29)L6

(
c(2c−1)(5c+22)(7c+68)−72(70c3+617c2+938c−248)hφ

+1728(c+4)(70c+29)h2
φ−13824(70c+29)h3

φ

)
,
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level operator level operator level operator level operator

0 1

6

B, D
7

M O
2 T TA TJ , N P

4
A K E , H, I 8 TTA
TT TTT 8 TB, TD TK, Q, R

5 J 7 L AA TTTT

Table 2. To level 8, the CFTn holomorphic quasiprimary operators. We have omitted the replica

indices and their constraints. The definitions of J , K, L, M, N , O, P, Q, R can be found in [54],

and the normalization factors αK and OPE coefficients dK for all these quasiprimary operators can

also be found therein.

〈E〉φ=
572π8(41c−480hφ)

59535L8
, (A.16)

〈H〉φ=− 13π8

10125(105c+11)L8

(
c(5c+22)(465c−127)−480(195c2+479c−44)hφ+8640(105c+11)h2

φ

)
,

〈I〉φ=
π8

1296(1050c2+3305c−251)L8

(
c(2c−1)(3c+46)(5c+3)(5c+22)(7c+68)

−96(1050c5+23465c4+153901c3+274132c2+22388c−6864)hφ

+3456(1050c4+16325c3+69963c2+65686c−648)h2
φ

−55296(c+6)(1050c2+3305c−251)h3
φ+331776(1050c2+3305c−251)h4

φ

)
.

B OPE of twist operators

We review OPE of twist operators in the n-fold CFT that is denoted as CFTn [23–25, 54].

We also define and calculate CΦΦK , 〈ΦK〉Φ, and bK that would be useful to subsection 3.1.

Note that in this paper we only consider contributions of the holomorphic sector. The

twist operators σ and σ̃ are primary operators with conformal weights [22]

hσ = hσ̃ =
c(n2 − 1)

24n
. (B.1)

We have the OPE of twist operators [23–25]

σ(z)σ̃(w) =
cn

(z − w)2hσ

∑
K

dK

∞∑
r=0

arK
r!

(z − w)hK+r∂rΦK(w). (B.2)

Here cn is the normalization factor. The summation K is over each orthogonalized holo-

morphic quasiprimary operator ΦK in CFTn, and hK is the conformal weight of ΦK . We

have definition

arK ≡
CrhK+r−1

Cr2hK+r−1

, (B.3)

with Cyx denoting the binomial coefficient that is also written as
(
x
y

)
. To level 8, the CFTn

holomorphic quasiprimary operators has been constructed in [54], and we just list them in

table 2. The normalization factors αK and OPE coefficients dK for all these quasiprimary

operators can also be found in [54].
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From a holomorphic primary operator φ with normalization αφ = 1 in the original

CFT, we can define the CFTn primary operator

Φ =

n−1∏
j=0

φj . (B.4)

In subsection 3.1, we need structure constant CΦΦK for the quasiprimary operators ΦK in

table 2. The results can be written in terms of (A.13). First of all it is easy to see

CΦΦT =CφφT , CΦΦA=CφφA, CΦΦB=CφφB, CΦΦD=CφφD,

CΦΦE=CφφE , CΦΦH=CφφH, CΦΦI=CφφI , CΦΦTT =C2
φφT ,

CΦΦTA=CφφTCφφA, CΦΦTB=CφφTCφφB, CΦΦTD=CφφTCφφD, (B.5)

CΦΦAA=C2
φφA, CΦΦTTT =C3

φφT , CΦΦTTA=C2
φφTCφφA, CΦΦTTTT =C4

φφT .

There are vanishing structure constants

CΦΦJ = CΦΦL = CΦΦM = CΦΦTJ = CΦΦN = 0. (B.6)

For K, O, and P we have

CΦΦK = −4

5
C2
φφT , CΦΦO = −56

45
CφφTCφφA, CΦΦP =

12

7
C2
φφT . (B.7)

Finally, we have

CΦΦTK = CφφTCφφK, CΦΦQ =
7

9
CΦΦTK, CΦΦR =

7

11
CΦΦTK. (B.8)

It is easy to get 〈ΦK〉Φ that appear in (3.2) in terms of (A.16)

〈T 〉Φ =〈T 〉φ, 〈A〉Φ =〈A〉φ, 〈B〉Φ =〈B〉φ, 〈D〉Φ =〈D〉φ, 〈E〉Φ =〈E〉φ, 〈H〉Φ =〈H〉φ,
〈I〉Φ =〈I〉φ, 〈TT 〉Φ =〈T 〉2φ, 〈TA〉Φ =〈T 〉φ〈A〉φ, 〈TB〉Φ =〈T 〉φ〈B〉φ, 〈TD〉Φ =〈T 〉φ〈D〉φ,
〈AA〉Φ =〈A〉2φ, 〈TTT 〉Φ =〈T 〉3φ, 〈TTA〉Φ =〈T 〉2φ〈A〉φ, 〈TTTT 〉Φ =〈T 〉4φ. (B.9)

Because of (A.15) we have the vanishing results

〈J 〉Φ=〈K〉Φ=〈L〉Φ=〈M〉Φ=〈N〉Φ=〈O〉Φ=〈P〉Φ=〈Q〉Φ=〈R〉Φ=〈TJ 〉Φ=〈TK〉Φ=0. (B.10)

From OPE coefficient dK for quasiprimary operators in table 2 we may define bK by

summing over the indices of ΦK

bK =
∑
j1,···

dj1···K . (B.11)

For examples, in table 2 T denotes operators Tj with 0 ≤ j ≤ n − 1, and TTA denotes

operators Tj1Tj2Aj3 with 0 ≤ j1,2,3 ≤ n − 1 and the constraints j1 < j2, j1 6= j3, j2 6= j3,

and so we have

bT =
n−1∑
j=0

dT = ndT , (B.12)
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and

bTTA =
∑

0≤j1,2,3≤n−1

dj1j2j3TTA with constraints j1 < j2, j1 6= j3, j2 6= j3. (B.13)

Using the results of dK and the summation formulas in [54] we get the bK we need. In

subsection 3.1 we need

bT =
n2−1

12n
, bA=

(n2−1)2

288n3
, bB=− (n2−1)2(70cn2+122n2−93)

10368(70c+29)n5
,

bD=
(n2−1)3

10368n5
, bE=

(n2−1)2(11340cn4+11561n4−16236n2+5863)

65894400(105c+11)n7
,

bH=−
(n2−1)3

(
3150c2n2+c(15960n2−6045)−2404n2+1651

)
539136(5c(210c+661)−251)n7

, bI=
(n2−1)4

497664n7
,

bTT =
(n2−1)(5c(n+1)(n−1)2+2n2+22)

1440cn3
, bTA=

(n2−1)2(5c(n+1)(n−1)2+4n2+44)

17280cn5
,

bTB=− (n2−1)2

13063680c(70c+29)n7
(
7350n2c2(n−1)2(n+1)

+35c(366n5−238n4−645n3+2369n2+279n−403)+2(6787n4+71089n2−65348)
)
,

bTD=
(n2−1)3

(
5c(n+1)(n−1)2+6n2+66

)
622080cn7

, (B.14)

bAA=
1

5806080c(5c+22)n7
(175c2(n+1)4(n−1)5

+70c(n2−1)3(11n3−7n2−11n+55)+8(n2−1)(n2+11)(157n4−298n2+381)),

bTTT =
(n−2)(n2−1)

362880c2n5
(
35c2(n+1)2(n−1)3+42c(n4+10n2−11)−16(n+2)(n2+47)

)
,

bTTA=
(n−2)(n2−1)

14515200c2n7
(
175c2(n+1)3(n−1)4+350c(n2−1)2(n2+11)

−128(n+2)(n4+50n2−111)
)
,

bTTTT =
(n−3)(n−2)(n2−1)

87091200c3n7
(
175c3(n+1)3(n−1)4+420c2(n2−1)2(n2+11)

−4c(59n5+121n4+3170n3+6550n2−6829n−11711)+192(n+2)(n+3)(n2+119)
)
.

In subsection 3.1, we also need

bK=−
(n2−1)

(
70c(n−1)2(n+1)n2−2n4+215n2−93

)
725760cn5

,

bO=−
(n2−1)2

(
210c(n−1)2(n+1)n2+38n4+1445n2−403

)
37739520cn7

,

bP=
(n2−1)

(
11340c(n−1)2(n+1)n4−1481n6+27797n4−22099n2+5863

)
6918912000cn7

, (B.15)

bTK+
7

9
bQ+

7

11
bR=− (n−2)(n2−1)

188697600c2n7

(
1050c2(n+1)2n2(n−1)3

+5c(n2−1)(122n4+2369n2−403)−4(n+2)(81n4+4600n2−2041)
)
.
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C Useful summation formulas

Most of the summation formulas that are used in this paper can be found in [54]. There

are two other ones∑
6=

1

s2
j1j2

s4
j2j3

s4
j3j1

=
4n(n2 − 4)(n2 − 1)(n2 + 19)(n4 + 19n2 + 628)

467775
,

∑
6=

cj1j2cj1j3
s3
j1j2

s3
j1j3

s4
j2j3

=
2n(n2 − 25)(n2 − 4)(n2 − 1)(n4 + 30n2 + 419)

467775
, (C.1)

and the summations are in the range 0 ≤ j1,2,3 ≤ n−1 with the constraints j1 6= j2, j1 6= j3
and j3 6= j1. Here we have used the shorthand sj1j2 = sin π(j1−j2)

n , cj1j2 = cos π(j1−j2)
n , and

et al.

We define the summation of k indices 0 ≤ j1,2,··· ,k ≤ n− 1∑
6=
f(j1, j2, · · · , jk), (C.2)

with the constraints that any two of the indices are not equal and the function

f(j1, j2, · · · , jk) is totally symmetric for the k arguments. First we have∑
6=′

f(0, j2, · · · , jk) =
1

n

∑
6=
f(j1, j2, · · · , jk), (C.3)

with the summation 6=′ of the left-hand side being over 1 ≤ j2,··· ,k ≤ n − 1 and the

constraints that any two of the indices are not equal. Then we have∑
6=′

f(j1, j2, · · · , jk) =
n− k
n

∑
6=
f(j1, j2, · · · , jk), (C.4)

with the summation of the left-hand side being over 1 ≤ j1,2,··· ,k ≤ n− 1.
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[41] W.-Z. Guo and S. He, Rényi entropy of locally excited states with thermal and boundary

effect in 2D CFTs, JHEP 04 (2015) 099 [arXiv:1501.00757] [INSPIRE].

[42] B. Chen, W.-Z. Guo, S. He and J.-Q. Wu, Entanglement entropy for descendent local

operators in 2D CFTs, JHEP 10 (2015) 173 [arXiv:1507.01157] [INSPIRE].

[43] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York

U.S.A., (1997) [INSPIRE].

[44] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory, Lect. Notes Phys.

779 (2009) 1 [INSPIRE].

– 27 –

https://doi.org/10.1007/JHEP11(2013)164
https://arxiv.org/abs/1309.5453
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5453
https://doi.org/10.1103/PhysRevLett.106.201601
https://arxiv.org/abs/1101.2881
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2881
https://doi.org/10.1088/1742-5468/2012/01/P01016
https://arxiv.org/abs/1109.5673
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5673
https://doi.org/10.1103/PhysRevLett.113.051602
https://arxiv.org/abs/1404.3216
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3216
https://doi.org/10.1103/PhysRevLett.117.041601
https://doi.org/10.1103/PhysRevLett.117.041601
https://arxiv.org/abs/1508.03506
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03506
https://doi.org/10.1007/JHEP07(2016)114
https://arxiv.org/abs/1603.03057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.03057
https://doi.org/10.1007/JHEP02(2017)060
https://arxiv.org/abs/1611.02959
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.02959
https://doi.org/10.1007/JHEP02(2017)039
https://arxiv.org/abs/1612.00659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00659
https://doi.org/10.1007/BF01646490
https://doi.org/10.1007/BF01646490
https://doi.org/10.1088/1751-8113/40/28/S18
https://doi.org/10.1088/1751-8113/40/28/S18
https://arxiv.org/abs/quant-ph/0610146
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://arxiv.org/abs/1406.4167
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4167
https://doi.org/10.1088/1742-5468/2016/12/123103
https://arxiv.org/abs/1608.01283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01283
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
https://doi.org/10.1007/JHEP12(2013)020
https://arxiv.org/abs/1305.3291
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3291
https://doi.org/10.1103/PhysRevLett.112.111602
https://arxiv.org/abs/1401.0539
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.0539
https://doi.org/10.1103/PhysRevD.90.041701
https://arxiv.org/abs/1403.0702
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0702
https://doi.org/10.1007/JHEP04(2015)099
https://arxiv.org/abs/1501.00757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00757
https://doi.org/10.1007/JHEP10(2015)173
https://arxiv.org/abs/1507.01157
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01157
https://doi.org/10.1007/978-1-4612-2256-9
https://inspirehep.net/search?p=find+recid+454643
https://doi.org/10.1007/978-3-642-00450-6
https://doi.org/10.1007/978-3-642-00450-6
https://inspirehep.net/search?p=find+J+%22Lect.Notes Phys.,779,1%22


J
H
E
P
0
8
(
2
0
1
7
)
1
2
6

[45] M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable

many-body quantum system: an ab initio study of the dynamics of the highly excited states of

1D lattice hard-core bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].

[46] G. Mandal, R. Sinha and N. Sorokhaibam, Thermalization with chemical potentials and

higher spin black holes, JHEP 08 (2015) 013 [arXiv:1501.04580] [INSPIRE].

[47] J. Cardy, Quantum quenches to a critical point in one dimension: some further results, J.

Stat. Mech. 02 (2016) 023103 [arXiv:1507.07266] [INSPIRE].

[48] G. Mandal, S. Paranjape and N. Sorokhaibam, Thermalization in 2D critical quench and

UV/IR mixing, arXiv:1512.02187 [INSPIRE].

[49] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat.

Mech. 06 (2016) 064007 [arXiv:1604.03990].

[50] J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev. D 94

(2016) 126019 [arXiv:1604.05327] [INSPIRE].

[51] R. Sasaki and I. Yamanaka, Virasoro algebra, vertex operators, quantum sine-Gordon and

solvable quantum field theories, Adv. Stud. Pure Math. 16 (1988) 271.

[52] V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal

field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys.

177 (1996) 381 [hep-th/9412229] [INSPIRE].

[53] S. He, F.-L. Lin and J.-J. Zhang, Dissimilarities of reduced density matrices and eigenstate

thermalization hypothesis, arXiv:1708.05090 [INSPIRE].

[54] B. Chen, J. Long and J.-J. Zhang, Holographic Rényi entropy for CFT with W symmetry,
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