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The availability of parallel, high-throughput biological experiments that simultaneously monitor thousands of
cellular observables provides an opportunity for investigating cellular behavior in a highly quantitative manner
at multiple levels of resolution. One challenge to more fully exploit new experimental advances is the need to
develop algorithms to provide an analysis at each of the relevant levels of detail. Here, the data analysis method
non-negative matrix factorization (NMF) has been applied to the analysis of gene array experiments. Whereas
current algorithms identify relationships on the basis of large-scale similarity between expression patterns, NMF
is a recently developed machine learning technique capable of recognizing similarity between subportions of the
data corresponding to localized features in expression space. A large data set consisting of 300 genome-wide
expression measurements of yeast was used as sample data to illustrate the performance of the new approach.
Local features detected are shown to map well to functional cellular subsystems. Functional relationships
predicted by the new analysis are compared with those predicted using standard approaches; validation using
bioinformatic databases suggests predictions using the new approach may be up to twice as accurate as some
conventional approaches.

[Supplemental material is available online at www.genome.org.]

Gene-expression microarrays are a recently developed tech-
nology that allows genome-wide measurement of RNA ex-
pression levels in a highly quantitative fashion (Fodor et al.
1993; Schena et al. 1995; Granjeaud et al. 1999). Studies with
microarrays generally produce large two-dimensional data
sets (e.g., simultaneous monitoring of thousands of genes
measured in up to hundreds of different experiments; Cho et
al. 1998; Chu et al. 1998; Spellman et al. 1998; Iyer et al. 1999;
Hughes et al. 2000; Kim et al. 2001). The promise of this type
of highly parallel and quantitative data is that they contain
detailed and subtle information about relationships among
cellular, biochemical, and genetic components that underlie
the behavior of cells; the difficulty is that current approaches
lead to data that are somewhat noisy (Coller et al. 2000;
Brown et al. 2001; Li and Wong 2001), and the development
of methods for exploring and extracting relationships within
the data is still in its infancy.

The collection, processing, and analysis of microarray
data present many challenges. Appropriate treatment of noise
and systematic error is necessary to ensure that further analy-
sis is not clouded by data inaccuracy, and some approaches
have been proposed (e.g., Brown et al. 2001; Li and Wong
2001; Broet et al. 2002). Methods of analysis must be devel-
oped that answer particular and relevant questions. Often,
these questions involve seeking and identifying patterns of
similarity (correlation or anticorrelation) within the data. An
array of methods capable of recognizing different types of
similarity and similarity at different levels of resolution is
needed. Moreover, the development of approaches to test in-
dividual hypotheses given a particular set of data and to more

fully incorporate pre-existing models (Getz et al. 2000; Har-
temink et al. 2001; Ideker et al. 2001; Tanay and Shamir 2001)
or other sources of information in the analysis is an important
research area (Golub et al. 1999; Bittner et al. 2000; Brown et
al. 2000).

One productive use of expression data is to propose and
to study relationships between genetic, cellular, or environ-
mental components. Examples include the elucidation of
metabolic (DeRisi et al. 1997; Ferea et al. 1999) or regulatory
(Holstege et al. 1998; Tavazoie et al. 1999; Ren et al. 2000)
networks. The standard methodology involves clustering of
expression patterns on the basis of similarity (Chu et al. 1998;
Eisen et al. 1998; Alon et al. 1999; Heyer et al. 1999; Tamayo
et al. 1999; Tavazoie et al. 1999; Sherlock 2000; Zhu et al.
2002). The main assumption generally applied is that similar
gene expression profiles imply related function. There are
other techniques, many of which come from the machine-
learning community, capable of detecting similarity or par-
tially repeated patterns in large data sets. In principle, these
techniques provide alternative approaches for recognizing po-
tential relationships within large biological data samples, in-
cluding expression arrays, that may complement existing
methods. Here, one such machine-learning algorithm, non-
negative matrix factorization (NMF), has been applied to the
analysis of microarray data. One characteristic of NMF is that,
using dimensionality reduction, it is capable of identifying
patterns that exist in only a subset of the data (Lee and Seung
1999). For example, the application of clustering to recognize
experimental conditions with similar patterns of gene expres-
sion focuses attention on conditions for which similarity ex-
tends across all genes. Although more recent techniques ac-
count for the combinatorial nature of gene regulation (Gasch
and Eisen 2002; Zhu et al. 2002), they still focus on global
patterns of similarity. Another data analysis approach, singu-
lar value decomposition (SVD), also bases its description of

4Corresponding author.
E-MAIL tidor@mit.edu; FAX (617) 252-1816.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.903503.

Methods

1706 Genome Research 13:1706–1718 ©2003 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/03 $5.00; www.genome.org
www.genome.org

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


the underlying data on global relationships that extend across
essentially all of the data and has been applied recently to
microarray data (Misra et al. 2002). In contrast, NMF recog-
nizes sets of experimental conditions in which smaller sets of
genes behave in a strongly correlated fashion. Thus, whereas
other analysis methods examine global patterns in search of
similarity and correlation, NMF is capable of finding smaller,
more localized patterns as well as global patterns. Such an
approach might be particularly useful in identifying biologi-
cal subsystems (i.e., sets of genes that function in concert in a
relatively tightly regulated manner) and might be an espe-
cially sensitive means for detecting functional genetic rela-
tionships.

Here, the potential usefulness of NMF for the analysis of
high-dimensional biological data was evaluated using a pub-
licly available compendium microarray data set for Saccharo-
myces cerevisiae, in which 6316 ORFs were monitored in each
of 300 experiments (Hughes et al. 2000). Most of the experi-
ments (276 of the 300) corresponded to deletion mutants of
individual genes. In addition, 13 involved mutants with in-
dividual genes overexpressed using tetracycline-regulated al-
leles, and 11 involved wild-type cells treated with specific
drugs. This data set spans a relatively wide set of significant
cellular perturbations. The size of the data set is large by
current standards, which presents a challenge for computa-
tional approaches but also an opportunity to find patterns
in what appears to be a particularly rich set of experiments.
Analysis using NMF suggested that reduction of the data to
a 50-dimensional subspace is appropriate. The lower dimen-
sional subspace was capable of re-
constructing the original data to
high fidelity. The 50 vectors de-
scribing the subspace were rela-
tively insensitive to moderate
amounts of noise added to the
original data set. The vectors de-
scribed the local feature space de-
tected by NMF and showed that
each set of features was dominated
by a few functional categories, in-
dicating that they represent a
grouping of genetic components
on the basis of cellular function.
Individual pairwise functional re-
lationships were scored on the ba-
sis of standard approaches and, al-
ternatively, using the similarity
as measured by NMF. Scoring
the relationships using the Mu-
nich Information Center for Pro-
tein Sequences functional catego-
ries (MIPS categories; http://
mips.gsf.de/; Mewes et al. 2000)
and the Yeast Proteome Database
(YPD; Proteome, Inc.; http://
www.incyte.com/; Costanzo et al.
2001) indicated that the new ap-
proach is significantly more reli-
able at predicting relationships
than standard approaches. NMF
appears to be a promising method-
ology, complementary to current
approaches, for the analysis of
high-dimensional biological data.

RESULTS
The compendium data set contained expression patterns
monitored for 6316 S. cerevisiae genes in 300 experiments in-
volving a variety of strains and conditions. The expression of
each gene in each experiment was represented as a ratio of the
expression in the experiment to that in a control experiment
of wild type grown under standard conditions. Genes whose
expression in the control was not measurable, were removed
from the data set to prevent division by zero, leaving 5346
genes, and the natural logarithm of each ratio was taken. Data
analysis involved using NMF to reduce the dimensionality of
the data and to extract common features repeated in corre-
lated fashion throughout the data (see Methods). These com-
mon feature elements were represented as basis vectors result-
ing from the technique. In typical usage, each basis vector
represented an experiment, in that it contained a relative ex-
pression for each gene comprising the feature represented.

Selection of NMF Dimensionality
An essential feature of the NMF approach is that it reduces the
data set from its full dimensionality (original data space) to a
lower dimensional NMF space. Initial calculations were per-
formed to select an appropriate size for the lower dimensional
NMF space. Trial calculations carried out with NMF dimen-
sion of size 10–80 suggested that 50 represented a good com-
promise that provided an adequate reconstruction of the ex-
perimental data while giving basis vectors that appeared to
recognize repetitive features. The RMS error between the origi-

Figure 1 The RMS error of NMF and SVD factorizations of the original data as a function of the
number of dimensions in the reduced space. For comparison, SVD factorization was also carried out on
a random matrix based on the data matrix. The results show that NMF is nearly as good as SVD at
reproducing the original data for any dimensionality, and that near a dimensionality of about 50 the
marginal increase (slope) in NMF’s ability to describe the original data is similar to SVD’s ability to match
random (unstructured) data. Thus, an NMF dimensionality of 50 is appropriate to describe the structure
in the data.
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nal and NMF reconstructed data is
shown as a function of the size (di-
mensionality) of the NMF space in
Figure 1. Also shown in Figure 1 is
the RMS error for singular value de-
composition (SVD), which is an-
other matrix factorization ap-
proach that is guaranteed to pro-
duce the minimum error for a
given dimensionality (but does not
generally extract localized features
from complex data sets). SVD was
applied both to the actual data ma-
trix and to a random matrix of val-
ues selected from a gaussian distri-
bution with the same mean and
variance as the data matrix and
subject to the non-negativity con-
straint. The close similarity be-
tween the error for NMF and SVD
on the actual data indicated that
the computational procedures used
for NMF were effective (details
given in Methods). The random
matrix could be viewed as one
without correlated features to be
detected through factorization; the
slope of the RMS error plot for this
matrix represents the added ability
to reproduce unstructured data
with additional basis vectors. Be-
low a dimensionality of 50, the
NMF factorization curve had a
steeper slope than the random ma-
trix line, which indicated improve-
ments due to capturing organiza-
tion and structure within the data.
This further justified the choice of
50 for the NMF dimension. Inter-
estingly, a previous study using ex-
pression arrays to study yeast also
found an inherent dimensionality
of 50 (Alter et al. 2000).

Basis vectors (basis experi-
ments) obtained from NMF factor-
ization with a dimensionality of 50
were sparse and reproducible. One
measure of sparsity is the fraction
of non-zero entries per basis vector,
which averaged 5% over the 50
vectors. The factorization produced
somewhat different results each
time it was started from a different
random starting point. When the
basis vectors from different factor-
izations using the same dimension-
ality were compared, the correla-
tion coefficient was found to be
>0.9 between pairs. This indicates
that results of NMF are robust with
respect to the mathematical proce-
dures used here to perform the cal-
culations. The RMS error of the re-
constructed data (through NMF di-

Figure 2 Representation of gene expression data in full and NMF-reduced spaces. (Left column) The
original data (log-ratio) is shown for 6 individual experiments in the space of 5346 genes, in the second
column from left, the 50-dimensional NMF representation is shown. In the third column from left, the
reconstruction from the NMF representation back to the original space (using W · H) is shown. (Right
column) The log-ratios of the original (y-axis) are plotted against the log-ratios of the reconstruction
from the NMF representation back to the original experimental space (x-axis). The data show that the
NMF reduction is capable of regenerating the experiments to relatively high fidelity, and that the NMF
representation of an experiment is often dominated by one or a small number of features (basis
vectors).
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mensional reduction) compared with the original data was
only about 7.8% of the RMS error of a random permutation of
the original data, in which the experiments (columns) of the
original data matrix were permuted. Figure 2 illustrates six
examples of expression experiments in the original gene ex-
pression space, in the 50-dimensional NMF space, and recon-
structed from the NMF space back into the original space. This
shows the ability of the dimensionality reduction to still cap-
ture many of the details of the original data. Also, it is dem-
onstrated that most experiments are dominated by the com-
bination of only a few important basis vectors. They corre-
spond to similarities across many, but not all genes.

To examine the robustness of the algorithm to noise,
gaussian noise was added to the original data to produce cor-
rupted data vectors. Table 1 lists the average correlation be-
tween results of the analysis performed on the original and
corrupted data. Gaussian noise was added in progressively
larger increments of the standard deviation of the data. As a
recent model that captures the physical processes underlying
microarray measurements indicates, the ratio of the cDNA
distributions can be approximated with a log-normal distri-
bution (K.H. Duggar, T. Ideker, D.A. Lauffenburger, and P.K.
Sorger, in prep.). These results suggest that gaussian noise is
appropriate to apply to the log of the ratios. At low noise (0.2
times the standard deviation), there was very little change in
the results. The correlation of NMF vectors was better than
0.90, as was that for the data reconstructed from the dimen-
sionality reduction. This is not surprising, because the origi-
nal data vectors and corrupted vectors also showed a correla-
tion coefficient of >0.90. However, when adding more noise
(equal to the full standard deviation), both the NMF basis
vectors, as well as the reconstructed data, were still very simi-
lar after adding noise (correlation of better than 0.80),
whereas the original data was changed substantially more
(correlation of 0.57). This fact shows the high robustness of
NMF to noise in the data, and suggests that NMF might be
useful as a noise-reduction filter in certain applications.

Annotation of Basis Vectors
Each of the 50 basis vectors (basis experiments) contained
many genes with zero expression and others with non-zero
expression. Because of the sparsification procedure applied
(see Methods), 95% of the entries across all basis vectors were
constrained to be exactly zero. The genes with non-zero ex-
pression were used to assign sets of functional categories to

basis vectors using the MIPS classification scheme (see Meth-
ods; Mewes et al. 2000), and the results are listed in Table 2.
We emphasize that this analysis of NMF basis vectors in terms
of functional categories was done to understand the nature of
the basis vectors and not to make predictions about related-
ness of genes. When predictions of functional relatedness are
made (next subsection), they are made on the basis of changes
of expression levels in experiments using strains deleted for
each of the two genes in question. Changes measured in the
NMF space are compared with changes measured in other
spaces.

Each basis vector appeared to be dominated by only a
few functional categories, with some categories showing in-
creased and others decreased expression relative to wild-type,
untreated cells. Basis vector 17, for example, showed in-
creased expression of genes associated with amino-acid me-
tabolism and metabolism of energy reserves together with de-
creased expression of genes involved in rRNA transcription.
Basis vector 20 showed increased expression of genes involved
in ion transport, homeostasis of cations, ribosomal function,
and mitochondrial organization with decreased expression of
genes for amino-acid metabolism, (other) ribosomal proteins,
translation, and organization of cytoplasm. Basis vector 9
showed increased expression of genes associated with carbon
compound (C-compound) and carbohydrate metabolism and
transporters as well as metabolism of energy reserves, and at
the same time decreased expression of amino-acid metabo-
lism genes. In some cases, specific metabolic pathways could
be seen in the basis vectors. For instance, fatty acid oxidation
was up-regulated in basis vector 42. Most elements of the
TCA-cycle were up-regulated in basis vector 43. Furthermore,
this basis vector, which seemed mostly responsible for energy
metabolism, contained all but two of the genes involved in
the pentose-phosphate shunt. Of these two genes, one is a
transketolase that is highly homologous to another transke-
tolase found in basis vector 43, and the other is the ribose-5-
phosphate ketol isomerase. In 14 of the basis vectors, no
single MIPS category was significantly enriched, which is
partly due to the lack of sparsity (i.e., too many genes occur in
a basis vector, therefore, no single category was significant),
and partly due to an abundance of as yet uncategorized genes.

Independent of the classification scheme proposed by
MIPS, the occurrence of well-characterized gene groups was
examined in basis vectors. The processed data set contained
nine histone genes, which were all present together in basis
vector 1. This enrichment was >5� higher than what would
occur by chance. Aside from histone genes, basis vector 1 was
also strongly enriched in ribosomal genes, genes related to
translation, and genes involved in amino-acid and nitrogen
metabolism. Similarly, the data set contained 109 ribosomal
genes, of which 70 appeared in basis vector 1 and 52 in basis
vector 43. Basis vector 43 was involved in energy metabolism,
stress response, and rRNA transcription. The enrichment of 70
ribosomal genes in basis vector 1 was 26� higher than would
occur by chance. Between basis vectors 1 and 43, all but 17
ribosomal genes were found.

Next, the occurrence of genes in both the GAL4 and the
STE12 pathway was examined. These pathways were recently
studied extensively by Ren et al. (2000). No deletion mutant
of any of the genes involved in the GAL4 pathways was pres-
ent in the compendium data set; therefore, no significant en-
richment of those genes might be expected. However, of the
nine genes present in the data, five were enriched in basis
vector 9. This enrichment was 5� higher than would be ex-

Table 1. Robustness of NMF Basis Vectors to Noise

Noise
added

NMF
basis vectors

Reconstructed
data

Original
data

0.2 0.933 0.930 0.943
0.5 0.879 0.893 0.781
1 0.865 0.816 0.573
5 0.368 0.313 0.159

Gaussian noise was added to the original data and was quantified
as a multiplier of the standard deviation of the original data set.
(NMF basis vectors) The average correlation of basis vectors from
the original data to the basis vectors from original data with
added noise. (Reconstructed data) The average correlation of the
reconstructed data from the basis vectors with and without noise.
(Original data) Average correlation of the original data to the data
with added noise.
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pected by chance. Basis vector 9 was also involved in C-
compound and carbohydrate metabolism. It seemed that ba-
sis vector 9 was responsible for a broad range of functions
relating to carbohydrate metabolism, the utilization of galac-
tose being a subset of those.

There was a deletion mutant of STE12 in the data, along
with several mutants of related genes, including FUS3, KSS1,
and STE5. A total of 25 genes, forming a subset of those iden-
tified by Ren et al. (2000) as members of the STE12 pathway,
were present in the processed data. A majority, 16 of the 25,
were present in basis vector 8 (a significance of 16� higher
than expected by chance). The genes included PRM1 (linked
to membrane biosynthesis), FIG2, AGA1, FUS1 (cell fusion),
GIC2 (mating projection formation), CIK1, KAR2 (nuclear fu-

sion), FUS3, STE12, and HYM1
(mating signaling) along with other
genes of yet unknown relevance
(YOR0343C, PEP1, SCH9, YIL036C,
YIL083C, YOL155C). It should be
noted that all genes to which
Ste12p binds (as identified by Ren
et al. 2000) before and after � factor
addition were included in this list (a
total of 8 genes; 17 additional genes
that were in the preprocessed data
set were shown to bind Ste12p only
after � factor addition). Basis vector
8 also included large contributions
from genes represented in the MIPS
database as involved in mating sig-
naling and pheromone response,
indicating related cellular functions
for the genes dominating this basis
vector. Another MIPS category that
was found to be enriched in basis
vector 8 with 4.5� (just below the
cutoff implemented of 5�) was
membrane biosynthesis, which is
consistent with the appearance of
PRM1, classified as an effector in
membrane biosynthesis.

Basis vector 8 (the mating basis
vector) was then examined more
closely, and the function of all of its
member genes examined using in-
formation from the Yeast Proteome
Database (YPD), constructed by
Proteome, Inc. (http://www.incyte.
com/; Costanzo et al. 2001). The
YPD is a compilation of published
results of yeast genes (S. cerevisiae)
and their functions, including
functional relationships reported in
the literature. Aside from the 16
genes described above, it contained
15 other genes involved in mating
or pheromone response (TEC1,
KAR4, PRM3, PGU1, YLR042C,
DDR48, PRM5, SAG1, HAP4, SST2,
MSG5, AGA1, PRM4, SAG1, KSS1), 6
of which (underlined) were anno-
tated in YPD as directly induced by
STE12. Furthermore, this vector
contained 10 genes (ECM18, SPI1,

CHS7, GFA1, KTR2, SCW10, WSC3, STR2, GSC2, PHD1) in-
volved in cell-wall or cell-membrane biosynthesis or mainte-
nance. Among its other members were several genes involved
in carbohydrate metabolism (GLK1, SOL4, GPH1, GLC3), heat
shock or stress response (HSP26, HSP30, PRY2, DDR48), and
many ORFs of yet unknown function (YDR124W, YDR537C,
PTI1, YGR250C, YHR213W, YIL060W, YIL082W, YIL083C,
YJR026W, YJR027W, YJR028W, SRL3, YLR177W, YLR334C,
YLR422W, YOL106W, YOR296W, SVS1), as well as a few genes
of other functionality (ADR1, BNA1, FRE2). Besides examin-
ing the genes that contribute strongly to the basis vector, it is
informative to examine which of the 300 experiments in the
compendium were described by use of a large contribution
from this basis vector. Basis vector 8 was used mostly to de-

Table 2. Annotation of 12 of the 50 NMF Basis Vectors Based on the MIPS
Functional Categories

1 +1 amino-acid metabolism (204 ORFs) [82] 687
+2 nitrogen and sulphur metabolism (74 ORFs) [27]
+81 stress response (169 ORFs) [43]
�34 ribosomal proteins (206 ORFs) [98]
�35 translation (62 ORFs) [22]
�92 organization of cytoplasm (557 ORFs) [163]

3 +1 amino-acid metabolism (204 ORFs) [21] 141
4 +81 stress response (169 ORFs) [9] 53
8 +21 pheromone response, mating-type det., sex-spec. proteins (159 ORFs) [24] 211

�4 phosphate metabolism (31 ORFs) [3]
9 +5 C-compound and carbohydrate metabolism (413 ORFs) [115] 1007

+15 metabolism of energy reserves (glycogen, trehalose) (37 ORFs) [21]
+47 C-compound and carbohydrate transporters (46 ORFs) [23]
�1 amino-acid metabolism (204 ORFs) [53]

17 +1 amino-acid metabolism (204 ORFs) [40] 203
+15 metabolism of energy reserves (glycogen, trehalose) (37 ORFs) [14]
�29 rRNA transcription (104 ORFs) [17]

19 +13 respiration (85 ORFs) [18] 155
+100 mitochondrial organization (364 ORFs) [27]
�1 amino-acid metabolism (204 ORFs) [18]

20 +34 ribosomal proteins (206 ORFs) [29] 207
+46 ion transporters (76 ORFs) [13]
+88 homeostasis of cations (112 ORFs) [17]
+100 mitochondrial organization (364 ORFs) [53]
�1 amino-acid metabolism (204 ORFs) [18]
�34 ribosomal proteins (206 ORFs) [24]
�35 translation (62 ORFs) [7]
�92 organization of cytoplasm (557 ORFs) [40]

23 +11 tricarboxylic-acid pathway (23 ORFs) [4] 128
+15 metabolism of energy reserves (glycogen, trehalose) (37 ORFs) [6]
�4 phosphate metabolism (31 ORFs) [3]

36 +29 rRNA transcription (104 ORFs) [41] 557
�5 C-compound and carbohydrate metabolism (413 ORFs) [77]
�11 tricarboxylic-acid pathway (23 ORFs) [10]
�15 metabolism of energy reserves (glycogen, trehalose) (37 ORFs) [14]

42 +1 amino-acid metabolism (204 ORFs) [40] 199
+6 lipid, fatty-acid and isoprenoid metabolism (210 ORFs) [21]
+81 stress response (169 ORFs) [22]
�21 pheromone response, mating-type det., sex-spec. proteins (159 ORFs) [11]

43 +5 C-compound and carbohydrate metabolism (413 ORFs) [126] 1111
+10 pentose-phosphate pathway (9 ORFs) [7]
+11 tricarboxylic-acid pathway (23 ORFs) [17]
+81 stress response (169 ORFs) [64]
�29 rRNA transcription (104 ORFs) [58]
�34 ribosomal proteins (206 ORFs) [87]

Each annotation includes a plus or minus sign (indicating whether expression is enhanced or
decreased compared with control experiments), an integer number indexing the MIPS category,
the name of the MIPS category, the number of ORFs belonging to the MIPS category, and the
number of genes in the basis vector belonging to the MIPS category (in square brackets). The third
column indicates the number of genes that are non-zero in this basis vector. The full set of 50 basis
vectors is provided as supplementary information.
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scribe experiments of deletion mutants of DIG1/DIG2 (double
deletion; DIG1 is a known STE12 repressor), DIG1 (single de-
letion), and FUS3 (linked to mating and pheromone re-
sponse). Note that the data set did not contain a DIG2 single-
deletion mutant.

Prediction of Functional Relationships
The compendium data set analyzed here was dominated by
measurements of gene expression in deletion strains of yeast
compared with wild type (276 of 300 experiments). Of the
remaining experiments, 13 were measurements of single-gene
overexpression relative to wild type. Thus, all but 11 experi-
ments involved direct manipulation of a single gene in a com-
mon background. (The 11 exceptions involved measurements
of wild-type yeast treated with a single drug relative to un-
treated wild type.) Experiments showing similar (correlated or
anti-correlated) changes in gene expression at some level
might be expected to be functionally related. In particular,
the two genes deleted in the two experiments could be ex-
pected to be part of the same or related cellular function. To
test this hypothesis, predictions of functional relationships
were made and scored against available database information.
Moreover, predictions based on correlations in the entire gene
space were compared with those from dimensionally reduced
spaces, such as that produced by NMF, to understand whether
dimensionality reduction can enhance the detection of
known genetic relationships. One difficulty with any ap-
proach of this type is that available database information is
likely to be incomplete and may be partially inaccurate. Nev-
ertheless, a method’s ability to recapitulate current knowledge
is a good indicator of its ability to
predict new relationships. Thus, the
score these methods achieve in vali-
dated functional relationships
should only be interpreted relative
to each other, as many true func-
tional relationships may be missing
from current databases.

Predictions of functional rela-
tionships were made using the pair-
wise correlations between experi-
ments measured in each of six
spaces—the original data space, the
50-dimensional NMF space, and four
other 50-dimensional spaces chosen
for comparison. The six spaces are
(1) the original space in which the
data was collected, corresponding to
5346 genes used in the analysis, (2)
the 50-dimensional space resulting
from NMF data reduction, (3) the 50-
dimensional space spanned by 50
genes whose expression varied the
most across the 300 experiments, (4)
the 50-dimensional space explaining
the largest variation in the experi-
mental data as found by SVD, (5) the
50-dimensional space resulting from
NMF data reduction without apply-
ing the sparsification procedure, and
(6) the space spanned by the eigen-
vectors from SVD that have been
subjected to the same sparsification
procedure as NMF in (2). In addition,

comparison was made to the average validity of predictions
made from k-means clustering with 50 clusters. Note that the
comparison with clustering is not completely fair, as here we
are testing for pairwise relationships between genes, whereas
clustering finds groupwise relationships. To compare k-means
clustering, we treat each pair of experiments within a given
cluster as related. For each case, the pairwise correlations were
sorted by magnitude, with the higher magnitude correlations
corresponding to stronger predictions. Predictions were
checked against the MIPS database (see Methods), and the
results are shown in Figure 3. This figure shows, for each of
the methods, the percentage of predictions validated by MIPS
as a function of the number of predictions made (when or-
dered from strongest to weakest correlation). In general, the
methods exhibited the highest validation for their strongest
predictions. For up to 600 predicted relationships (four per
gene, on average), NMF far outperformed all other methods.
For instance, for the 100 strongest predictions, the reliability
in the NMF space was ∼35%, whereas for all other spaces,
including the original gene expression space, only 15%–25%
of the predictions were validated. Beyond 800 predicted rela-
tionships, correlations in the original space did almost as well
as NMF. However, the false positive rate at this level of pre-
diction is likely to be too high to be useful. The reliability of
predictions dropped off sharply for all spaces and eventually
reached 9%, which was the probability of making a true pre-
diction from the data set by chance. It might be assumed that
some of the improvement in prediction score would be due to
the sparsification procedure. However, it is shown that NMF
without the sparsification procedure still outperforms the

Figure 3 Performance of different spaces at predicting functional relationships between experi-
ments with comparison to the MIPS classification of the deleted genes. (NMF50) NMF space with 50
basis vectors; (Original Space) original gene expression space; (SVD50) SVD space with 50 eigenvec-
tors; (MV50high) space of the 50 most varying genes; (NMF50notsparse) NMF space with 50 basis
vector without the sparsification procedure; (SVD50sparse) SVD sparsified; (k-means) predictions
taken from k-means clustering with 50 clusters (3176 relationships).
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other methods, and that a sparse SVD procedure performs
similarly to SVD without sparsification.

A second and independent method was used to evaluate
the predictions of functional relationships produced by NMF
by comparing with data compiled in the Yeast Proteome Da-
tabase (YPD; Costanzo et al. 2001). For the purposes of this
study, the relationships reported by YPD were categorized as
hard (indicating a direct measure of interaction, such as bind-
ing, or participation in the same pathway) and soft (indicat-
ing an indirect detection, such as coexpression). Examination
of the strongest 100 predictions from NMF found that 58%
were validated by querying YPD (38% were hard and 20%
were soft functional relationships). This compared with ∼35%
of the same set that were verified through the MIPS database.
The 58 validated predictions are listed in Table 3, and the 42
predictions that were not validated (but are testable predic-
tions nonetheless) are listed in Table 4. Applying the same
procedure to the strongest 100 predictions from the original
gene expression space produced only 31% that could be veri-
fied by YPD (19% were hard and 12% soft). Thus, using the
Yeast Proteome Database, dimensionality reduction through
NMF appeared to be roughly twice as productive in predicting
functional relationships as correlation in the original space of
the data.

DISCUSSION
Here, NMF, a new machine-learning approach capable of
identifying localized features in complex data sets, was ap-
plied to the analysis of microarray data from a series of 300
yeast experiments (of which 276 were deletion strains;
Hughes et al. 2000). The essence of NMF is that the algorithm
must choose a small number of features (basis vectors) to act
as building blocks that can be scaled and added together in
various combinations to best reconstruct the original data.
Restriction to a small number of basis vectors causes the al-
gorithm to select patterns of genes that occur frequently in
the data. The application of a data analysis approach that
extracts localized data features from a set of experiments that
span a wide range of genetic variation holds the potential to
be a particularly powerful method to detect functional cellu-
lar subsystems (the features encoded in the basis vectors) as
well as individual pairwise functional genetic relationships.

The experimental variation sampled by the 300 experi-
ments could be well represented with just 50 features. More-
over, this set of 50 features encoded in the basis vectors
tended to correspond to sets of known functional genetic
groupings of genes. Large numbers of genes involved in simi-
lar or related cell functions appeared together due to a local
similarity in their expression profiles. It should be noted that
because of the limited data (i.e., not all yeast deletion strains
were sampled), not all cellular functions were identified.
Some cellular systems were sampled more in the experiments
than others. For example, the mating and pheromone group-
ing is particularly well identified. Basis vector 8 consisted
mostly of genes involved in mating and even contained six
verified targets of STE12 that were not identified by previous
studies.

Conventional clustering techniques focus on elucidating
groupwise relationships among genes by sorting them accord-
ing to a pairwise similarity metric. NMF procedures applied
here also identify groups of genes related to one another in
expression patterns and form them together into basis vec-
tors. It is clear that genes in the same cluster have similar

expression patterns. In the case of NMF basis vectors, the re-
lationship is less clear; treating the contribution of a set of
basis vector genes as a group is an efficient representation of
the expression data. This may or may not be a good indicator
of biological relevance.

Table 3. The 58 Predictions That Could Be Validated by YPD
of the 100 Strongest Functional Relationships Detected by NMF

Coregulated

dfr1 ecm34
gyp1 yap7
ade16 sir1
hpt1 sir1
rml2 ymr293c
cbp2 mrpl33
mrpl33 rml2
cnb1 yor072w
ade16 ymr041c
gfd1 utr4
cla4 (haploid) KAR2 (tet promoter)
yel001c ymr141c
ckb2 gcn4
arg5,6 rpl8a
mrt4 rpl12a
clb6 whi2
erp2 ymr141c
erp2 yel001c
erp2 yor015w
rpl12a yel033w
ckb2 rtg1
eca39 ras1

Identical Genes

isw1 isw1, isw2
dig1, dig2 dig1, dig2 (haploid)
fks1 (haploid) FKS1 (tet promoter)
bub3 bub3 (haploid)

Binding

cla4 (haploid) CDC42 (tet promoter)
qcr2 (haploid) rip1
far1 (haploid) ste4 (haploid)
bub1 (haploid) bub3
bub1 (haploid) bub3 (haploid)

Cell Wall

fks1 (haploid) 2-deoxy-D-glucose
2-deoxy-D-glucose Glucosamine
gas1 Tunicamycin
fks1 (haploid) Glucosamine
yer083c Tunicamycin
ste12 (haploid) ste5 (haploid)

Mating

ste5 (haploid) ste7 (haploid)
fus3, kss1 (haploid) ste5 (haploid)
ste18 (haploid) ste5 (haploid)
ste12 (haploid) ste18 (haploid)
ste18 (haploid) ste7 (haploid)
fus3, kss1 (haploid) ste18 (haploid)
fus3, kss1 (haploid) ste7 (haploid)
fus3, kss1 (haploid) ste12 (haploid)
ste12 (haploid) ste7 (haploid)
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Pairwise relationships between experiments were evalu-
ated by locating pairs of experiments that were constructed
from the same NMF building blocks (basis vectors). With this
detection scheme, NMF was superior to any other method
examined, including other sets of 50 basis vectors constructed
from other procedures, as well as standard correlations in the
full gene expression space of the original experiments. The
initial analysis of this same compendium data set reported by
Hughes et al. (2000) used conventional clustering methods
and found a series of very interesting and useful relationships
between genes. Many of the genes that were clustered to-
gether in that study were also scored as related in the current
work. For example, the sections headed Ergosterol Pathway,
Cell Wall, Mating, and Vacuolar ATPase in Table 3 contain
many relationships also detected by Hughes et al. (2000) by
use of more standard techniques; however, most of the other
validated relationships evaded detection by conventional
techniques. Specifically, Hughes et al. (2000) found 38 of the
58 relationships. This includes the section headed Binding in
Table 3, for which particularly strong experimental validation
is available.

Figure 4 illustrates the increased similarity seen in the
NMF feature space compared with that seen in the original
data space for four pairwise functional relationships from
Tables 3 and 4. Two of these (yer084w:SBH2 and
ymr025w:ymr029c) were not corroborated by YPD, whereas
the other two (STE5:STE11 and RTS1:RTG1) are each known
to be functional relationships. As the numerical values in the
figure indicate, the correlation in NMF space was significantly
higher than in the original gene expression space. Essentially,
this stems from the fact that NMF recognized the expression
patterns of strains deleted for the genes in question as being
constructed of very similar sets of building blocks, and the
correlation in the expression pattern was larger for the genes
comprising these building blocks. For instance, the expression
profiles for strains deleted in STE11 and in STE5 were each
dominated by basis vector 8 (the building block consisting
largely of mating genes) and had relatively small (but still

correlated contributions) from other basis vectors. NMF rec-
ognized this local similarity across some genes, whereas most
clustering algorithms would focus only on the global similar-
ity of the expression profile. Comparing the same two strains
in the original data space shows that their gene expression
patterns were highly correlated for some genes but not for
others. Therefore, NMF is a way to focus on the functionally
important parts of gene expression profiles.

Note that due to the fact that all values in NMF space are
non-negative by definition, the distribution of correlations is
somewhat shifted toward higher values and it has a longer tail
(see Supplemental Material Fig. S-1, available online at www.
genome.org). However, this effect alone does not explain the
higher correlation coefficients found in NMF versus in the
original space, seen in Figure 4. The correlations found in the
NMF space occur at a higher percentile than those in the
original space. For example, a correlation of 0.8 corresponded
to a 99.90 (99.93) percentile in the NMF (original) space; a
correlation of 0.4 corresponded to a 95.00 (98.00) percentile
in the NMF (original) space. The differences in correlation
coefficients observed here correspond to values in the neigh-

Table 4. The 42 Predictions of Functional Relationships
That Could Not Be Verified on YPD From the 100 Strongest
Relationships Detected

rtg1 vps8
are1, are2 (haploid) yor015w
pex12 yea4
ckb2 yel008w
yer002w ymr034c
mrt4 yel033w
ckb2 rts1
mrpl33 ymr293c
imp2 yer050c
cbp2 pet111
cyt1 pet111
yer034w ynd1
rps24a ymr014w
yel001c yor015w
ymr014w yor006c
aep2 rml2
aep2 mrpl33
ymr014w yor078w
rml2 yer050c
mrpl33 yer050c
aep2 imp2
sir1 ymr041c
ymr034c yor015w
pfd2 yor051c
ymr025w ymr029c
ckb2 vps8
msul ymr293c
sbh2 yer084w
mrpl33 msu1
imp2 ymr293c
rtg1 rts1
msu1 yer050c
msu1 rml2
yml003w ymr034c
aep2 msu1
CDC42 (tet promoter) KAR2 (tet promoter)
rps24a yor078w
pfd2 yel044w
gcn4 yel008w
yer050c ymr293c
aep2 yer050c
aep2 ymr293c

Table 3. Continued

Ergosterol Pathway

erg3 (haploid) Itraconazole
erg2 Itraconazole
yer044c (haploid) ERG11 (tet promoter)
ERG11 (tet promoter) Itraconazole
erg3 (haploid) ERG11 (tet promoter)
erg3 (haploid) yer044c (haploid)
erg2 erg3 (haploid)
erg2 yer044c (haploid)
erg2 ERG11 (tet promoter)

Vacuolar ATPase

cup5 mac1
mac1 vma8
cup5 vma8

Coregulated genes were found to be coregulated by other func-
tional genomics studies. Binding refers to genes whose proteins
have been shown to bind each other. Cell Wall, Mating, and
Ergosterol Pathway are all genes that have been experimentally
shown to be involved in the named cellular function.
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borhood of 0.8 (99.90 percentile) in NMF space and only 0.4
(98.00 percentile) in the original space. Thus, even though the
distribution is somewhat shifted in the NMF space, the higher

correlation coefficients observed
do correspond to higher signifi-
cance, as indicated by percentile
ranking.

In Table 4 are listed 42 predic-
tions of functional relationships
detected by NMF, but not pres-
ent in YPD. Some predicted rela-
tionships are between genes
classified as mitochondrial (e.g.,
AEP2:YER050C and MSU1:MRPL33),
just as some of the verified rela-
tionships are between mitochon-
drial genes (e.g., RML2:YMR293C).
Moreover, a number of small net-
works of mitochondrial genes oc-
cur in the strongest 100 NMF rela-
tionships; most genes in these net-
works were clustered together in
the original analysis of the data by
Hughes et al. (2000). Another tight
network of functional relation-
ships can be seen among CKB2,
YEL008W, GCN4, RTS1, RTG1, and
VPS8, some of which were and
some of which were not verified by
YPD. The existence of these tight
interconnected relationships adds
to the likelihood that the predic-
tions are correct.

While this manuscript was in
preperation, two studies (Gavin et
al. 2002; Ho et al. 2002) that fo-
cused on the large-scale identifica-
tion of protein–protein interac-
tions in yeast were published. For
the study by Ho et al. (2002) data
was readily available online, and
we used it as an additional means
of verifying predictions. There was
little overlap in scope with our
study, as of a total of identified
8114 interactions, only 74 fall
within the set of 276 gene dele-
tions in our study. Allowing for
one connecting link between inter-
acting proteins, this number in-
creased to 2001. Of our best 100
predictions, an additional two
were verified (between CKB2 and
VPS8 and between CDC42 and
KAR2). It should be noted that
both come from the set of 42 inter-
actions in which no direct link was
found on YPD (i.e., none of the 58
predictions that were verified on
YPD were found by Ho et al. 2002).
The little overlap with our predic-
tions may thus stem from the
sparseness of both data sets. When
scoring our predictions using the

interactions found by Ho et al. (2002), we still find that pre-
dictions made using NMF have a higher likelihood of being
correct than ones made from pure correlation (data not shown).

Figure 4 Correlation for four illustrative pairwise functional genetic relationships. For comparison, the
correlation plot of the pair of experiments in NMF space is shown at left, and in the original gene space
at right.
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One feature of the approach taken here is that pairwise
relationships were only scored for genes that had been di-
rectly manipulated in the experiments (deleted or overex-
pressed). As described in the Methods section, NMF can also
be applied to detect relationships between genes that have
been monitored using expression arrays, but not directly ma-
nipulated experimentally. Preliminary studies using NMF in
this mode suggest that it is again superior in detecting func-
tional genetic relationships compared with approaches that
apply clustering or correlation directly in the original data
space. A further shortcoming that remains, however, is the
elimination from analysis of genes whose expression is unde-
tectable in the control experiments (to avoid division by
zero). Functional relationships involving such genes (com-
prising roughly one-sixth of the genome for the current data
set) cannot be scored. In future studies, it may be possible to
insert a minimal expression level for such genes in the control
experiment, although further work is necessary to see
whether this introduces other problems, such as feature miss-
caling.

In the current study, no separate attempt was made to
smooth or filter the data set to reduce or eliminate the effects
of experimental noise or error. In some sense, NMF itself per-
forms a smoothing function on the data through factoriza-
tion and reconstruction. Features that appear consistently in
the data set are selected out to become basis vectors, whereas
features that appear inconsistently in the data due to experi-
mental variability or other factors tend to be smoothed. For
the results reported here, only genes with no detectable ex-
pression in the control experiment were removed. When
more stringent significance filters were applied to the data,
the results remained similar (data not shown).

Of the 50 basis vectors resulting from this analysis, many
were sparse (that is, they represented features consisting of a
relatively small number of genes). However, some basis vec-
tors were not sparse and contained too many genes to be
easily annotated as associated with a small number of cellular
functions. The NMF algorithm could be modified to enforce
sparser basis vectors; alternatively, it is anticipated that larger
data sets will result in basis vectors that are more uniformly
sparse and may correspond to smaller features. An advantage
of NMF is that it is expected to be a better detector of features
when confronted with larger data sets.

METHODS

General Approach
Data from a set of expression array experiments were repre-
sented as a single matrix

↔
V . Each column corresponded to the

processed intensities from one experiment; each element of a
column was derived from the intensity for one gene probe in
the corresponding experiment. A row of the matrix corre-
sponded to the processed intensity for a single gene probe
across all experiments. An n � mmatrix

↔
V corresponded tom

arrays (i.e., experiments) in which measurements were made
for the same n genes in each. The major analysis method
applied here, NMF, corresponded to an approximate factor-
ization of the matrix

↔
V into a pair of matrices

↔
W and

↔
H .

↔
V ≈ ↔

W �
↔
H (1)

The factorization was chosen with a particular rank, k, so that
↔
W was of dimension n � k and

↔
H was k � m. In the work

described here, k was chosen to be relatively small compared
with the dimensions of the original data

↔
V (i.e.,

k · (m + n) < n · m), so the factorization was approximate and
corresponded to a compression of the data. Moreover, the
factorization could be viewed as a representation of the data
in a new space of lower dimensionality (k). There are two
equally valid interpretations of the dimensionality reduction.
One is that the columns of

↔
W were “basis experiments” (hav-

ing the dimensionality of a single array or experiment) and
each row of

↔
H was the representation of a particular experi-

ment in the new k-dimensional space. Alternatively, the rows
of

↔
H were “basis genes,” and each column of

↔
W then corre-

sponded to a representation of a particular gene in the new
space. The unique feature of NMF is that none of the matrices
in equation 1 (

↔
V ,

↔
W, or

↔
H ) are permitted to have negative

entries (Lee and Seung 1999).

Implementation of NMF
The NMF algorithm was coded using the mathematics and
matrix algebra package MATLAB version 6 (R12) (Mathworks,
Inc.). The key features of the algorithm involved iteratively
improving matrices

↔
W and

↔
H to improve the approximation

to
↔
V while maintaining non-negative matrix entries through-

out. This was achieved using an update-rule approach (Lee
and Seung 1999). For a given value of the NMF dimensional-
ity k, the algorithm was started with random matrices

↔
W and

↔
H . The random initial seed was a uniform distribution of real
numbers from 0 to 1 for all matrix elements of

↔
W and

↔
H . The

two matrices were iteratively updated using the rules,

↔
Ha� ← ↔

Ha�

�
↔
W

T↔
V �a�

�
↔
W

T↔
W

↔
H �a�

( 2)

↔
Wia ←

�
↔
V

↔
H
T
�ia

�
↔
W

↔
H

↔
H
T
�ia

( 3)

which minimize the root-mean-square (RMS) error
(E = �

↔
V �

↔
W ·

↔
H �2) between the actual data

↔
V and the re-

duced-dimension reconstruction of the data (
↔
W ·

↔
H ; Lee and

Seung 2001). Because the update rules were multiplicative,
initial non-negative matrices remained non-negative for all
future iterations. Iterations were continued until the RMS er-
ror change in an iteration was <0.1 in absolute RMS error,
which corresponded to roughly 0.005% of the final RMS er-
ror.

The update rules corresponded to a form of gradient de-
scent, and thus, found only a local minimum. To address this
limitation, the procedure was repeated 100 times, starting
with different initial matrices. The factorization leading to the
lowest RMS error was used in further analysis. Studies were
carried out for values of the NMF dimensionality (k) ranging
from 10–80. The solutions found were reproducible; basis vec-
tors from factorizations that differed in the initial matrices
showed correlation coefficients of >0.90.

A single NMF factorization for a 5346 � 300 data set
required ∼30 min of CPU time on a 500 MHz Pentium III
workstation and occupied roughly 70 MB of memory. The
current implementation was dominated by matrix multipli-
cation, leading to computation times that scaled as the num-
ber of matrix entries raised to roughly the power 1.35 (typical
of matrix multiplication in MATLAB and other modern pack-
ages). The relative simplicity of the update-rule implementa-
tion does not require first- or second-derivative information,
which would add significantly to memory usage. Memory re-
quirements scaled linearly with data set size due to the need
to store data and factor matrices.

Trial implementations on smaller test problems were also
carried out with nonlinear optimizers CONOPT2 version
2.071G (ARKI Consulting & Development A/S) and LOQO
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version 4.01 (Princeton University); the values of matrix ele-
ments in

↔
W and

↔
H were optimized directly and subject to

non-negativity constraints to minimize the RMS error. Al-
though quite successful on small problems, these methods
require additional memory for storage of the gradient, and
were thus not feasible for the data set analyzed here.

To ensure sparsity of the resulting basis vectors, the most
significant genes for every basis experiment were selected so
as to produce an average of 5% of the entries used across all
basis vectors. Operationally, this was achieved by allowing a
fixed percentage (9.7%) of the maximum gene to be signif-
cant (non-zero). After selecting of the most significant genes,
all other genes were constrained to zero, and the resulting
sparsified basis vectors were reoptimized to convergence us-
ing the update rules in equations 2 and 3. This sparsification
procedure was found to be the best performing one from
many procedures tried, when minimizing both the overall
RMSD of the factorization and the number of signifcant genes
for each basis vector. The RMSD of the sparsified factorization
was 2132 versus 1702 for the factorization without sparsifica-
tion (a difference of 25%), whereas only 5% of the entries are
used as significant genes. As can be seen in Figure 3, the spar-
sification has a minor effect on the performance of the algo-
rithm.

In separate calculations, SVD of data matrices was carried
out using the built-in functionality in MATLAB. A represen-
tation of an SVD factorization of rank k corresponded to using
only the k highest eigenvalues. Absolute RMS error values
were calculated for the same data set and the same ranks as for
NMF. Furthermore, as a control, SVD was carried out on ran-
dom matrices composed of vectors of the same mean and
standard deviation as the sample data.

Annotating Basis Vectors
The functional categorizations available at the Munich Infor-
mation Center for Protein Sequences (the MIPS categories)
were used to assign genes to biochemical pathways or cellular
function. There are a total of 107 MIPS categories that cover
different metabolic pathways, such as the TCA cycle and gly-
colysis, as well as different cellular functions, such as cell
membrane biosynthesis or mating (Mewes et al. 2000). Some
of the categories overlap (for example, the category glycolysis
is a subset of the category energy metabolism), and one gene
can be assigned to more than one category.

Each basis vector (basis experiment) was annotated with
the MIPS categories that dominated its makeup by comparing
the frequency with which genes from each category appeared
in a basis vector with that expected from a random distribu-
tion. One million genes were selected at random from the
same set of genes present in the experimental data. The cor-
responding MIPS categories were identified, and the mean
and the standard deviation of occurrence was calculated for
every category. This procedure was carried out twice to ensure
convergence of the random distribution. If the occurrence of
a particular MIPS category in a basis vector exceeded the mean
of the random occurrence by more than five times its stan-
dard deviation (a 5� cutoff), this particular category was as-
signed to the basis vector as enriched. As a negative control,
basis vectors were generated from random numbers and sub-
jected to the same significance cutoffs and annotation proce-
dure. In 1000 random basis vectors, no category was ever as-
signed as being enriched.

Predicting Functional Relationships
An important test of the utility of data reduction using non-
negative matrix factorization was to assess its ability to predict
functional relationships between genes. To predict functional
relationships between genes or experiments on the basis of

expression data, it is typical to assume that similarity in ex-
pression suggests a functional relationship between genes or
experiments. Here, the same assumption was made both in
the original space of the data and in the reduced dimensional
spaces, such as that computed by NMF. The Pearson correla-
tion coefficient was calculated between all genes (or all ex-
periments), and the absolute value of the correlation coeffi-
cient was used as a predicted score for the relationship. This
method scored positive and negative correlations equally
strongly.

In the data set used, most experiments corresponded to
deletion mutants of a specific gene, so that functional rela-
tionships between experiments in turn implied functional re-
lationships of the deleted genes. Other experiments corre-
sponded to the overexpression of genes, which again linked
the experiments directly to the gene in question. The rest of
the experiments corresponded to treatment with a well-
characterized drug. Those experiments then linked the re-
sponse in expression pattern to the functional mechanism of
this particular drug.

To judge the predicted functional relationships between
genes required some set of true relationships. For this pur-
pose, existing bioinformatic databases were used, although
clearly such data are largely incomplete and may not be fully
verified. The two databases used were the MIPS categorization
(Mewes et al. 2000) and the YPD (Costanzo et al. 2001). Two
genes appearing in the same MIPS category were scored as
functionally related (e.g., two genes encoding ribosomal pro-
teins). The MIPS categorization was checked for every gene in
the data set, as well as for every gene for which there was a
deletion or overexpressed mutant in the data set, yielding a
list of validated interactions. Predictions from the correlation
score in NMF space were compared with this list, starting with
the predictions of highest correlation.

The functional relationships predicted from gene expres-
sion data using NMF were compared with functional relation-
ships predicted from other approaches. The same analysis and
validation procedure was applied to the correlation score in
five other spaces: the original full-dimensionality of the ex-
perimental space, reduced dimensionality using SVD with the
50 most significant dimensions, reduced dimensionality us-
ing only the 50 most variable genes in the data set, reduced
dimensionality using 50 NMF basis vectors that were not spar-
sified, and reduced dimensionality using 50 eigenvectors
from SVD that were sparsified. The value of 50 was chosen to
compare different same-sized reduced-dimension representa-
tions of the data to that from NMF.

Eigenvectors from SVD were sparsified using the above
procedure. The encodings were then obtained using the pseu-
doinverse. As a further comparison, k-means clustering was
carried out using the euclidian distance metric starting from a
random initial seed of cluster centers and interatively updat-
ing the center positions.

A second and independent method of scoring predicted
functional relationships used the Yeast Proteome Database
(YPD; Costanzo et al. 2001). YPD contains detailed informa-
tion about genetic or physical interaction, functional rela-
tionships, and coregulation of all genes in yeast. The infor-
mation in YPD is based on a large number of papers from the
scientific literature. Results cataloged in YPD include those
from biophysical, molecular biological, genetic, and func-
tional genomic experiments. The strongest 100 predictions
from NMF and from correlations in the original experimental
data space were scored against YPD. Any link in YPD between
two genes (e.g., coregulation, genetic interaction, or binding)
was viewed as a validation of the prediction. Moreover, for the
soft validations, one linking gene was permitted. That is, if
gene A interacted with gene Z, and gene B was coregulated
with gene Z in YPD, then gene A and B were scored as coregu-
lated. For this purpose, at least one of the two relations was
required to be a hard interaction.

Kim and Tidor

1716 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 9, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Data Source and Preprocessing
This study is based on the analysis of a large, publicly avail-
able microarray data set from Rosetta Inpharmatics, Inc. en-
compassing genome-wide expression data of S. cerevisiae in
276 deletion mutants, 11 tetracycline regulated alleles of es-
sential genes (overexpression) and 13 wild-type strains treated
with well-characterized drugs (a total of 300 experiments;
Hughes et al. 2000). All experiments used the Saccharomyces
Genome Deletions Consortium strain background. Most of
the deletion mutants were diploid mutants (i.e., both alleles
were deleted from the genome). For some essential genes,
haploid mutants were made. This impaired, but did not re-
move, the gene function. The strains were grown according to
a standard protocol and in parallel with corresponding wild-
type control cultures.

Gene expression was measured using spotted microar-
rays, giving the ratio of expression in the mutant (or drug-
treated) strain relative to the gene expression in the control
(wild-type) experiments. The spotted arrays measured expres-
sion for a total of 6316 ORFs; the data set was 6316 genes by
300 experiments (data available from Rosetta Inpharmatics
Inc. at http://www.rii.com/register/cell2000102Hughes/
EULA.htm). It is likely that much of the yeast gene expression
space is sampled in this data set, which spans very different
conditions; thus, it appears a good data source in which to
seek gene expression features.

The log-transformed ratios were used as input data for
our algorithm; the transformed ratios ranged from approxi-
mately �3 (1000 times down-regulated with respect to the
control experiment) to +3 (1000 times up-regulated). Some
genes had no detectable expression in the control experiment
and were removed from further analysis to prevent division
by zero. The resulting data set contained 5346 genes. To make
the data fit the constraint of non-negativity, the data were
folded. Every gene was represented in two rows of the matrix,
the first occurrence to indicate positive expression relative to
wild type, and the second to indicate negative. This effec-
tively doubled the size of the data set (to 10692 genes). In any
one experiment, the log-expression ratio for every gene was
either positive (i.e., the gene was up-regulated with respect to
the control experiment) or negative. The resulting data matrix
was of size 10692 � 300, and half of its entries were equal to
zero. This procedure was necessary, as NMF performs most
optimally on sparse data sets. A simple shifting procedure,
that is, adding a fixed constant to each matrix element to
make all positive, would create a positive, but very non-sparse
matrix, and hence, was inappropriate. For reconstructing the
data, we simply reversed this procedure by subtracting the
row corresponding to down-regulation from the row corre-
sponding to up-regulation. Correlations were computed by
operating on vectors of length 10692, with no special treat-
ment for paired entries involving the up- and down-
regulation of the same gene. Interestingly, in each basis vec-
tor, the same gene was never represented as both up- and
down-regulated.
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