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Abstract—This paper presents a novel approach for imple-
menting ultra-low-power digital components and systems using
source-coupled logic (SCL) circuit topology, operating in weak
inversion (subthreshold) regime. Minimum size pMOS transistors
with shorted drain-substrate contacts are used as gate-controlled,
very high resistivity load devices. Based on the proposed ap-
proach, the power consumption and the operation frequency of
logic circuits can be scaled down linearly by changing the tail bias
current of SCL gates over a very wide range spanning several
orders of magnitude, which is not achievable in subthreshold
CMOS circuits. Measurements in conventional 0.18 m CMOS
technology show that the tail bias current of each gate can be set
as low as 10 pA, with a supply voltage of 300 mV, resulting in a
power–delay product of less than 1 fJ. Fundamental circuits such
as ring oscillators and frequency dividers, as well as more complex
digital blocks such as parallel multipliers designed by using the
STSCL topology have been experimentally characterized.

Index Terms—CMOS integrated circuits, CMOS logic circuit,
current-mode logic (CML), pipelining, power–delay product,
source-coupled logic (SCL), subthreshold CMOS, subthreshold
SCL, ultra-low-power circuits, weak inversion.

I. INTRODUCTION

T
HE demand for implementing ultra-low-power digital sys-

tems in many modern applications such as mobile systems

[1], [2], sensor networks [3], [4], and implanted biomedical sys-

tems [5], has increased the importance of designing logic circuits

in subthreshold regime [6]. In subthreshold MOSFET operation,

current density is very low and the ratio of the transconductance

to bias current of the device is maximum [7], [8].

Meanwhile, the exponential relationship between drain current

and gate voltage makes this mode of operation very suitable for

implementing widely adjustable circuits [7], [9]. Conventional

CMOS logic circuits utilizing subthreshold transistors can typ-

ically operate with a very low power consumption [10]–[13],

which is mainly due to the dynamic (switching) power consump-

tion and is quadrWRatically dependent to the supply voltage as

(where is the frequency of operation and

indicates the supply voltage). Hence, reducing the supply voltage

will result in reduction of power dissipation [1], [14] as well as

the output logic swing. Supply voltage reduction, on the other

hand, increases the delay in each gate which means the power

dissipation, logic swing,andspeedofoperationare tightly related
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to each other. Meanwhile, the exponential relationship between

power dissipation and supply voltage in subthreshold regime

makes the accurate control of power consumption difficult. To

implement very low power digital systems, it is necessary to

minimize the energy dissipation at the system level in addition

to the gate level to achieve the desired performance [10].

Source-coupled logic (SCL) circuits are widely used in mixed-

mode integrated circuits where supply noise and substrate noise

injection are crucial [15]. Reduced output voltage swing in

SCL circuits compared to the CMOS logic gates has made this

topology very suitable for high frequency applications [16], [17].

This paper explores the potentials of subthreshold SCL circuits

as an alternative solution for implementing ultra-low-power

digital systems. In this approach, the power consumption and

maximum speed of operation can be adjusted linearly through

the tail bias current of each gate over a very wide range [18],

[19], thus, efficiently decoupling the decision of output voltage

swing from power dissipation and delay.

To enable operation at very low current levels and to achieve

thedesiredperformancespecifications, special circuit techniques

have to be applied, [18]–[21], for implementing very low power

SCL circuits. In [20], the intrinsically limited output impedance

of deep-submicron, short-channel pMOS devices has been used

to implement very high value load resistances for SCL topology.

Here, a more general approach with much less sensitivity to

process and technology variations will be introduced [19].

This paper presents novel techniques for implementing sub-

threshold SCL (STSCL) gates where the bias current of each

cell can be set as low as 10 pA. In Section II, after a brief review

of SCL circuits, the proposed technique for implementing sub-

threshold SCL gates will be introduced. Section III discusses the

power-delay performance of the proposed circuit configuration.

Experimental results and comparison with conventional CMOS

circuits are presented in Section IV, followed by conclusions in

Section V.

II. SUBTHRESHOLD SOURCE-COUPLED LOGIC CIRCUITS

A. Conventional SCL Topology

In an SCL gate, the logic operation takes place mainly in cur-

rent domain. Therefore, the speed of operation can be inher-

ently high. Shown in Fig. 1, a logic network composed of nMOS

source coupled differential pair switches steers the tail current

to one of the output branches based on the input logic

levels. The output load resistance converts the branch cur-

rent back to the voltage domain in order to drive the subsequent

SCL gates. The voltage swing at the output node

0018-9200/$25.00 © 2008 IEEE
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Fig. 1. A conventional SCL-based inverter/buffer circuit. The switching part
can be composed of a network of nMOS source-coupled pairs to implement
more complex logic functions [15]. The load resistances can be implemented
using pMOS devices biased in triode region.

should be high enough to switch completely the input dif-

ferential pair of the next stage (i.e., ). Based

on this observation, the voltage swing should be larger than

( is the drain-source overdrive voltage of the

input nMOS devices when ) when the input nMOS de-

vices are in strong inversion [22], and larger than when

the devices are in weak inversion [7] ( is the thermal

voltage and is the subthreshold slope factor). Therefore, the

required voltage swing when the devices are in subthreshold

regime can be as low as which is about 150 mV at

room temperature (assuming ). This swing in the sub-

threshold regime depends on the subthreshold slope factor and

is independent of the threshold voltage of the nMOS switching

devices. Provided that the load resistance can be made suffi-

ciently high, this means that the switching operation of nMOS

devices has low dependence on the fabrication process varia-

tions. Therefore, as long as the tail bias current is higher than

junction leakage currents and output impedance of the devices

is much higher than the load resistance, the proposed topology

can operate properly as a logic circuit, even in aggressively

scaled deep-submicron technologies. Unlike CMOS logic cir-

cuits where the subthreshold channel leakage current is the dom-

inant leakage component, in STSCL topology the main leakage

currents are due to the p-n junctions of the MOS devices.

The speed of operation in an SCL gate is mainly limited by

the time constant at the output node which is

(1)

Based on this, the propagation delay is inversely proportional

to the tail bias current. Meanwhile, the circuit power–delay

product (PDP) is independent of [15], [16], [23].

B. Load Device Concept

To maintain the desired output voltage swing at very low

bias current levels, it is necessary to increase the load resistance

value in inverse proportion to the reducing tail bias current as

(2)

Fig. 2. (a) Conventional pMOS load device, (b) proposed load device, (c) I–V

characteristics of the conventional pMOS load (dotted) in comparison to the
proposed device (solid line), (d) measured I–V characteristics of the proposed
load device in comparison to the BSIM model (all data obtained using 0.18 �m
CMOS technology).

In subthreshold operation, the tail bias current would be in

the range of few nA or even less. Therefore, to obtain a reason-

able output voltage swing, the load resistance should be in the

range of hundreds of . Meanwhile, this resistance should be

controlled very accurately based on the value. Hence, a well

controlled high resistivity load device with a very small area is

required. For this range of resistivity, conventional pMOS de-

vices biased in triode region can not be utilized since the re-

quired channel length of the transistor would be impractically

large [Fig. 2(a)]. Fig. 2(c) (dotted line) shows the I–V character-

istics of a pMOS device realized in 0.18 m technology for dif-
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Fig. 3. Cross-section view of the proposed pMOS load device, showing the
parasitic components that contribute to operation in subthreshold regime.

ferent values, indicating that the configuration of Fig. 2(a)

results in a current source with almost infinite output impedance,

even for deep-submicron devices. Hence, the gain would not be

limited, neither would the amplitude. Fig. 2(b) shows the pro-

posed load device, where the drain of the pMOS device is con-

nected to its bulk. In this way, as illustrated in Fig. 2(c), the con-

figuration shown in Fig. 2(b) produces a finite and controllable

differential resistance, which, associated with the transconduc-

tance of the differential pair will provide a controlled, limited

gain and amplitude. Thus, it is possible to implement a very high

resistivity load device using a single minimum size pMOS de-

vice. The fact that each individual pMOS load device must be

confined in its own n-well also does not have a severe impact on

area as will be demonstrated later. The measured DC I–V char-

acteristics of the device are shown in Fig. 2(d). For

(bulk tied to the drain), the device operates as a very high re-

sistivity element as expected. This plot also shows that the mea-

surement results are very close to the resistance values predicted

by simulations.

The cross section view of the proposed pMOS load device

can be seen in Fig. 3. Connecting the drain to the bulk of the

pMOS load device ties the cathode of the n-well-to-substrate

reverse-biased diode to the output node. However, since the de-

vices are minimum size, the parasitic capacitance associated

with this diode is very small and can usually be neglected (in this

design using 0.18 m technology: 1 fF). The other impor-

tant parasitic element is the forward biased source-bulk diode.

Illustrated in Fig. 3, this diode can limit the possible voltage

swing at the drain of the device to 400–500 mV. However, as

the required voltage swing for subthreshold SCL gates is well

below this value, the source-bulk diode does not influence the

operation of the circuit.

Using the EKV model, the I–V characteristics of the sub-

threshold pMOS device can be expressed by [7], [8]

(3)

in which . In the proposed con-

figuration illustrated in Fig. 2(b), , hence

(4)

Fig. 4. A very high value floating resistor composed of two back to back pMOS
devices: (a) circuit schematic, and (b) measured I–V characteristics of the con-
trolled floating resistor.

Therefore, the output small signal resistance of the proposed

load device is

(5)

(6)

in which and .

Thus, can be controlled through the source-gate voltage

of the device through . Because of exponential de-

pendence of the output resistance on , it can be adjusted in

a very wide range. To avoid process-related deviations, a replica

bias generator is required for , as explained in the next sec-

tion. The wide tuning range of means that the proposed

STSCL gate can be used in a very wide range of operating condi-

tions without the need for modifying the size of devices. Mean-

while, as long as the matching requirements are respected, the

frequency of operation would be linearly proportional to the bias

current.

Note that when becomes negative, the current direction

is reversed and the device switches to conventional configura-

tion in which the bulk is connected to source. In this case, the

drain current will increase rapidly. This property can help imple-

ment high valued floating resistors with a very wide adjusting

range by connecting two pMOS transistors in series as shown in
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Fig. 5. Subthreshold SCL gate and the replica bias circuit used to control the output voltage swing.

Fig. 4. The measured I–V characteristics of this floating resistor

show moderate linearity in a wide voltage range, which can be

exploited in various analog circuit applications.

C. STSCL Gates

The proposed pMOS load device can be utilized to imple-

ment an SCL gate biased in subthreshold. Fig. 5 shows the basic

structure of the proposed STSCL gate. A simplified circuit dia-

gram of the replica bias circuit used to control the output voltage

swing is also shown. In this schematic, all devices operate in

subthreshold regime and the tail bias current can be reduced

until it becomes comparable in magnitude to the leakage cur-

rents that exist in the circuit.

Since the input differential pair transistors are operating in

subthreshold, it can be shown that the transconductance of the

input differential pair is

(7)

in which indicates the input differential voltage and

is the subthreshold slope of nMOS devices. Based on (7), for

the entire current will be switched to one of

the branches. Therefore, a voltage swing of more than

would be sufficient to make sure that the gain of STSCL circuit

is enough to be used as a logic gate. Combining (7) with (6) re-

sults in

(8)

Fig. 6(a) illustrates the DC transfer characteristics of an

STSCL gate as well as the stage gain. The simulated DC gain of

3.2 at the cross-over point is very close to the value estimated

by (8). The measured input–output transfer characteristics

of an STSCL buffer stage are shown in Fig. 6(b). Since all

the devices are operating in subthreshold regime, the transfer

characteristics of the circuit is independent of the bias current.

In this plot, the deviation from the ideal DC characteristics is

mainly due to the leakage currents in the test circuit coming

from electrostatic discharge (ESD) protection circuitry. To

measure the DC characteristics, output voltage swing has been

adjusted manually.

Meanwhile, based on (5) it can be shown that the equivalent

output resistance of the pMOS load for V is finite and

equal to

(9)

which means the load devices are capable of pulling up the

output node completely to .

Concerning the area overhead associated with the pMOS load

devices, actual mask layout examples using 0.18 m CMOS

technology design rules provide an accurate assessment. The

layout of a three-input XOR gate is shown in Fig. 7 where the

area required for the pMOS load devices is demonstrated to be

small compared to the remaining parts of the circuit.

D. Voltage Swing Control

A controlling circuit is necessary to keep the voltage swing at

the output of the SCL gates on the desired value. Fig. 5 shows

the simplified schematic of a replica bias (RB) circuit [15]. This

circuit should be well matched to the SCL gates to have very low

deviation in operating point. Meanwhile, amplifier should

provide enough gain with a very low offset to have the desired

accuracy. In this work, a folded-cascode amplifier has been used

to provide a large swing at the output node and to be able to test

the SCL gates in a very wide range of bias current values.

Any mismatch in the bias current or devices of the SCL gates

and RB circuit will result in variation of the desired output

voltage swing and it can be shown that the sensitivity

of this circuit to the mismatches is

(10)
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Fig. 6. (a) Simulated DC transfer characteristics of an STSCL gate biased at
� � � nA and its DC gain. (b) Measured transfer characteristics of an STSCL
buffer stage for two different supply voltages (� � 0.6 V and 1.0 V) and
different bias currents (� � 1 nA, 10 nA, and 100 nA).

Fig. 7. Mask layout of the three-input XOR gate showing the area occupied
by the major components. Note that the pMOS load devices with their isolated
n-wells occupy a relatively small area compared to the nMOS logic network.

in which . Monte Carlo simulations show that

for minimum size devices, can be as high as 20–40 mV in

a typical 0.18 m process considered in this work. To compen-

sate the influence of device mismatch, should be selected

a little larger than the minimum value.

Meanwhile, it can be shown that the voltage gain from gate

to drain of transistor MPR in Fig. 5 is small

. Therefore, in spite of the expo-

nential relationship between and , the gain

of this stage is low and the RB circuit can be stabilized without

difficulty. Finally, please note that one single replica bias circuit

can be used for a large number of STSCL gates. Therefore, its

area overhead would be negligible in large scale applications.

III. PERFORMANCE ANALYSIS AND OBSERVATIONS

Power-Delay Product: The power dissipation of the STSCL

gate is where is the tail bias current, and the

typical delay of the gate is

(11)

Thus, the Power Delay product (PDP) is found as

(12)

Meanwhile, the power-to-frequency ratio can be calculated as

(13)

where the operating frequency is defined as

(14)

with being the activity rate factor (duty rate) and being

the maximum possible operating frequency: .

Thus, the ratio is

(15)

which provides a more practical measure for the power/fre-

quency tradeoff of any functional block.

Observation 1: The delay (or the maximum operating fre-

quency) in a STSCL gate depends on the tail bias current ,

but not on . Therefore, the delay of a logic block can be

controlled without influencing PDP, which is not possible in

conventional CMOS topologies. More importantly, the speed

and the operation (supply) voltage can be effectively decou-

pled in STSCL circuits. This point will be further elaborated

in Section IV-B.

Observation 2: To reduce the ratio, should be kept

as large as possible. This observation does not contradict with

similar results for conventional CMOS, where

(16)

as shown in [6]. However, the influence of on is

quite different in conventional CMOS, where an optimum

value to minimize can be found, especially for small

values, due to the significant leakage in CMOS.

Observation 3: Assuming that the system clock frequency

is dictated by the longest delay path between two consecutive
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Fig. 8. Photomicrograph of the test circuits: (a) ring oscillator; (b) frequency
divider.

register stages, and assuming that the activity rate depends in-

versely on the maximum logic depth between two registers, it

is most beneficial to keep the logic depth as shallow as pos-

sible, and thus, increase . This calls for very short (one stage)

pipelining in STSCL systems, which is demonstrated with an

example in Section IV-D.

The output load capacitance is partially due to the de-

vice parasitic capacitances such as the capacitance of n-well to

p-substrate reverse biased diode and wiring capacitance

related to interconnections . Since n-well to p-substrate

capacitance for small size pMOS devices is less than 1 fF,

it can be ignored in comparison to the wiring capacitance

which can be much larger even for simple circuits.

Regarding (12), one can conclude that the achievable

power–delay product per unit capacitance would be .

This means that for a supply voltage of 400 mV and

mV, the minimum achievable PDP would

be 0.04-0.06 [fJ/fF/Gate]. Since the total parasitic capacitance

due to the STSCL gate itself (including ) is less than 1 fF,

the minimum PDP that can be expected for an unloaded gate is

[fJ/Gate]. Notice that PDP also depends on

temperature through and can be reduced by reducing the

temperature.

IV. TEST STRUCTURES AND MEASUREMENT RESULTS

A. Ring Oscillator and Divider Operation

To measure the delay versus power consumption for the pro-

posed STSCL gates, a test chip has been designed and fabricated

in conventional 0.18 m CMOS technology. The test structures

Fig. 9. Measured oscillation frequency versus power dissipation of the eight-
stage ring oscillator based on the proposed STSCL topology for � � 0.3 V,
0.4 V, and 1.0 V.

consist of eight-stage ring oscillator and frequency divider (di-

vide-by-8) circuits, both of which are implemented based on

a two-input multiplexer (MUX) STSCL gate. The micropho-

tographs of the test circuits are shown in Fig. 8. To control the

operation of the test circuits, the tail bias current of the SCL

gates can be adjusted externally. Internal current mirrors with

the ratio of 1/100 are used to simplify the measurement process.

The supply voltages of the test blocks are directly accessible

to measure the total power consumption of each block using

HP4156A Semiconductor Analyzer. An internal replica bias cir-

cuit has been applied to control the voltage swing at the output

of the gates, as described in Section II-D, ensuring a minimum

output swing of 100 mV. The die-to-die variation of the gate

bias voltage ( in Fig. 5) required to ensure a fixed voltage

swing of 150 mV at a given tail current was found to be less than

%, in conventional 0.18 m CMOS technology.

Fig. 9 illustrates the measured oscillation frequency of an

eight-stage ring oscillator with differential STSCL NAND

gates (which are constructed based on two-input MUX) in

comparison to the simulation results. The conventional CMOS

oscillator used for comparison is built with two-input standard

NAND gates in the same 0.18 m CMOS technology with

driving strength of 1. As depicted in this figure, the mea-

surement results of the STSCL oscillator are very close to the

simulation results, and consistent over a range of several orders

of magnitude. Meanwhile, PDP is very well predictable by (12).

This figure also shows the results for the CMOS ring oscillator,

operating in subthreshold regime with different supply voltage

values between 0.1 and 0.4 V.

The divide-by-8 circuit has been realized using the source-

coupled latch structure as shown in Fig. 10. Since all transis-

tors operate in weak inversion, the device dimensions can be

kept close to minimum size. The measured maximum operating

(input) frequency of the divider is plotted against power dissi-

pation in Fig. 11(a) at V and V, com-

paring the results with the performance of an optimized CMOS

frequency divider operating in subthreshold regime. While the
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Fig. 10. (a) STSCL latch circuit schematic, and (b) the topology of the divide-
by-8 circuit used for measurement, consisting of three D-flip-flop (DFF) stages.

CMOS divider cannot sustain correct operation below 200 mV

supply voltage, the SCL divider with the bulk-drain connected

pMOS load continues its operation down to 10 pA/Gate of tail

current, and 3 kHz of input frequency. The resulting (measured)

PDP corresponds to less than 1 fJ/Gate.

To compare the performance of the STSCL gates at scaled

technology nodes, the maximum operating frequency of a

divide-by-8 circuit has been simulated using technology pa-

rameters for 90 nm, 130 nm, and 180 nm CMOS processes

[Fig. 11(b)]. Here, it is assumed that the DFF gates are loaded

with the same amount of interconnect capacitance, and all

leakage components are taken into account. It can be seen

that the STSCL frequency divider exhibits very similar perfor-

mance in different technology nodes. It is possible to reduce

the tail bias current of the circuit down to 10 pA in a controlled

manner both in 130 nm and 90 nm technologies, whereas the

subthreshold leakage current would be very difficult to limit in

conventional CMOS logic circuits.

Considering the results presented in Figs. 9 and 11, it can

be observed that the STSCL solution can successfully extend

Fig. 11. (a) Measured maximum frequency of operation versus power dissipa-
tion of the divide-by-8 frequency divider shown in Fig. 10 for � � ��� V,
and 1.0 V. (b) Simulated maximum operating frequency of STSCL divider in
different technologies (CMOS 90 nm, 130 nm, and 180 nm).

the range of operation by two orders of magnitude along the

power axis, and by about one order of magnitude along the

frequency axis, while allowing completely separate control of

voltage swing and power dissipation.

B. Carry–Save Multiplier Using SCL Gates

To illustrate the use of the proposed circuit topology for more

complex functions, a second test chip containing an (8 8) bit

parallel carry–save multiplier has been designed and fabricated

using 0.18 m CMOS technology (Fig. 12). Fig. 13 shows the

measured input-to-output delay of the STSCL-based multiplier,

operating at V, 0.4 V, and 1.0 V, in comparison to

the simulation results. It can be seen that the performance of

the STSCL multiplier is accurately predicted by the simulations.

The supply voltage can be reduced to 0.3 V while the circuit re-

mains operational over a very wide range of tail bias current.

The saturation behavior of the delay at higher bias currents is

mainly due to the limited swing of the replica bias circuit that is
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Fig. 12. Photomicrograph of the measured STSCL-based 8� 8 bit carry–save
multiplier.

used to produce the proper gate voltage for the pMOS load de-

vices. To illustrate the independent control of the delay and the

voltage supply, the PDP versus the delay of the STSCL multi-

plier circuit is plotted in Fig. 14 for different bias current levels,

and compared with the variation of PDP of an equivalent CMOS

multiplier circuit, also operating in subthreshold regime. In this

example, the power supply voltage and the output voltage swing

of the STSCL circuit is kept at 0.35 V and 0.15 V, respectively,

resulting in nearly constant PDP of less than 1 pJ over the en-

tire operating range. The PDP of the CMOS circuit, on the other

hand, varies significantly with , due to the quadratic depen-

dence of PDP on , and increasing dominance of leakage at

low values.

C. Compound SCL Gates to Improve Power–Delay

Performance

Using STSCL topology, the power consumption of a func-

tional block is directly proportional to the number of logic gates

to be biased with a tail current. Therefore, implementing more

complex logic functions in a single stage SCL gate can be ex-

pected to result in smaller number of gates and hence, reduced

power consumption. In this approach, since the time constant

at the common source nodes (i.e., , in which

indicates the parasitic capacitance in each common source

node) is much smaller than the time constant at the output node

( as shown in (1)), the speed degradation due to the stacking

will be negligible for ( indicates the number of

stacked stages in nMOS switching network) where

(17)

Fig. 15(a) shows a unit cell which is required to implement

the carry–save multiplier [24]. This unit block consists of a

two-input AND gate and a full-adder (FA), and it can be im-

plemented by two separate SCL gates, as shown in Fig. 15(b).

Alternatively, Fig. 15(c) shows an STSCL gate implemented

by merging two logic functions of AND and XOR on a single

Fig. 13. Measured total propagation delay of the proposed STSCL multiplier
versus tail bias current �� � for different supply voltages and in comparison to
the simulation results.

Fig. 14. Comparing the power–delay product versus delay for two 8� 8
bit carry–save multiplier circuits built with conventional CMOS and STSCL
components.

branch and realizing the compound logic operation

. Using the merged STSCL

gate topology [Fig. 15(c)] results in a significant improvement

of the power–frequency performance of the 8 8 multiplier, as

illustrated in Fig. 16(a). The multiplier in this example is built

out of 56 adders and 64 AND gates (total number of gates is

120), of which 49 can be merged with the corresponding adder

as described above. This modification alone results in approxi-

mately 40% power reduction. In the general case of an

multiplier, the total number of gates is , and it is

possible to merge AND gates with adders, resulting

in almost 50% power reduction for higher values. In addi-

tion to the obvious reduction of tail currents, the merging of

AND gates with adders also reduces the layout area of the unit

cell, and hence, lowers the parasitic capacitance due to wiring.

Finally, the operating frequency is further increased by reducing

the overall logic depth, resulting in about 80% total improve-

ment of speed at iso-power. While the results are difficult to
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Fig. 15. (a) Unit block needed to implement a carry–save multiplier consists of a two-input AND gate and a full-adder (FA) [24]. (b) Possible implementation of
the unit block based on STSCL logic (only the part generating ���� is shown) in which an AND gate is followed by an adder stage. The total current consumption
in this case would be � � � , while the total delay of this block would be approximately twice of a single STSCL gate. (c) Alternative implementation: Merging
the adder and AND functions in a single compound STSCL gate to improve the PDP. All switching nMOS transistors are minimum size devices.

generalize for random logic topologies, the merging of complex

logic gates clearly presents a valuable opportunity that can be

exploited for improving the power–frequency performance in

STSCL circuits.
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Fig. 16. (a) Power–frequency improvement that can be achieved in the
8� 8 carry–save multiplier circuit, by using compound gates as described
in Fig. 15(b) Comparison of maximum operation frequency versus power
consumption for two identical 8� 8 carry–save multipliers, implemented with
merged STSCL gates (� � 0.35 V) and with CMOS gates (� � 0.2
V-0.5 V).

Fig. 16(b) compares the maximum frequency of operation for

an 8 8 bit STSCL carry–save multiplier with merged compo-

nents (operating at ) and that of a conventional

CMOS multiplier, operating at . It can be

seen that the power–frequency performance of the STSCL cir-

cuit is comparable to, and in many cases better than, the CMOS

equivalent, over a wide frequency range. The main drawback of

the merged-gate approach is a slight increase of the minimum

useable supply voltage, since compound gates with more levels

typically require a higher supply voltage. However, this is a rela-

tively minor limitation as long as the nMOS network transistors

are biased in subthreshold regime.

D. Shallow Pipelining to Improve Activity Rate

As already discussed in Section III, the power-to-frequency

ratio of STSCL circuits (i.e., the power efficiency to operate at

Fig. 17. (a) Section of the parallel multiplier where the signal flow is regulated
using two-phase micro-pipelining technique for improving the performance of
SCL gates. Note that every FA stage output is followed by a keeper/latch stage.
(b) Eye diagram of the output of the multiplier circuit. This plot shows the output
after SCL-to-CMOS level converter circuit. Input is a � �� pseudo-random bit
stream (PRBS). Here, the period of input data is � � ��� �s, � � 10 nA
and � � 100 pA, i.e., the keeper stages dissipate only 1% of the power
dissipated by the FA stages.

a given frequency) can be significantly improved by increasing

the activity rate using shallow pipelining and by reducing logic

depth, as much as possible. One possibility is to implement
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Fig. 18. Power–frequency improvement that can be achieved in the 8� 8
carry–save multiplier circuit, by using shallow pipelining with keeper-latch
stages.

two-phase latch-based pipelining where the output of each gate

is latched during one clock phase, and passed on to the next

stage during the other clock phase—effectively reducing the

maximum logic depth to two consecutive gates. Instead of using

explicit latch stages, such two-phase pipelining can be achieved

by increasing (and reducing) the source (tail) current bias of al-

ternating stages, using the gate terminal of the tail current bias

transistor of each stage as the “clock” input. In this approach, il-

lustrated in Fig. 17 for the example of the carry–save multiplier

architecture, the current bias of odd stages is reduced to a low

(yet non-zero) level to retain (hold) their output while the cur-

rent bias of even stages is raised to the nominal operating value

to enable evaluation. Very simple cross-coupled “keeper” stages

connected to each gate output ensure that the output levels do not

degrade significantly during the “hold” phase. Fig. 17(a) shows

the circuit topology of an adder (sum generator) stage and the

output keeper stage, where the pulsed tail bias achieves a very

robust dynamic latching effect, augmented by the output keeper

with a tail bias current of 100 pA. In an 8 8 bit carry–save

multiplier circuit, taking into account the additional power over-

head of pipelining (which is 1% only), shallow pipelining using

keeper-latch stages will result in an overall improvement of the

by a factor of 5 (Fig. 18).

The pipelining technique described above can certainly be ap-

plied in combination with the gate-merging approach discussed

in Section IV-C, to improve the power–frequency performance

of subthreshold SCL circuits considerably.

V. CONCLUSION

A new approach for implementing ultra-low-power source-

coupled logic circuits biased in subthreshold regime has been

demonstrated. The new topology uses compact high resistance

pMOS load devices to provide the required voltage swing at the

output for proper logic operation. Measurement results show

that the tail bias current of each logic gate can be reduced to

less than 10 pA, while the power–delay product of the gate re-

mains less than 1 fJ, using 0.18 m CMOS technology. Robust

operation of ring oscillator and frequency divider circuits, as

well as more complex logic blocks (8 8 bit carry–save mul-

tiplier) has been demonstrated over a very wide range of fre-

quencies. Among other advantages, the proposed approach ef-

fectively decouples the circuit propagation delay from the oper-

ating voltage, resulting in near-constant PDP versus frequency.

The bias current of the STSCL gate can be scaled over several

decades using the same device dimensions, which makes this

circuit topology very suitable for ultra-low-power configurable

digital systems.
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