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Abstract. Voltage-gated ion channels in neuronal membranes fluctuate randomly between different conforma-
tional states due to thermal agitation. Fluctuations between conducting and nonconducting states give rise to noisy
membrane currents and subthreshold voltage fluctuations and may contribute to variability in spike timing. Here
we study subthreshold voltage fluctuations due to active voltage-gated Na+ and K+ channels as predicted by two
commonly used kinetic schemes: the Mainen et al. (1995) (MJHS) kinetic scheme, which has been used to model
dendritic channels in cortical neurons, and the classical Hodgkin-Huxley (1952) (HH) kinetic scheme for the squid
giant axon. We compute the magnitudes, amplitude distributions, and power spectral densities of the voltage noise
in isopotential membrane patches predicted by these kinetic schemes. For both schemes, noise magnitudes increase
rapidly with depolarization from rest. Noise is larger for smaller patch areas but is smaller for increased model
temperatures. We contrast the results from Monte Carlo simulations of the stochastic nonlinear kinetic schemes
with analytical, closed-form expressions derived using passive and quasi-active linear approximations to the kinetic
schemes. For all subthreshold voltage ranges, the quasi-active linearized approximation is accurate within 8% and
may thus be used in large-scale simulations of realistic neuronal geometries.
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1. Introduction

Within the nervous system, computation is performed
using noisy and unreliable components—namely, in-
dividual neurons and their synaptic connections. One
major source of noise within neurons is voltage-gated
ion channels embedded in the neuronal membrane.
These channels are macromolecules that are subject to

random changes of conformational state due to thermal
agitation, and when these changes occur between a con-
ducting and nonconducting state, the channel acts as a
microscopic source of noise current that is injected into
the cell (Hille, 1992; DeFelice, 1981).

This noise current can change the spiking behav-
ior of neurons, affecting the distribution of response
latencies (Lecar and Nossal, 1971a, 1971b; Clay and
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DeFelice, 1983; Rubinstein, 1995), spike propagation
in branched cable structures (Horikawa, 1991, 1993),
the generation of spontaneous action potentials
Skaugen and Wallœ, 1979; Skaugen, 1980a, 1980b;
Strassberg and DeFelice, 1993; Chow and White,
1996), and the reliability and precision of spike tim-
ing (Schneidman et al., 1998). For active ion channels,
such as Na+ and K+ channels, the rates of transition
between different conductance states are voltage de-
pendent, which induces a coupling between otherwise
independent stochastic channels. It has recently been
shown that this coupling can affect spontaneous fir-
ing and bursting behaviors of neurons (DeFelice and
Isaac, 1992; White et al., 1995; Fox and Lu, 1994;
Fox, 1997, White et al., 1998).

In addition to effects on action potentials, channel
noise also causes subthreshold fluctuations in mem-
brane voltage. These fluctuations were studied exten-
sively in the era prior to patch-clamp techniques—in
the squid axon (Verveen and DeFelice, 1974; Wanke
et al., 1974; Fishman, 1975; Fishman et al., 1975)
(see DeFelice, 1981, for a review of other systems and
Traynelis and Jaramillo, 1998, for more recent appli-
cations). The objective of these measurements was to
argue for the existence of single ion channels and to
determine their properties.

Our interest in subthreshold voltage fluctuations
stems from their potential impact on neural information
processing. Although information is communicated in
the neocortex and most of the peripheral nervous sys-
tem using action potentials, it is important to under-
stand subthreshold voltage fluctuations for several
reasons: (1) these fluctuations may determine the re-
liability and accuracy of spike timing since voltage
fluctuations near threshold affect precisely when an
action potential is initiated; (2) computations within the
dendritic tree, such as coincidence detection or multi-
plication of inputs, are performed in the subthresh-
old regime; (3) interaction between dendro-dendritic
synapses in the olfactory bulb or the olivary nucleus
and the operations of nonspiking neurons, such as in
the retina or in the visual system of invertebrates, are
all performed in the subthreshold regime.

At the biophysical level, the magnitude of subthresh-
old voltage noise is determined by ion channel kinet-
ics. Using a finite-state Markov process model of ion
channel kinetics, it is possible to compute the mag-
nitude and spectral properties of the current noise due
to stochastic state transitions (Stevens, 1972; DeFelice,
1981; Colquhoun and Hawkes, 1982). In this article, we

compare the subthreshold voltage fluctuation behaviors
predicted by two contrasting kinetic schemes for neural
excitability. The first kinetic scheme is the Hodgkin-
Huxley (HH) model of kinetics in the squid giant axon;
this canonical model represents an excitable system
that fires action potentials when depolarized by only a
few millivolts. The second kinetic scheme is that pro-
posed by Mainen et al. (1995) (MJHS) for the dendrites
of a cortical pyramidal cell; this model is less excitable
and does not fire action potentials at dendritic channel
densities. These two kinetic schemes thus represent a
sample of the possible range of kinetic excitability.

One long-term goal of our research is to evaluate the
effects of noise on information processing in model
neurons with realistic cellular geometries. Since this
type of modeling can be computationally very demand-
ing, it is useful to evaluate the ability of simpler approx-
imations of channel kinetic schemes to reproduce noise
properties. Several approximations have previously
been used to study subthreshold voltage fluctuations.
Koch (Koch, 1984) divided linear approximations of
kinetic schemes into two categories:passive linear
approximations, where active channel kinetics are
replaced by a single conductance, andquasi-active
linear approximations, where active channel kinet-
ics are replaced by a phenomenological impedance,
which may have positive or negative resistive and
reactive components. We follow this convention
here.

Mauro et al. (1970) used a quasi-active linearized
approximation to the HH kinetic scheme to study sub-
threshold voltage responses to a current stimulus. More
recently, Manwani and Koch (1999a, 1999c) used
a passive linear approximation to the MJHS kinetic
scheme to study the predicted voltage noise fluctu-
ations in both a patch of neuronal membrane and a
semi-infinite cable model of a dendrite; this work also
assessed the effect of the noise fluctuations on infor-
mation transfer.

In this article, we first evaluate the subthreshold
noise magnitudes predicted by the HH and MJHS ki-
netic schemes as a function of holding voltage. In both
schemes, there is an increase in noise with depolar-
ization from threshold, which may affect the ability of
the neuron to function as an integrator. We also cal-
culate the power spectral density and distributions of
noise predicted by both kinetic schemes and evaluate
how well quasi-active and passive linear approxima-
tions reproduce their noise characteristics. Finally, we
study how noise magnitudes and the quality of the
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linear approximations vary as a function of patch area
and model temperature.

2. Methods

In general, the conductance of a voltage-gated ion chan-
nel can be written as

gi (Vm, t) = γi m
MhH , (1)

whereγi denotes the open conductance of the chan-
nel andm and h denote the activation and inactiva-
tion variables of the channel.M andH are the number
of activation and inactivation gates (subunits), respec-
tively. In standard models of channel kinetics, derived
from the classical Hodgkin-Huxley model (Hodgkin
and Huxley, 1952),m andh are assumed to be contin-
uous deterministic variables that lie between 0 and 1
and obey first-order kinetics,

dm

dt
= m∞(Vm)−m

τm(Vm)
(2)

dh

dt
= h∞(Vm)− h

τh(Vm)
, (3)

wherem∞ (h∞) are the voltage-dependent steady-state
values andτm (τh) are the time constants of activa-
tion (inactivation). These are related to the voltage-
dependent transition rates between open and closed
states of the subunits by

m∞(Vm) = αm

αm + βm
, τm(Vm) = 1

αm + βm

h∞(Vm) = αh

αh + βh
, τh(Vm) = 1

αh + βh
,

whereαm andβm are the rates for the activation sub-
units andαh andβh are the rates for the inactivation
subunits. For instance, for the rapidly inactivating HH
Na+ channel,M = 3, H = 1. For the noninactivat-
ing K+ channel, we will use the variablen to denote
activation andN to indicate the number of activation
gates; for the HH K+ channel,N = 4.

This classical treatment represents the average
behavior of large numbers of channels as continuous
variables. Single-ion channels are macromolecules,
however, and switch randomly between discrete con-
formational states due to thermal agitation (Hille,
1992). In stochastic models, voltage-gated ion chan-
nels are modeled as discrete-state Markov chains with

voltage-dependent transition rates between the dif-
ferent conformational states (Hille, 1992). (Although
some recent studies have argued that ion channels have
an infinite continuum of states and should be more ap-
propriately abstracted using fractal models (Liebovitch
and Toth, 1990, 1991), we will use Markov models
here given their long history of application). In finite-
state Markov models, the state variablesn, m, andh
denote the probabilities that the activation and inacti-
vation gates are open, andαi andβi denote the condi-
tional transition probabilities between different states.
The Markov models corresponding to the two kinetic
schemes are shown in Fig. 1. Salient differences be-
tween the MJHS and HH schemes are summarized in
Table 1. To determine the magnitude and dynamics of
membrane voltage fluctuations due to channel noise,
we consider three different approaches.

The first approach is simply to model each chan-
nel using a Markov kinetic scheme and to generate
the transitions between conductance states in a Monte
Carlo simulation. This approach accurately captures
the effect of kinetic nonlinearities but is computation-
ally very demanding. The other two approaches we
consider are based on assuming that the magnitude of
the voltage fluctuations about the steady-state value is
small and that channel kinetics are approximately linear

Figure 1. Finite-state Markov models of channel kinetics.A:
Kinetic scheme for the Hodgkin-Huxley K+ channel. n0 . . .n3 rep-
resent four closed states, and n4 is the open state of the channel. The
K+ conductancegK is proportional to the number of open channels
([n4]). γK is the single K+ channel conductance.B: Kinetic scheme
for the Mainen et al. (1995) K+ channel. n0 represents the closed
state and n1 the open state of the channel.C: Kinetic scheme for
the HH and MJHS Na+ channel. m0h1 . . .m2h1 represent the three
closed states, m0h0 . . .m3h0 the four inactivated states, and m3h1 the
open state of the channel.
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Table 1. Comparison of parameters for the Mainen et al. (1995) (MJHS) and Hodgkin-Huxley (1952)
(HH) kinetic schemes.

MJHS HH

γK Potassium channel conductance 20 pS 20 pS

γNa Sodium channel conductance 20 pS 20 pS

ηK Potassium channel density 1.5 channels/µm2 18 channels/µm2

ηNa Sodium channel density 2 channels/µm2 60 channels/µm2

Cm Specific membrane capacitance 0.75µF/cm2 1µF/cm2

EK Potassium reversal potential –90 mV –77 mV

ENa Sodium reversal potential 60 mV 55 mV

EL Leak reversal potential –70 mV –54 mV

gL Leak conductance 0.025 mS/cm2 0.3 mS/cm2

H Na+ inactivation subunits 1 1

M Na+ activation subunits 3 3

N K+ activation subunits 1 4

Q10K K+ temperature scale factor 2.3 3

Q10Na Na+ temperature scale factor 3 3

TBK K+ base temperature 16◦C 6.3◦C
TBNa Na+ base temperature 27◦C 6.3◦C
Vrest Resting potential –70.7 mV –65 mV

near this value; these assumptions permit closed-form
solution of expressions for the noise fluctuations, thus
reducing computational demands.

2.1. Monte Carlo Simulations

Our Monte Carlo simulations are similar to previous ap-
proaches (Skaugen and Wallœ, 1979; Skaugen, 1980a,
1980b; Strassberg and DeFelice, 1993; Chow and
White, 1996; Schneidman et al., 1998) used to study the
effects of channel noise on neuron spiking behaviors.
The number of channels in each state of the kinetic
model (cf. Fig. 1) was tracked during the course of
the simulation, which was performed iteratively using
a fixed time step1t = 10µsec. During each step, the
number of subunits making transitions between statesi
and j was determined by drawing a pseudo-random bi-
nomial deviate (bnldev subroutine (Press et al., 1992)
driven by the ran1 subroutine of the second edition)
with N equal to the number of subunits in statei and
p given by the conditional probability of the transition
betweeni and j . The conditional probabilityp of mak-
ing a transition was computed using the corresponding
rate function,α(v) or β(v), from the kinetic model
under consideration, scaled from the base temperature

for the model and channel to a standard temperature of
27◦C using a factorQ1T/10

10 , where1T = 27− TB for
the appropriate channel model. The current flowing
through the conducting states of the channels was used
to charge the membrane capacitance, as shown in Fig. 2.
The membrane voltage corresponding to Eq. (11)
(Appendix B) was integrated across the time step using
the backward Euler method of the NEURON simula-
tion program (Hines and Carnevale, 1997). For each
set of parameters, 492 seconds of model time were
simulated, divided into 60 blocks of 8.2 seconds each
when computing power spectral densities (PSDs). Ac-
tion potentials, which occurred less than once per sec-
ond, were removed from the voltage traces prior to
computing statistics or PSDs. The standard deviation
of voltage noise was computed for the samples at each
time step of 492 seconds of simulated time. A portion
of one simulation is shown in Fig. 3.

Due to random channel transitions, the membrane
voltage fluctuates around the steady-state resting mem-
brane voltageVrest. By injecting constant currents of
different magnitudes into the membrane patch, the av-
erage voltage can be varied over a broad range. The
range of possible average voltages depends on the par-
ticular kinetic scheme and is bounded on the upper end
by regions where action potentials occur frequently
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Figure 2. Membrane patch models.A: Passive linearized model of
the membrane patch containing stochastic voltage-gated ion channels
(K+, Na+). C denotes the transverse membrane patch capacitance.G
is the sum of the steady-state conductances due to the active ion chan-
nels and the passive leak. The stochastic nature of the conductance
fluctuations are modeled as a Gaussian current noise sourceIn in
parallel with the membrane. The power spectrum ofIn is computed
from the Markov model of the channel kinetics.B: Quasi-active
linearized model that includes the small-signal phenomenological
impedances due to voltage-dependence of the K+ and Na+ conduc-
tances.rn, rm, andrh denote the phenomenological resistances due
to K+ activation, Na+ activation, and inactivation respectively;ln,
lm, andlh are the corresponding phenomenological inductances.In

is a Gaussian current noise source as in A.C: Stochastic model of the
patch used for Monte Carlo simulations.gK andgNa are stochastic
ionic conductances with kinetics as in Fig. 1.EL , EK , andENa de-
note the reversal potentials corresponding to the leak, K+ and Na+
conductances, respectively.

(more than once per second in these simulations). It
may also be bounded, on either upper or lower ends,
by regions where no stable steady-state solution of the
kinetic equations is possible. We measured subthresh-
old voltage noise only for stable holding voltages.

2.2. Linearized Approximations

Assuming that the magnitude of the voltage fluctua-
tions is small and that the membrane voltage fluctu-

Figure 3. Results of a Monte Carlo simulation. Monte Carlo simu-
lation of a 1000µm2 membrane patch with stochastic Na+ and
deterministic K+ channels with MJHS kinetics for illustration pur-
poses only. Bottom record shows the number of open Na+ channels
as a function of time. Top trace shows the corresponding fluctuations
of the membrane voltage. Holding current is injected to produce an
average voltage of−65 mV.

ates around its steady-state value, the kinetic equations
can be linearized around their steady-state values (see
Appendix B for details). In the simplest form of lin-
earization, one models the patch as an RC circuit, as
shown in Fig. 2A. The effect of the channel fluctuations
is modeled as current noiseIn in parallel with the RC
circuit. The power spectral density ofIn can be derived
in terms of the channel kinetics (Appendix A) (Stevens,
1972; DeFelice, 1981; Colquhoun and Hawkes, 1982).
As per Koch (1984), we refer to this model as thepas-
sive linearized model.

If we include the voltage dependence of the ionic
conductances to first order, we get the equivalent cir-
cuit in Fig. 2B.ri andl i are small-signal phenomeno-
logical impedances that arise due to the dependence
of the activation and inactivation probabilities on the
membrane voltage and their first-order kinetics. As be-
fore, In models the effect of the channel fluctuations
around the steady-state. The details of the passive and
the quasi-active linearization procedures are derived in
Appendix B. Figure 2B shows the equivalent circuit of
the patch given by the parallel combination of a capaci-
tanceC, a (physical) conductanceG = go

K +go
Na+gL ,

three (phenomenological) series RL branches corre-
sponding to K+ activation, Na+ activation, and Na+

inactivation. The current noiseIn is the same as before.
To verify the validity of these linearized approxima-

tions, we compare them to Monte Carlo simulations of
finite-state Markov kinetic schemes (Fig. 1) embedded
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in isopotential membrane patches. These simulations
represent fully the nonlinearities present in the kinetic
scheme and allow us to compare the range of validity
of the linearized, perturbative approximations for the
two kinetic schemes. We believe that these approaches
can be used generally to study kinetic schemes that can
be described in terms of finite-state Markov models.

3. Results

Our goals in this research were to characterize and con-
trast the subthreshold noise predicted by two standard
kinetic schemes for sodium and potassium ion chan-
nels and to then examine how accurately linearized
quasi-active approximations to these schemes account
for the noise. In the following sections we character-
ize the subthreshold noise by computing the variance,
power spectral densities (PSDs), and distributions of
voltage noise for the HH and MJHS kinetic schemes
embedded in a 1000µm2 patch of membrane. We also
compute the change in noise magnitude predicted by
these kinetic schemes when the patch area and tempera-
ture are varied. For each of these characterizations, we
determine how well linearized approximations predict
the noise characteristics. In the last section, to illus-
trate the application of these approximations, we use
the quasi-active linearized approximation of Na+ and
K+ channel kinetics in a basic cylindrical model of
a weakly active dendrite to compute the efficacy of
information transfer along the dendrite.

3.1. Noise Magnitude

Figure 3 shows the transmembrane voltage and the
number of open sodium channels during a stochastic
simulation of ion channels in a patch of membrane. At
−70 mV, only one to two Na+ channels are open at
any one time for the MJHS kinetic scheme. For the
HH scheme atVrest= −65 mV, five channels are open
on average. Figure 4 shows the standard deviation of
voltage noise predicted for the membrane patch using
the HH and MJHS kinetic schemes. The HH scheme is
strongly excitable, and its threshold for firing an action
potential is only 2.5 mV above the resting membrane
potential (−65 mV); consequently, we examine only
the subthreshold behavior below−62.5 mV. For both
kinetic schemes, noise is nearly doubled as the trans-
membrane voltage is depolarized from rest by 2.5 mV.

The underlying cause of this increase is the increas-
ing probability that ion channels will spontaneously

open. In the quasi-active linear model, this is reflected
by a tuned LC circuit with a phenomenological in-
ductance that is an increasing function of membrane
voltage. Figure 4 shows individual ionic contributions
to total voltage noise for the HH and MJHS kinetic
schemes. These contributions were computed using a
deterministic noise-free model of the channel not un-
der consideration. The variances due to each channel
add, so the standard deviation of the voltage noise with
both noisy channels present is less than the sum of the
standard deviations with each noisy channel separately.
For both kinetic schemes, potassium channel noise is
the dominant noise source.

For the MJHS kinetic scheme, noise continues to in-
crease as the voltage is depolarized to−50 mV, for the
reason given above. Above−50 mV, there is a decrease
in voltage noise with further depolarization. This de-
crease is caused by the increasing membrane conduc-
tance, which reflects the large percentage of channels
that are open in the steady state. The inflection in the
contribution of potassium channel noise between−40
and−30 mV is due to the rate of change of the sodium
activation variable as a function of voltage; this change
causes the membrane to act as tuned bandpass filter,
which amplifies potassium channel noise.

For both kinetic schemes, comparison of the results
from the Monte Carlo simulations and quasi-active lin-
earized approximations shows excellent agreement—
to within 0.1 mV over all voltage ranges studied. In
general, agreement with the quasi-active linear approx-
imation will be good when noise fluctuations are small
enough so that the linearization of the kinetic func-
tions remains accurate. For example, for the K+ chan-
nel, the linearizationn∞(Vo

m + δVm) ≈ n∞(Vo
m) +

dn∞/dVm δVm is valid so long as|δVm| < 2 mV. The
results in Section 3.4 show cases where this approxima-
tion fails to be as accurate. The passive linear approx-
imation is much less accurate once the voltage fluctu-
ations become larger than 0.5 mV.

3.2. Power Spectral Densities

Figure 5 shows the power spectral densities of voltage
noise for the HH and MJHS kinetic schemes. The over-
all trends in the magnitude of the PSDs are reflected
in the noise variances and were discussed above. The
increasing value of the phenomenological inductance
created by sodium channel activation shows itself in the
PSDs for both kinetic schemes. For the MJHS scheme,
the corner of the PSD for−40 mV is much sharper
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Figure 4. Comparison of subthreshold voltage noise magnitudes.A: Standard deviation,σV , of voltage fluctuations in a 1000µm2 patch
with MJHS kinetics as function of the steady-state voltage,Vo

m (current clamp mode). Circles: results of the Markov simulations; broken line:
prediction of the passive linearized model; solid line: prediction of the quasi-active linearized model.B: σV of voltage noise for the HH kinetic
scheme; note different voltage scale; symbols as in A.C: Individual contribution toσV from the K+ and Na+ noise sources for the MJHS kinetic
scheme.D: As in C for the HH kinetic scheme.

than the corners for−70 and−90 mV; this is caused
by an LC circuit of phenomenological reactances that
has a resonant frequency near 80 Hz. This tuned circuit
of phenomenological reactances is even more evident
in the PSD for the HH kinetic scheme. The PSD for
−62.5 mV has a pronounced peak at 90 Hz, as mea-
sured by Mauro et al. (1970).

3.3. Amplitude Distributions

Figure 6 shows the distributions of voltage noise for
the HH kinetic scheme at two resting membrane po-
tentials. At both voltages, the distribution of noise in a
1000µm2 patch is Gaussian when the noise magnitude

is 0.1 mV or larger. Similar results are obtained for the
MJHS kinetic scheme. For more hyperpolarized volt-
ages the noise magnitude is less than 0.1 mV, the shape
of the distribution is less regular, and it is difficult to
interpret in light of the limited accuracy of numerical
simulations. The magnitude is so small at this point,
however, that the exact shape of the distribution
will have little or no effect on neural information
processing.

3.4. Dependence on Patch Area

In this article, we have focused on comparing noise
in two standard kinetic schemes that have been used
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Figure 5. Comparison of voltage power spectral densities.A: Volt-
age power spectral densities for a 1000µm2 patch with MJHS kinet-
ics at different steady-state voltages. Circles indicate power spectral
density estimates from simulations and the solid curves correspond
to expressions for the quasi-active linearized model. The power spec-
tral density is estimated by averaging (n= 60) the spectrograms
(Hanning window, fc= 10 kHz) obtained from 8.2 second traces.
B: Voltage PSDs for the HH kinetic scheme; symbols as in part A.

in the literature. Each scheme is characterized by a
number of kinetic parameters, such as voltages of half
activation and the power of the activation and inacti-
vation variables in the expressions for channel current
(Eq. (1)); variation of these parameters changes the ki-
netic scheme from the standard model. Nonetheless, we
wanted to determine how the results presented above
vary with changes in several fundamental properties of
the membrane patch, such as patch area and tempera-
ture.

Figure 7 shows the membrane voltage noise for the
MJHS kinetic scheme varies as a function of patch area.

This figure shows that membrane noise decreases with
increasing patch area because the total membrane cur-
rent represents the average behavior of a larger num-
ber of channels. In terms of linearized membrane
patch models, the variance of the channel current noise
increases linearly with the number of channels and
the patch area, thusσ 2

I ∝ A. The impedance of the
membrane patch,Z is inversely proportional to area,
Z ∝ A−1. SinceV = ZI, σ 2

V = |Z|2 σ 2
I ∝ A−1. Thus,

as patch area decreases, the variance of the voltage
noise becomes larger.

The quasi-active linearized approximation is accu-
rate within 8% down to a patch area of 100µm2, where
the deviation between simulation and theory becomes
substantial. For the reasons discussed in Section 3.1,
when noise fluctuations become larger than 2 mV,
the quasi-active linearized approximation becomes less
accurate.

3.5. Dependence on Temperature

Figure 8 shows the membrane voltage noise predicted
by the MJHS and HH kinetic schemes as a function
of temperature. Because the kinetic rate functions are
scaled by the factorQ1T/10

10 , increasing the temperature
decreases the time constants for both ion channels and
effectively speeds up ion channel transitions. Conse-
quently, the corner frequency of the current noise PSD
increases to a higher frequency. Since the membrane
capacitance and leak resistance act as a low-pass fil-
ter, less noise power is passed by this filter, resulting in
lower membrane voltage noise. Figure 8 shows this de-
crease in noise magnitude as a function of temperature
for both kinetic schemes.

3.6. Application to Dendritic Cables

We found that the quasi-active approximation is valid
for membrane geometries other a patch by carrying out
Monte Carlo simulations for a finite linear cable and
comparing them to the corresponding linearized ap-
proximations. The quasi-active approximation is valid
over a larger steady-state voltage range in comparison
to the passive approximation (data not shown). Previ-
ous work in our laboratory (Manwani and Koch, 1999a,
1999b) used the passive linearized approximation to
compute how well the subthreshold electrotonic sig-
nal represented by the activation of a single synapse
could be detected at a distance along a dendrite con-
taining noise sources, such as a low density of K+ and
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Figure 6. Amplitude distributions of voltage noise.A: Histograms of subthreshold voltage fluctuations due to channel noise in a 1000µm2

membrane patch with MJHS kinetics for two different holding voltages (Vo
m = −70 mV andVo

m = −40 mV). Bars indicate results from
simulations (n= 49,1520); solid curves show a normal distribution with the corresponding mean and standard deviation.B: Amplitude
histograms for a 1000µm2 patch with HH kinetics atVo

m = −65 mV and−61 mV.

Figure 7. Dependence on area.σV as a function of the patch area
A for MJHS (Vo

m = −60 mV) and HH (Vo
m = −65 mV) kinet-

ics. Circles indicate the results from the Monte Carlo simulations,
whereas the solid curve indicates the 1/

√
A behavior expected from

the linearized, quasi-active model.

Na+ channels as well as synapses activated by ran-
dom background activity. We believe that the use of
the quasi-active approximation in the context of this
formalism will lead to better estimates of the efficacy
of weakly active dendritic structures at transmitting in-
formation. We are currently applying the quasi-active
approximation to estimate noise in realistic dendritic
morphologies.

Figure 8. Dependence on temperature.σV as a function of temper-
ature for MJHS (Vo

m=−60 mV) and HH (Vo
m=−65 mV) kinetics

for a 1000µm2 patch. Circles denote simulations and the solid curves
represent the results of the quasi-active linearized model. Simulations
for Figs. 2 to 7 were carried out atT = 27◦C.

4. Discussion

The long-term goal of our research program is to
understand how the nervous system processes infor-
mation using very noisy and unreliable components,
such as individual neurons. Our approach is reduc-
tionist: we use a combination of methods from three
disciplines—information/signal detection theory,
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compartmental modeling, and membrane biophysics—
to analyze the noise sources in component parts of the
neuron (such as the synapse, dendrite, and soma) and
to determine their impact on the ability of the neu-
ron to transmit and process information (Manwani and
Koch, 1998, 1999a, 1999b, 1999c).

In the neuronal dendrite, soma, and axon hillock,
the stochastic operation of individual ion channels rep-
resents a significant cellular source of noise. For ex-
ample, previous work has shown that stochastic fluc-
tuations of ion channels in a small patch of membrane
can affect the accuracy and reliability of spike tim-
ing (Schneidman et al., 1998). This random jitter in
spike timing, however, is a result of underlying fluc-
tuations in both the number of open channels and the
membrane voltage when the cell is depolarized near
threshold. The magnitude of these fluctuations is de-
termined by the number of ion channels, their conduc-
tance states, and the rate of transitions between these
states. These properties constitute a kinetic model for
the ion channels. In this article, we studied how the
underlying ion channel kinetic model determines the
subthreshold voltage fluctuations of an isopotential
patch of membrane. As an initial characterization, we
compared two kinetic schemes in common use, the
canonical Hodgkin-Huxley (HH) scheme for the squid
giant axon and the Mainen et al. (1995) (MJHS) scheme
for the dendrite of a neocortical pyramidal cell.

This objective differs from that of Strassberg and
Defelice (1993), which was to determine how rapidly
stochastic fluctuations in a Markov-chain model of
the Hodgkin-Huxley kinetics approached the average
value of the macroscopic current. The Markov-chain
model of the Hodgkin-Huxley kinetic scheme (and sim-
ilar kinetic schemes) can be represented by a master
equation for a stochastic automaton, as noted by Fox
and Lu (Fox and Lu, 1994; Fox, 1997). Under appro-
priate conditions on the system size (which can be in-
formally expressed as requiring large numbers of chan-
nels), this representation contracts to a Fokker-Planck
equation, which approximates the automaton as a set of
continuous partical differential equations over a finite
grid. The Fokker-Planck equation, under similar con-
ditions, can in turn be represented by a set of stochas-
tic differential equations (Langevin equations), where
the stochastic fluctuations are represented by additive
Gaussian white-noise terms. The linearized approxi-
mations examined in this article can be viewed as spe-
cific terms in these more general approximations. Our
objective was to determine how well the linearized

approximations predict noise magnitudes for practi-
cal use with several kinetic schemes; this question can
only be answered by empirical study, such as those
performed here (Fox and Lu, 1994; Fox, 1997). An
additional advantage of the linearized approximations
presented here is that the terms of the approximation
have electrical circuit analogs, which can help develop
an intuitive understanding of how changing the kinetic
scheme changes noise.

For both the HH and MJHS kinetic schemes, sub-
threshold voltage noise caused by ion channel fluctu-
ations increases rapidly as the membrane potential is
depolarized 2 to 10 mV from rest. This is significant
since noise of this magnitude could affect spike gen-
eration in two ways: noise may trigger spikes sponta-
neously if the cell is otherwise near threshold, or sub-
threshold noise may change the timing of spikes, even
if insufficient to cause spikes independently. Both of
these effects might prevent the neuron from accurately
integrating its inputs; in this case, ion channel noise
would interfere with the neuron acting as an integrator
of balanced excitation and inhibition, which has been
posited as a method of mean rate coding (Shadlen and
Newsome, 1998). This case also implies that the spike
output of the neuron more accurately represents vol-
leys of simultaneous input that rapidly depolarize the
cell to threshold. A further examination of this issue
requires the combination of the noise models described
here with a model spiking mechanism, an effort that is
presently underway in our laboratory.

In addition to these effects on spike timing, the ef-
fects of noise sources on computation and information
processing inside individual neurons are of interest.
Previous work in our laboratory has examined the ef-
fect of ion channel and synaptic noise on the accuracy
of signal detection and estimation in a patch of mem-
brane as well as in a simplified model of the dendrite
(Manwani and Koch, 1999a, 1999c). An important step
will be to extend these analyses to neuron models with
realistic geometries and channel densities. The simu-
lation of the complete Markov kinetic schemes used
here within each compartment of a large neuron model
will be computationally intense (more than 36 hours
on a 450 MHz Pentium II processor), and thus an im-
portant question is whether an equivalent linearized
model of channel kinetics is accurate enough to pre-
dict the effects of these noise sources on information
transmission and processing.

The results presented here demonstrate that sub-
threshold voltage fluctuations caused by stochastic
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sodium and potassium channels in the HH and MJHS
kinetic schemes can be well approximated by their
quasi-active linear equivalent circuits. The standard de-
viation of the noise fluctuations agrees within 8% in a
voltage range starting from near the potassium rever-
sal potential up to the threshold of neuronal firing in
the HH scheme or to−20 mV in the MJHS scheme.
Thus, over subthreshold voltage ranges, a quasi-active
linearized approximation is quite accurate. The pas-
sive linearized approximation fits the data less well,
particularly between−50 and−20 mV for the MJHS
kinetics.

Why is the quasi-active linear approximation so ac-
curate? As discussed in Section 3.4, this accuracy arises
because the membrane potential fluctuations due to
stochastic ion channels are generally smaller than 2 mV.
Over this small a voltage range, the curves represent-
ing channel activation and time constants can be ac-
curately represented by lines. When this condition no
longer obtains, for example, when the patch area is be-
low 200µm2, then the linear approximation becomes
less accurate.

These approximations are accurate for computing
subthreshold voltage noise, which is of interest in a va-
riety of places within the nervous system, such as in
nonspiking neurons in the retina or in neuronal com-
partments that do not initiate spiking. A limitation on
the applicability of these approximations is the that they
do not address spike timing and the initiation of action
potentials. To study this issue, the linearized approxi-
mations must be combined with more accurate models
of spike generation in other model compartments.

For the kinetic schemes examined here, the distri-
bution of the voltage noise also simplifies in a fash-
ion conducive to large-scale modeling. As shown in
Section 3.3, the distribution of voltage noise is nearly
Gaussian, particularly when the noise variance is high.
This distribution allows the efficient computation of the
effects of noise on information processing using closed
form solutions for detection thresholds and reconstruc-
tion error (Manwani and Koch, 1999a, 1999b).

Overall, the quasi-active linear approximation to
channel kinetics permits efficient evaluation of sub-
threshold voltage fluctuations for both the more ex-
citable HH kinetic scheme, which at 27◦C initiates a
spike only 2.5 mV above the resting potential, and the
less excitable MJHS scheme, which does not initiate
spikes at dendritic channel densities. This suggests that
the quasi-active linearized approximation may be used
to examine subthreshold noise in a variety of channel
kinetic schemes and for quantitatively assessing the

effects of biophysical noise sources on information
transfer in realistic neuron models.

Given these results, the accuracy of linear approx-
imations in representing subthreshold voltage fluctua-
tions in real neurons will be determined by the accu-
racy of the underlying kinetics models in representing
channel kinetics. The Hodgkin-Huxley kinetic scheme
successfully explains the generation of the action po-
tential but fails to explain other aspects of neural ex-
citability, such as spike-frequency adaptation, bursting,
and so on. Both the HH and MJHS kinetic schemes do
not model mechanisms, such as long-term (>1 sec)
changes in probability of channel transitions (Toib
et al., 1998; van den Berg and Rijnsburger, 1980; van
den Berg et al., 1975) and the interdependence of the
activation and inactivation gates of the sodium channel.
These effects could be incorporated into kinetic mod-
els using additional kinetic states; the effect on such
modifications on channel noise can then be explored
using the techniques applied in these studies.

Experimental measurement of noise in cortical pyra-
midal cells of the in-vitro cortical slice preparation is in
rough agreement with the predictions of these models
(Manwani et al., 1998). Dissection of the noise contri-
bution of different ionic channel types, as well as more
precise quantitative agreement between theory and ex-
periment, are ongoing efforts in our laboratories. The
data from in-vivo recordings of pyramidal cells in anes-
thetized cat suggest that synaptic noise may make a
larger contribution to voltage noise than previously de-
termined using in-vitro preparations (Pare et al., 1997,
1998; Destexhe and Pare, 1999). If synaptic noise is
dominant, then further modeling will need to incorpo-
rate both synaptic and ionic channel noise into real-
istic neuronal cellular geometries to develop a quan-
titative understanding of the relative effects of these
neuronal noise sources on information processing in
cortical pyramidal cells.

Appendix A. Derivation of Current
Noise Spectra

For ion channels modeled as finite-state Markov chains
(Fig. 1), it can be shown that under voltage clamp at
Vo

m, the autocovariance of the K+ current noise in an
isopotential membrane patch of areaA can be derived
as (DeFelice, 1981; Johnston and Wu, 1995)

CIK (t)= AηKγ
2
K

(
Vo

m− EK
)2

nN
∞
[
nN

0|1(t)− nN
∞
]
, (4)
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whereηK denotes the K+ channel density in the patch
andγK denotes the open conductance of a single K+

channel.EK , N, and n∞ are defined in Section 2.
n0|1(t) is the conditional probability for a potassium
activation subunit to be in the open state at timet , given
that it started in a closed state att = 0 and is given by
(Johnston and Wu, 1995)

n0|1(t) =
[
n∞ + (1− n∞)e−t/τn

]
. (5)

On expanding Eq. (4), we obtain

CIK (t)= AηKγ
2
K

(
Vo

m − EK
)2

nN
∞

×
N∑

i=1

(
N

i

)
(1− n∞)i nN−i

∞ e−i |τ |τn . (6)

By the Wiener-Khinchine theorem (Papoulis, 1991),
the power spectral density of the K+ current noise,
SIK ( f ), is given by the Fourier transform ofCIK (t):

SIK ( f )= AηKγ
2
K

(
Vo

m − EK
)2

nN
∞

×
N∑

i=1

(
N

i

)
(1− n∞)i nN−i

∞
2 τn/ i

1+ (2π f τn/ i )2
.

(7)

Thus, the K+ current noise spectrum can be ex-
pressed as a sum ofN Lorentzian functions with cut-
off frequenciesfi = i /(2πτn), i ={1, . . . , N}. When
n∞¿ 1, SIK ( f ) is well approximated by a single
Lorentzian with cut-off frequencyN/2πτn.

Similarly, the autocovariance of Na+ current noise
can be written as (DeFelice, 1981)

CINa(t)= AηNaγ
2
Na

(
Vo

m − ENa
)2

×mM
∞hH
∞
[
mM

0|1(t) hH
0|1(t)−mM

∞hH
∞
]
, (8)

where

m0|1(t) = m∞ + (1−m∞)e−t/τm (9)

h0|1(t) = h∞ + (1− h∞)e−t/τh . (10)

For the HH and MJHS kinetic schemes (M = 3,
H = 1), SINa( f ) can be expressed as a sum of seven
Lorentzians with cut-off frequencies corresponding to
the time constantsτm, τh, 2τm, 3τm, τm+ τh, 2τm+ τh,
and 3τm + τh.

Appendix B. Linearization of Active Membranes

Consider an isopotential membrane patch of areaA
containing voltage-gated K+ and Na+ channels as
well as leak channels. The dynamics of the membrane
potential are given by

−C
dVm

dt
= IK + INa+ I L + I inj, (11)

whereC is the capacitance of the patch andIK , INa,
and I L are transmembrane currents given by

IK = gK (Vm − EK ), (12)

INa = gNa (Vm − ENa), (13)

I L = gL(Vm − EL), (14)

wheregi denotes the conductance andEi denotes the
reversal potential of the corresponding membrane cur-
rent Ii . I inj denotes the current injected into the patch
with the convention that inward current is negative.

B.1. Quasi-Active Linearization

The current through a given membrane conductance
can be written in general as

Ii = gi (Vm − Ei ). (15)

To first order, a deterministic deviation inIi (denoted
by δ Ii ) around the steady-state membrane voltageVo

m
can be expressed in terms of the corresponding deter-
ministic deviations inVm andgi as

δ Ii = go
i δVm + δgi

(
Vo

m − Ei
)
, (16)

wherego
i denotes the steady-state conductance atVo

m,
δ Ii = Ii (Vm) − I (Vo

m), δVm = Vm − Vo
m, andδgi =

gi (Vm)− go
i . Vo

m can be obtained by solving for dVm/

dt= 0 (Eqs. (11) to (14))

Vo
m =

go
K EK + go

NaENa+ gL EL − I inj

go
K + go

Na+ gL
. (17)

The conductance of the leak channels is constant; thus,
δgL = 0. However, for the active K+ and Na+ ion chan-
nels,δgK andδgNa are functions ofδVm. It has been
shown that to first order, the voltage and time de-
pendence of active ion channels can be modeled by
phenomenological impedances (Mauro et al., 1970;
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Koch, 1984). For the sake for completeness, we de-
rive the phenomenological impedances corresponding
to the K+ and Na+ conductances here.

Consider a first-order activation or inactivation vari-
able (denoted generically byn):

dn

dt
= n∞ − n

τn
. (18)

Perturbing this equation to first-order yields,

d(δn)

dt
= −δn

τn
+ δn∞

τn
− (n∞ − n)

τ 2
n

δτn. (19)

Since the deviations are assumed to take place around
the steady state, the third term in the above expression
is zero. Thus,

d(δn)

dt
+ δn
τn
= δn∞

τn
. (20)

Since n∞ is a function of Vm alone, δn∞≈ dn∞/
dVm δVm, which gives

d(δn)

dt
+ δn
τn
= n′∞
τn

δVm, (21)

where′ denotes a derivative with respect toVm evalu-
ated at the steady-state voltageVo

m. The above equation
can be rewritten as

δVm = τn

n′∞

d(δn)

dt
+ δn

n′∞
. (22)

Using Laplace transforms we can rewrite Eq. (22) as

δVm(s) = δn(s)
[
τn

n′∞
s+ 1

n′∞

]
, (23)

whereδVm(s) andδn(s) denote the Laplace transforms
of δVm and δn, respectively. Thus, ifδn is consid-
ered analogous to a current, Eq. (23) is identical to
that of an electric circuit with a resistancer of mag-
nitude 1/n′∞ in series with an inductancel = τn/n′∞.
The time constant of this series RL circuit is equal
to l/r = τn. Note that these quantities are evaluated
at Vo

m. Since these impedances do not represent phys-
ically realistic components and are used, instead, to
describe the voltage- and time-dependence of active
ionic conductances, they are called phenomenologi-
cal impedances (Sabah and Leibovic, 1969; Mauro
et al., 1970; Koch, 1984, 1999).

For the noninactivating K+ conductance

gK = AηKγK nN, (24)

δgK = NηKγK nN−1
∞ δn and substituting forδn derived

from Eq. (23) in Eq. (16) (after taking Laplace trans-
forms on both sides), we obtain

δ IK (s) =
[

go
K +

1

rn + sln

]
δVm(s), (25)

where

go
K = AηKγK nN

∞, (26)

and the phenomenological impedances corresponding
to K+ activation (rn, ln) are given by

rn = 1

NAηK nN−1∞ γK
(
Vo

m − EK
)
n′∞

,

ln = τn rn.

(27)

Notice that asVo
m→ EK , rn→∞ and ln→∞. Thus

at its reversal potential, K+ channel behaves as a pure
conductancego

K . Similarly, for the inactivating Na+

current

gNa = AηNaγNam
MhH , (28)

δgNa can be written as

δgNa = AηNaγNam
M−1hH−1

× [Hhδm+ Mmδh]. (29)

Substituting forδgNa in Eq. (16), it can be observed
that the equivalent electrical circuit for an inactivat-
ing conductance has two RL branches in parallel with
a conductancego

Na. The expressions for the different
components are given by the following expressions:

go
Na= AηNaγNam

M
∞hH
∞,

rm= 1

MAηNam
M−1∞ hH∞γNa

(
Vo

m − ENa
)
m′∞

,

lm= τmrm, (30)

rh= 1

HAηNamM∞hH−1∞ γNa
(
Vo

m − ENa
)
h′∞

,

lh= τhrh.
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Notice that forVo
m< ENa, rm< 0, lm< 0. Thus, for

physiological values of the membrane voltage, the ac-
tivation component corresponds to a negative resis-
tance and a negative inductance. This is to be expected
since the activation variablem is responsible for the
positive-feedback characterizing the fast rising phase
of an action potential. Sinceh is an inactivation vari-
able that decreases as the membrane potential is in-
creased,h′∞ < 0 implying that forVo

m < ENa, rh > 0,
lh > 0. The electric circuit corresponding to this lin-
earization is shown in Fig. 2B. The complex admittance
of the circuit is

Y( f )=G+ j 2π fC+ 1

rn + j 2π f ln

+ 1

rm + j 2π f lm
+ 1

rh + j 2π f lh
, (31)

whereG = go
K +go

Na+gL denote the total steady-state
patch conductance at the voltageVo

m.
So far we have considered the system to be determin-

istic; incorporating the voltage-dependence of the ionic
conductances we derived the linearized equivalent cir-
cuit for the membrane patch. The effect of stochastic
conductance fluctuations of the active ion channels can
be modeled by including a noise currentIn

In = IK + INa

= g̃K
(
EK − Vo

m

)+ g̃Na
(
ENa− Vo

m

)
(32)

in parallel with the admittanceY. g̃K and g̃Na denote
the stochastic components of the conductance devia-
tions around their respective steady-state values (the
resulting voltage fluctuations are denoted byṼ). It is
straightforward to derive the power spectral density
of Ṽ (denoted bySV ( f )) for this linear system as in
(Papoulis, 1991)

SV ( f ) = SIn( f )

|Y( f )|2 , (33)

whereSIn( f ) is the power spectrum ofIn. Since the
noise sources are independent,

SIn( f ) = SIK ( f )+ SINa( f ). (34)

The variance of the voltage fluctuationsσ 2
V can be writ-

ten as

σ 2
V =

∫ ∞
−∞

d f
SIn( f )

|Y( f )|2 . (35)

Using the expressions for the power spectral densities
of the current noise due to channel fluctuations under
voltage-clamp (SIK andSINa), derived in Appendix A,
the magnitude and spectral density of the resulting sub-
threshold voltage noise can be computed.

B.2. Passive Linearization

For the passive linearized approximation (Koch, 1984),
we neglect the voltage-dependent dynamics of the ionic
conductances. This is equivalent to ignoring the sec-
ond term on the right side of Eq. (16). Thus, the ionic
conductances and the membrane voltage are expressed
as

gK = go
K + g̃K ,

gNa = go
Na+ g̃Na, (36)

Vm = Vo
m + Ṽ .

Let g̃= g̃K + g̃Na denote the sum of the conductance
fluctuations around steady state. Wheng̃¿G, Eq. (11)
can be simplified as

τ
dṼ

dt
+ Ṽ = In

G
, (37)

whereτ = C/G is the passive membrane time con-
stant. Refer to Manwani and Koch (1999a) for further
details. Thus, under passive linearization, the patch is
modeled as an RC circuit given by the parallel combina-
tion of the membrane capacitanceC and a conductance
G equal to the sum of the steady-state values of the ionic
and leak conductances. As before, the effect of noise
due to ionic channel conductance fluctuations can be
modeled as a current noise sourceIn in parallel with
this RC circuit. The equivalent circuit corresponding to
this approximation is shown in Fig. 2A. The complex
admittance of this circuit is

Y( f ) = G+ j 2π f C. (38)

For passive linearization,SV ( f ) (Eq. (33)) can be sim-
plified as

SV ( f ) = SIn( f )

G2 [ 1+ (2π f τ)2 ]
. (39)
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The variance of the voltage fluctuationsσ 2
V can be writ-

ten as

σ 2
V =

1

G2

∫ ∞
−∞

d f
SIn( f )

1+ (2π f τ)2
. (40)
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