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Abstract— We consider model updating by adding correction
terms to the model equations in the state space form. Two
classes of errors, namely model errors in the dynamics equation
and model errors in the output equation, are considered.
The model errors are assumed to arise from an unknown
nonlinear subsystem. First, the states of the true system are
estimated using unbiased minimum-variance filters. Next, the
state estimates are used to obtain least squares estimates of
the unmodeled terms. Finally, these least squares estimates are
used to identify the correction subsystem. We discuss model
updating for the case in which the unknown subsystem is either
a static nonlinear function or a dynamic nonlinear system. A
few illustrative examples are also provided.

I. INTRODUCTION

Both first principle (that is, analytical) models and empiri-
cal (that is, identified) models are approximate. The required
accuracy of a model is application dependent. In this paper,
we assume that an initial model in state space form is avail-
able and that the fidelity of the initial model is insufficient.
We update the initial model by adding correction terms to
the model equations. This technique is of particular interest
when the initial model is a large-scale analytical model or a
computer simulation, in which case it is convenient to add
correction terms rather than replace the initial model.

In [9] model updating is based on adding a small cor-
rection model (delta model) in parallel, cascade or feedback
with the initial model. However, such methods have several
limitations. Often the delta model is the same dynamic order
as the sum of orders of the initial model and the true system.
Such a high order correction can be expensive and inefficient,
especially when the true system and initial model are high
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order systems while the error is relatively low order. Another
disadvantage of this method is that the delta model is not
physically meaningful.

Alternatively, the approaches of [6] corrects a structural
dynamics model of a structure with truncated modes by ap-
pending an analytically derived correction model in parallel.
In [2] to preserve the structure of the structural model, the
parameters of the model are updated directly by using con-
nectivity constraints. Furthermore, in [5] a method is outlined
for modifying an existing controller based on knowledge of
deviations in the plant. However, the aim of [5] is not to
correct the model itself, but rather to correct the controller
such that it handles deviations in the plant.

In [1] model updating for state space models, which have
an additive error in the dynamics equation, is considered.
Specifically, systems of the form

xk+1 = Akxk + Hkdk + Buk + wk, (I.1)

yk = Ckxk + Dkuk + vk. (I.2)

are considered, where Ak, Bk, Ck, Dk, and Hk are known,
while dk is an unknown signal arising from an unknown
linear subsystem. This framework can be represented as
shown in Figure 1. Since the states xk, which are inputs to
the subsystem, are not measured, a filter is first designed to
estimate the states. For an arbitrary unknown signal dk, the
traditional Kalman filter state estimates are biased. Hence,
the filter developed in [3], which delivers unbiased estimates
of the states in spite of arbitrary unknown inputs, is used
to estimate the states of (I.1)-(I.2). Based on these state
estimates, the unknown signal dk is estimated and thus
the linear subsystem is identified. Both recursive and batch
model updating are considered.
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Fig. 1. Block diagram representation of model
error in dynamics equation

In the present paper, we extend the approach of [1], by
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letting the unknown subsystem be either a static nonlinear
function, or a nonlinear dynamical subsystem. Furthermore,
we consider additive model errors in the output equation.
This class of model errors can be represented in the state
space form as

xk+1 = Akxk + Buk + wk, (I.3)

yk = Ckxk + Hkdk + Dkuk + vk, (I.4)

where Ak, Bk, Ck, Dk, and Gk are known, while dk

is an unknown signal arising from an unknown nonlinear
subsystem. Figure 2 shows a block diagram representation
of the model updating problem for model errors in the output
equation (I.3)-(I.4). Again, we let the subsystem be a static
nonlinear function or a nonlinear dynamical system.

To update the initial model, we first estimate the states
of the true system without knowledge of the signal dk. To
obtain unbiased estimates of the states, we use the unbiased
minimum-variance filter presented in [3] for (I.1)-(I.2), and
the unbiased minimum-variance filter for output correction
(output correction filter) derived in this paper for (I.3)-(I.4).
Once we obtain unbiased estimates of the states of the
true system, we then use these state estimates to obtain a
least squares estimate of the unknown signal dk. Finally,
the correction subsystem is identified using a basis function
expansion, or subspace identification methods [4, 7, 8, 10].
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Fig. 2. Block diagram representation of model error in output
equation

In the current approach the identified subsystem is driven
by the estimates of the states of the true system, and hence
is physically meaningful. Additionally, this approach has
the advantage over the method in [9] that the order of the
correction subsystem is the same as the dynamic order of
the model error.

This paper is organized as follows. Sections 2, 3, 4 and 5
deal with model errors in the dynamics equation. In section
2, the problem is presented, while in section 3 the details
of the unbiased minimum-variance filter is described briefly.
Sections 4 and 5 discuss model updating methods using
the unbiased minimum-variance filter. Sections 6, 7 and 8
deal with model errors in the output equation. Section 6
describes the problem, section 7 presents the derivation of
the output correction filter, and section 8 discusses model
updating using the output correction filter. In section 9 a
nonlinear identification method using the model updating
technique is described. And finally in sections 10 and 11
illustrative examples are presented, while sections 12 and 13
are conclusions and appendix respectively.

II. DYNAMICS EQUATION SUBSYSTEM IDENTIFICATION

Consider the system

xk+1 = Akxk + Hkdk + Bkuk + wk, (II.1)

yk = Ckxk + Dkuk + vk, (II.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
l and dk ∈ R

p.
Throughout this paper we assume that measurements of the
inputs uk and outputs yk are available, while wk ∈ R

n and
vk ∈ R

l are unknown white noise sequences with known
covariances Qk and Rk, respectively. We consider model
correction for (II.1)-(II.2) when Ak, Bk, Ck and Dk are
known to within a similarity transformation, and signal dk is
unknown. For now, Hk is assumed to be known, but the case
in which Hk is unknown is discussed later. Also, without
loss of generality, we assume rank(Hk) = p. The signal dk

is assumed to be an output of an unknown subsystem that
is driven by the system states xk and the model inputs uk.
We focus on the case in which the unknown subsystem is
either a static nonlinear function or a nonlinear time-invariant
system.

The model updating technique consists of three key steps.
In the first step an unbiased minimum-variance filter is
designed based on the known initial model and assuming
no knowledge of dk, to obtain unbiased estimates x̂k of the
states xk. In the second step, using the estimates x̂k, we
obtain a least-squares estimate d̂k of the unknown signal
dk. In the final step, the correction subsystem, which has
inputs x̂k and uk and outputs d̂k, is identified. When the
unknown subsystem is a static nonlinear function, a basis
function expansion of the estimated states x̂k is used to
identify the correction subsystem. Subspace identification is
used to identify the correction subsystem when the unknown
subsystem is a nonlinear dynamic system. We first present
a brief description of the unbiased minimum-variance filter
[3] used in the first step.

III. UNBIASED MINIMUM-VARIANCE FILTER

Consider the system (II.1)-(II.2) where Ak, Bk, Ck, Dk,

and Hk are known, measurements of uk and yk are available,
while dk ∈ R

p is unknown. The filter derived in [3] is of the
form

x̂k+1|k+1 = x̂k+1|k

+Lk+1(yk+1 − Ck+1x̂k+1|k − Dk+1uk+1), (III.1)

x̂k+1|k = Akx̂k|k + Bkuk, (III.2)

where Lk+1 ∈ R
n×p. The error covariance matrix is defined

as

Pk+1|k+1
�
= E[ek+1e

T
k+1], (III.3)

where E is the expected value, and ek+1
�
= xk+1− x̂k+1|k+1

is the estimation error.

Proposition III.1. ([3]) Suppose Lk+1 satisfies

(I − Lk+1Ck+1)Hk = 0. (III.4)
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Then the state estimates given by (III.1) are unbiased esti-
mates of the states of (II.1), and the error covariance matrix
satisfies

Pk+1|k+1 = Lk+1Rk+1L
T
k+1

+(I − Lk+1Ck+1)Pk+1|k(I − Lk+1Ck+1)
T,

(III.5)

where

Pk+1|k
�
= AkPk|kAT

k + Qk. (III.6)

Furthermore, assuming that Rk+1 is positive definite, the
minimum-variance gain Lk+1 satisfying (III.4) is

Lk+1 = HkΠk + Fk+1R̃
−1
k+1(I − Vk+1Πk), (III.7)

where R̃k+1, Vk+1, Fk+1 and Πk are defined as

R̃k+1
�
= Ck+1Pk+1|kCT

k+1 + Rk+1, (III.8)

Vk+1
�
= Ck+1Hk, (III.9)

Fk+1
�
= Pk+1|kCT

k+1, (III.10)

Πk
�
= (V T

k+1R̃
−1
k+1Vk+1)

−1V T
k+1R̃

−1
k+1.

(III.11)

Since Hk has rank p, (III.4) implies

rank(Ck+1Hk) = p (III.12)

and thus l ≥ p. When l = p, Lk+1 is uniquely determined
by the constraint (III.4). Furthermore, using (III.7)-(III.11),
the covariance update equation (III.5) becomes

Pk+1|k+1 = Pk+1|k − Fk+1R̃
−1
k+1F

T
k+1+

(Hk − Fk+1R̃
−1
k+1Vk+1)(V

T
k+1R̃

−1
k+1Vk+1)

−1

×(Hk − Fk+1R̃
−1
k+1Vk+1)

T. (III.13)

IV. STATIC NONLINEAR CORRECTION

In this section, we consider the case in which the unknown
subsystem is a static nonlinear function, that is, dk = h(xk)
in (II.1), where h : R

n → R
p. By treating the unknown

nonlinear function h(xk) as an unknown external input, we
use the unbiased minimum-variance filter (III.1)-(III.2) with
the gain (III.7) to obtain unbiased estimates of the states of
the true system.

Next, we use the estimate x̂k+1|k given by (III.2) to obtain
a least squares estimate d̂k of dk = h(xk).

Proposition IV.1. Let x̂k|k be an unbiased estimate of the
states xk of (II.1). Then

d̂k = H
†
kLk+1(yk+1 − Ck+1x̂k+1|k − Dk+1uk+1), (IV.1)

is an unbiased estimate of dk.

Proof. See appendix.

Next, to approximate d̂k by a static nonlinear subsystem,

we use a basis function expansion
r∑

i=1

λijfij(x̂k|k) = d̂
j
k, j = 1, . . . , p, (IV.2)

where d̂
j
k is the jth component of d̂k, r is the number of basis

functions, fij : R
n → R are the basis functions, and λij are

the coefficients of the basis function expansion obtained by
means of standard least squares.

Finally the initial model is updated using the static correc-
tion subsystem identified in (IV.2), so that the final corrected
model is

xk+1 =Akxk + Hk

⎡
⎢⎢⎢⎢⎣

∑r

i=1 λi1fi1(xk)
...∑r

i=1 λipfip(xk)

⎤
⎥⎥⎥⎥⎦ + Bkuk,

(IV.3)

yk = Ckxk + Dkuk, (IV.4)

where the λij’s are calculated in (IV.2).
In the derivation of the filter, we have assumed that Hk

is known. When Hk is unknown, one choice of Hk that
satisfies (III.12) is Hk = [CR

k+1](:,1:p), where [CR
k+1](:,1:p)

denotes the first p columns of a right inverse of Ck+1.

V. DYNAMIC NONLINEAR CORRECTION

When dk is an output of an unknown nonlinear subsystem,
we use subspace identification algorithms to identify the
correction subsystem. Consider again the system (II.1)-(II.2),
where dk is generated from the time-invariant nonlinear
dynamical subsystem

zk+1 = Adzk + Bdf1(xk, uk) + wdk
, (V.1)

dk = Cdzk + Ddf2(xk, uk) + vdk
. (V.2)

To apply the model updating technique, the first two steps of
the model updating procedure are again repeated to obtain
the estimates x̂k|k of the states xk and the estimates d̂k

of the unknown signal dk. In the third step, instead of
using a basis function expansion, we use a subspace-based
Hammerstein identification algorithm [4, 8] to identify the
correction subsystem. In the subsystem (V.1) and (V.2) the
inputs are the system states xk and the initial-model inputs
uk, and the outputs are dk. Thus to identify the correction
subsystem using subspace algorithm, the inputs are chosen to
be the estimates of the states x̂k|k and the known inputs uk,
while the outputs are chosen to be the estimates d̂k obtained
from (IV.1).

Let Âd, B̂d, Ĉd, D̂d, f̂1 and f̂2 represent the estimates
of Ad, Bd, Cd, Dd, f1 and f2 respectively, obtained from
subspace identification. Then the corrected model is

xk+1 = Akxk + Hkd̂k + Bkuk (V.3)

ẑk+1 = Âdẑk + B̂df̂1(xk, uk), (V.4)

d̂k = Ĉdẑk + D̂df̂2(xk, uk), (V.5)

yk = Ckxk + Dkuk. (V.6)
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VI. OUTPUT EQUATION SUBSYSTEM IDENTIFICATION

In this section we consider model errors in the output
equation, that is the unknown signal dk appears in the output
equation. Consider the system

xk+1 = Akxk + Bkuk + wk, (VI.1)

yk = Ckxk + Gkdk + Dkuk + vk, (VI.2)

where Ak, Bk, Ck, Dk and Gk are known to within a
similarity transformation, while dk ∈ R

q is an unknown
signal arising from an unknown nonlinear subsystem. Again,
without loss of generality we assume rank(Gk) = q. For
this situation, since the unbiased minimum-variance filter
cannot be used, we derive an unbiased minimum-variance
filter for output correction (output correction filter) that
provides unbiased minimum-variance estimates of the system
states when there are arbitrary unknown terms in the output
equation.

VII. UNBIASED MINIMUM-VARIANCE FILTER FOR

OUTPUT CORRECTION

Consider again the system (VI.1)-(VI.2), where x ∈

R
n, u ∈ R

m, y ∈ R
l and d ∈ R

q . We consider a filter
of the form

x̂k+1|k+1 = x̂k+1|k

+Lk+1(yk+1 − Ck+1x̂k+1|k − Dk+1uk+1),

(VII.1)

x̂k+1|k = Akx̂k|k + Bkuk. (VII.2)

The state estimation error is

ek = xk+1 − x̂k+1|k+1, (VII.3)

and the error covariance matrix is defined as

Pk+1|k+1 = E
[
ek+1e

T
k+1

]
. (VII.4)

The filter is unbiased if and only if

E[xk+1 − x̂k+1|k+1] = 0, (VII.5)

or

E[Akek + wk − Lk+1(Ck+1Akek + Ck+1wk

+vk+1 + Gk+1dk+1)] = 0. (VII.6)

Condition (VII.6) hold for all signal dk only if

Lk+1Gk+1 = 0, (VII.7)

which implies l > q.

Lemma VII.1. If (VII.7) is satisfied, the error covariance
Pk+1|k+1 is given by

Pk+1|k+1 = Lk+1R̃k+1L
T
k+1 − Fk+1L

T
k+1

−Lk+1Ck+1Pk+1|k + Pk+1|k, (VII.8)

where Pk+1|k, R̃k+1 and Fk+1 are defined as

Pk+1|k
�
= AkPk|kAT

k + Qk, (VII.9)

R̃k+1
�
= Ck+1Pk+1|kCT

k+1 + Rk+1, (VII.10)

Fk+1
�
= Pk+1|kCT

k+1. (VII.11)

Proof. See appendix.
Next, we define the cost function J as the trace of the

error covariance matrix

J(Lk+1) = trE[ek+1e
T
k+1]

= trPk+1|k+1. (VII.12)

Proposition VII.1. The gain Lk+1 in the filter (VII.1),
which minimizes the cost function (VII.12) and satisfies the
constraint (VII.7), is given by

Lk+1 =
[
Fk+1 − Fk+1R̃

−1
k+1Gk+1

× (GT
k+1R̃

−1
k+1Gk+1)

−1GT
k+1

]
R̃−1

k+1. (VII.13)

Proof. The cost function J can be written as

J(Lk+1) = trPk+1|k+1

= tr[Lk+1R̃k+1L
T
k+1 − Fk+1L

T
k+1

−Lk+1Ck+1Pk+1|k + Pk+1|k].

(VII.14)

Thus the optimization problem is to minimize the cost func-
tion (VII.14) subject to the constraint (VII.7). If Λk ∈ R

n×q

is the matrix of lagrange multipliers, the Lagrangian is then

L(Lk+1)
�
= J(Lk+1) + 2tr[Lk+1Gk+1Λ

T
k+1].

(VII.15)

Differentiating with respect to Lk+1 and setting it to zero,
we get

2R̃k+1L
T
k+1 − 2Ck+1Pk+1|k + 2Gk+1Λ

T
k+1 = 0,

(VII.16)

while differentiating with respect to Λk+1 and setting it to
zero yields the constraint (VII.7). Combining (VII.16) and
(VII.7) in matrix form we get[

R̃k+1 Gk+1

GT
k+1 0

] [
LT

k+1

ΛT
k+1

]
=

[
Ck+1Pk+1|k

0

]
.

(VII.17)

For a unique solution to exist we need left hand side matrix
to be full rank. Further, assuming Rk to be positive definite,
we can write (VII.16) as

LT
k+1 = R̃−1

k+1(Ck+1Pk+1|k − Gk+1Λ
T
k+1). (VII.18)

Using (VII.18) in (VII.7), we get the following expression
for the matrix of Lagrange multipliers

Λk+1 = Fk+1R̃
−1
k+1Gk+1

(
GT

k+1R̃
−1
k1

Gk+1

)−1

. (VII.19)

Substituting the above expression for Λk+1 back in (VII.18),
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the optimal solution for Lk+1 is

Lk+1 =
[
Fk+1 − Fk+1R̃

−1
k+1Gk+1

× (GT
k+1R̃

−1
k+1Gk+1)

−1GT
k+1

]
R̃−1

k+1. (VII.20)

Furthermore, using the expression (VII.13), the covariance
update equation (VII.8) becomes

Pk+1|k+1 = Pk+1|k − Fk+1R̃
−1
k+1[I − Gk+1

(GT
k+1R̃

−1
k+1Gk+1)

−1GT
k+1R̃

−1
k+1]F

T
k+1

(VII.21)

VIII. MODEL UPDATING USING OUTPUT CORRECTION

FILTER

Now, the output correction filter derived in the previous
section is directly applicable for model updating for the
system (VI.1) and (VI.2). In the first step, again the states
of the system (VI.1) and (VI.2) are estimated using the
output correction filter (VII.1)-(VII.2) and (VII.13). Once
the estimates x̂k|k of the states xk are obtained, these state
estimates are used to estimate the unknown signal dk as

d̂k = G
†
k(yk − Ckx̂k|k − Dkuk). (VIII.1)

It is straightforward to check that the above estimate d̂k is an
unbiased estimate of dk by taking the expected value of the
both sides. And finally, the correction subsystem is identified
using a basis function expansion or subspace identification.
The final corrected model for the case in which the correction
subsystem is a nonlinear dynamical system is

xk+1 = Akxk + Bkuk, (VIII.2)

zk+1 = Âzzk + B̂df1(xk, uk), (VIII.3)

d̂k = Ĉzzk + D̂df2(xk, uk), (VIII.4)

yk = Ckxk + Dkuk + Gkd̂k. (VIII.5)

IX. NONLINEAR IDENTIFICATION

When no initial model is available, we perform linear
subspace identification to obtain an initial model. Further
based on this initial model, we design a unbiased minimum-
variance filter or a output correction filter by assuming a
suitable Hk or Gk respectively. And the rest of the procedure
to estimate dk and then identify a correction subsystem
remains the same. Although this procedure is not supported
by theoretically rigorous results, numerical examples suggest
that this technique can be effective. The class of systems that
can be potentially identified by this method include systems
with nonlinearities in states, and thus can be useful.

X. EXAMPLE: MODEL UPDATING FOR VAN DER POL

OSCILLATOR

We consider a discrete-time model of the Van der Pol
oscillator with an external driver

[
x1,k+1

x2,k+1

]
=

⎡
⎣ x1,k + Tsx2,k

x2,k + Ts[(1 − x2
1,k)x2,k − x1,k + uk]

⎤
⎦,

(X.1)

where Ts is the sampling interval. We assume that the
linear part of the dynamics is known perfectly, that is,
the initial model is the linear part of the equations while
dk = Tsx

2
1,kx2,k. Measurements of the state x2 are available,

thus the output matrix is Ck =
[

0 1
]
. Since the nonlinear

term appears only in the equation of the second state we take

Hk =

[
0
1

]
. The rank condition (III.12) is satisfied, hence

we use the unbiased minimum-variance filter to estimate the
states of the system. Figure 3 shows a plot of the actual states,
the states of the initial model, and the estimates of the states
from the unbiased minimum-variance filter. It is seen from
the plot that the state estimates from the unbiased minimum-
variance filter based on the initial model approximates the
actual states closely. Once the estimates of the states are
obtained we then obtain a least squares estimate d̂k of the
unknown signal dk by using (IV.1). Then we use a basis
function expansion of the state estimates to approximate d̂k

by a nonlinear function of the states as shown in Figure 4.
As seen from Figure 5 the corrected model output closely
approximates the actual output. And finally, Figure 6 shows
the corrected-model output for an independent set of inputs.
The corrected-model output shows the correct limit-cycle
type behavior.

XI. CONCLUSIONS

In this paper, we discussed model updating by adding cor-
rection terms to the model equations. Two classes of errors
namely model errors in the dynamics equation and model
errors in the output equation were discussed. First, the states
of the true system were estimated using unbiased minimum-
variance filters. Next, the state estimates were used to obtain
least squares estimates of the unmodeled terms. Finally, these
least squares estimates were used to identify the correction
subsystem. The case in which unknown subsystem was either
a static nonlinear function or a dynamic nonlinear system was
discussed. Finally a nonlinear identification method based
on the model updating technique was discussed. A few
illustrative examples were also provided.

XII. APPENDIX

Proof of Proposition IV.1 : Since x̂k|k is an unbiased
estimate of xk, the state estimation error ek satisfies

E[ek] = 0. (XII.1)

Since l ≥ p, we can define d̂k as

d̂k = H
†
kLk+1(yk+1 − Ck+1x̂k+1|k − Dk+1uk+1), (XII.2)

where † denotes the Moore-Penrose generalized inverse.
Next, we use (III.1) and (XII.2) to get

d̂k = H
†
k(x̂k+1|k+1 − x̂k+1|k)

= H
†
k(xk+1 + ek+1 − Akx̂k|k − Bkuk)

= H
†
k(xk+1 − Akxk − Bkuk + ek+1 − Akek)

= H
†
k(Hkdk + wk + ek+1 − Akek). (XII.3)
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Further, taking expected value on both sides of (XII.3), yields

E[d̂k] = E[H†
k(Hkdk + wk + ek+1 − Akek)],

(XII.4)

Finally, using (XII.1) and the fact that wk is zero-mean, we
get

E[d̂k] = H
†
kHkE[dk] = E[dk]. (XII.5)
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Fig. 3. Model Updating for Van der Pol Oscillator Example. Plot
showing the states of the true system, the states of the initial model
and the estimates of the states from the unbiased minimum-variance
filter.
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Fig. 4. Model Updating for Van der Pol Oscillator Example. Plot
showing the actual unmodeled term dk and it’s approximation by
a basis function expansion.
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Fig. 5. Model Updating for Van der Pol Oscillator Example. Plot
showing the output of the true system, the output of the initial
model and the corrected-model output.
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Fig. 6. Model Updating for Van der Pol Oscillator Example.
Corrected-model output for an independent set of inputs. The
output shows the correct limit cycle type response.
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