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We investigate quantum transport through a quantum dot connected to source and drain leads and side coupled

to a topological superconducting nanowire (Kitaev chain) sustaining Majorana end modes. Using a recursive

Green’s-function approach, we determine the local density of states of the system and find that the end Majorana

mode of the wire leaks into the dot, thus, emerging as a unique dot level pinned to the Fermi energy εF of the

leads. Surprisingly, this resonance pinning, resembling, in this sense, a “Kondo resonance,” occurs even when the

gate-controlled dot level εdot(Vg) is far above or far below εF . The calculated conductance G of the dot exhibits an

unambiguous signature for the Majorana end mode of the wire: In essence, an off-resonance dot [εdot(Vg) �= εF ],

which should have G = 0, shows, instead, a conductance e2/2h over a wide range of Vg due to this pinned dot

mode. Interestingly, this pinning effect only occurs when the dot level is coupled to a Majorana mode; ordinary

fermionic modes (e.g., disorder) in the wire simply split and broaden (if a continuum) the dot level. We discuss

experimental scenarios to probe Majorana modes in wires via these leaked/pinned dot modes.

DOI: 10.1103/PhysRevB.89.165314 PACS number(s): 71.10.Pm, 03.67.Lx, 74.25.F−, 74.45.+c

I. INTRODUCTION

Zero-bias anomalies in transport properties are one of the

most intriguing features of the low-temperature physics in

nanostructures. The canonical example is the zero-bias peak

in the conductance of interacting quantum dots (QDs) coupled

to metallic contacts, which is a clear manifestation of the

Kondo effect [1,2] arising from the dynamical screening of

the unpaired electron spin in the quantum dot by the itinerant

electrons of the leads. Another example is the Andreev

bound state arising from electron and hole scatterings at a

normal-superconductor interface [3].

Recently, a new type of zero-bias anomaly has emerged

in connection with the appearance of Majorana bound states

in Zeeman-split nanowires with spin-orbit interaction in close

proximity to an s-wave superconductor [4,5]. It is theoretically

well established that these “topological” superconducting

wires sustain chargeless zero-energy end states with peculiar

features, such as braiding statistics, possibly relevant for topo-

logical quantum computation [6,7]. Experimentally, however,

there is still controversy as to what the observed zero-bias

peak really means: Kondo effect, Andreev bound states, and

disorder effects are some of the possibilities [8–15]. Franz

summarizes and discusses these issues in Ref. [16].

Here we propose a direct way to probe the Majorana end

mode arising in a topological superconducting nanowire by

measuring the two-terminal conductance G through a dot

side coupled to the wire, Figs. 1(a) and 1(b). Using an exact

recursive Green’s-function approach, we calculate the LDOS

of the dot and wire and show that the Majorana end mode of

the wire leaks into the dot [17], thus, giving rise to a Majorana

resonance in the dot, Figs. 1(c) and 1(d). Surprisingly, we find

that this dot-Majorana mode is pinned to the Fermi level εF

of the leads even when the gate-controlled dot level εdot(Vg) is

far off-resonance εdot(Vg) �= εF .
Based on the results above, we suggest three experimental

ways for probing the Majorana end mode in the wire via the
leaked/pinned Majorana mode in the dot: (i) with the dot kept

off-resonance [εdot(Vg) �= εF ], one can measure G vs t0, the
wire-dot coupling t0 can be controlled by an external gate to
see the emergence of the e2/2h peak in G as the Majorana
end mode leaks into the dot, Fig. 1(e) (cf. ρdot and ρ1, see also
Fig. 2); (ii) alternatively, one can measure G vs Vg over a range
in which εdot(Vg) runs from far below to far above the Fermi
level of the leads where we find G to be essentially a plateau at
e2/2h, Figs. 1(f) and 1(g); (iii) yet another possibility is to drive
the wire through a nontopological/topological phase transition,
e.g., electrically via the spin-orbit coupling, temperature, or the
chemical potential μ of the wire (Fig. 3), while measuring
the conductance of the dot; the presence/absence of the
Majorana end mode in the wire would drastically alter the
conductance of the dot, see circles (black) and stars (green)
in Fig. 1(g).

The above pinning of the dot-Majorana resonance at εF

is similar to that of the Kondo resonance [18]. However,
the Kondo resonance only occurs for εdot(Vg) below εF [cf.
Figs. 1(h) and 1(i)] and yields a conductance peak at e2/h

(per spin) instead. Even though there is no Kondo effect in
our system (spinless dot), we conjecture that this symmetry of
the dot-Majorana resonance with respect to εdot(Vg) above and
below εF could be used to distinguish Majorana-related peaks
from those arising from the usual Kondo effect whenever this
effect is relevant [19]. Moreover, this Majorana resonance in
the dot follows quite simply by viewing the dot as an additional
site (although with no pairing gap) of the Kitaev chain [20,21].
We emphasize that this unique pinning occurs only when the
dot is coupled to a Majorana mode—a half-fermion state.
When the dot is coupled to usual fermionic modes (bound,
e.g., due to disorder, or not) in the wire, its energy level will
simply split and will broaden as we discuss later on. A spin-full
version of our model with a Hubbard U interaction in the dot
yields similar results [22].

The paper is organized as follows. In Secs. II and III,

we present the Hamiltonian that describes our system and

introduce the Majorana-Green’s functions, respectively, that

we use to calculate the relevant physical quantities. In Sec. IV,
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FIG. 1. (Color online) (a) Illustration of (left) a QD side coupled

to a Kitaev wire and to two metallic leads and (right) the Majorana

representation of the dot and the Kitaev chain. (b) “Bulk” [dashed

(red) line] and edge [solid (black) line] chain local density of states

(LDOS) for t = 10 meV, μ = 0, � = 2 meV, ŴL = 40 μeV, and

t0 = 0. (c) LDOS of the dot ρdot and (d) of the first site of the Kitaev

chain ρ1 for the same set of parameters as in (b) and various values of

t0. For clarity, the curves in (c) and (d) are offset along the y axis. (e)

ρ̃dot = ρdot(0)/ρmax
dot and ρ̃1 = ρdot(0)/ρmax

1 at ε = 0 as functions of t0
in which ρmax

dot,1 = max[ρdot,1(ε = 0,t0)]. (f) Color map of the LDOS

of the dot vs ε and eVg . (g) Conductance G vs eVg for the same set

of parameters as in (b) for various values of μ. For comparison, we

show the case � = μ = 0 [stars (green)]. In (h) and (i), we sketch

the LDOS of the dot for the Majorana and Kondo cases, respectively.

we present our numerical results and discussions. Finally, we

summarize our main findings in Sec. V.

II. MODEL HAMILTONIAN

We consider a single-level spinless quantum dot coupled

to two metallic leads and to a Kitaev chain [22], Fig. 1(a). To

realize a single-level dot (spinless dot regime), we consider

a dot with gate-controlled Zeeman-split levels ε
↓
dot(Vg) =

−eVg (e > 0) and ε
↑
dot(Vg) = ε

↓
dot(Vg) + VZ with VZ as the

Zeeman energy. By varying Vg such that |eVg| < VZ/2, we

can maintain the dot either empty [i.e., both spin-split levels

above the Fermi level εF (taken as zero) of the leads] or singly

occupied [i.e., only one spin-split dot level, e.g., ε
↓
dot(Vg) below

εF ]. This is the relevant spinless regime in our setup [23].

Typically [e.g., Fig. 1(g)], we vary |eVg| < 10ŴL = 0.4 meV,

assuming a realistic Zeeman energy to attain topological

superconductivity, i.e., VZ ≃ 0.8 meV (see Rainis et al. [26]).

This picture also holds true in the presence of a Hubbard

U term in the dot [22]). In this spinless regime, our Hamil-

tonian is H = Hchain + Hdot + Hdot-chain + Hleads + Hdot-leads,

with Hchain describing the chain,

Hchain = −μ

N
∑

j=1

c
†
jcj−

1

2

N−1
∑

j=1

[tc
†
jcj+1 + �eiφcjcj+1 + H.c.],

(1)

N is the number of chain sites, c
†
j (cj ) creates (annihilates) a

spinless electron in the j th site, and φ is an arbitrary phase.

The parameters t and � denote the intersite hopping and

the superconductor pairing amplitude of the Kitaev model,

respectively; its chemical potential is μ.

The single-level dot Hamiltonian Hdot is

Hdot = (εdot − εF )c
†
0c0, (2)

where c
†
0 (c0) creates (annihilates) a spinless electron in the dot

with energy εdot = −eVg and Hleads denotes the free-electron

source (S) and drain (D) leads,

Hleads =
∑

k,ℓ=S,D

(εℓ,k − εF )c
†
ℓ,kcℓ,k, (3)

where c
†
ℓ,k (cℓ,k) creates (annihilates) a spinless electron with

wave vector k in the leads, whose Fermi level is εF . The

couplings between the QD and the first site of the chain and

between the QD and the leads are, respectively,

Hdot-chain = t0(c
†
0c1 + c

†
1c0), (4)

and

Hdot-leads =
∑

k,ℓ=S,D

(Vℓ,kc
†
0cℓ,k + H.c.). (5)

The quantity Vℓ,k is the tunneling between the QD and the

source and drain leads, and t0 is the hopping amplitude between

the QD and the Kitaev chain.

III. RECURSIVE GREEN’S FUNCTION AND LDOS

Our model and approach are similar to those of

Ref. [27] and go beyond low-energy effective Hamiltonians

[28]. Let us introduce the Majorana fermions γαj , α = A,B,

via cj = e−iφ/2(γBj + iγAj )/2 and c
†
j = eiφ/2(γBj − iγAj )/2,

j = 0 · · · N (j = 0 is the dot) [20,29]. The γαj ’s obey

[γαj ,γα′j ′ ]+ = 2 δαα′δjj ′ and γ
†
αj = γαj . We now define the

Majorana-retarded Green’s function,

Mαi,βj (ε) = −i

∫ ∞

−∞
�(τ )〈[γαi(τ ),γβj (0)]+〉eiε(τ )dτ, (6)

where 〈· · · 〉 denotes either a thermodynamic average or a

ground-state expectation value at zero temperature, �(x) is

165314-2
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the Heaviside function, and ε → ε + iη with η → 0+. We can

express the electron Green’s function as

Gij (ε) = 1
4
[MAi,Aj + MBi,Bj (ε) + i(MAi,Bj − MBi,Aj )], (7)

and can determine the electronic LDOS ρj (ε) = (−1/π )

Im Gjj (ε),

ρj (ε) = 1
4

[

Aj (ε) + Bj (ε) − 1
π

Re[MAj,Bj (ε) − MBj,Aj (ε)]
]

.

(8)

In (8), we have introduced the Majorana LDOS Aj (ε) =
(−1/π )Im MAj,Aj (ε) and Bj (ε) = (−1/π )Im MBj,Bj (ε).

Using the equation of motion for the Green’s functions, we

obtain a set of coupled matrix equations, e.g., for j = 0 (dot),

M00(ε) = m̄00(ε) + m̄00(ε)W
†
0M10(ε), (9)

where Mij (ε) is [see Eq. (6)]

Mij (ε) =
[

MAi,Aj (ε) MAi,Bj (ε)

MBi,Aj (ε) MBi,Bj (ε)

]

, (10)

m̄jj (ε) = [I − mjj (ε)Vj ]−1mjj (ε) and mjj (ε) = 2[ε − �0

(ε)δ0,j ]−1I. Here �0(ε) ≡ �dot = 2
∑

k |Ṽk|2[(ε − ε̃k)−1 +
(ε + ε̃k)−1] is the dot level broadening (leads) with ε̃k =
εk − εF , VSk = VDk = Ṽk/

√
2, and I as the 2 × 2 identity

matrix. Finally,

Vj =
1

2

(

0 iμj

−iμj 0

)

and Wj =
1

2

[

0 iW
(+)
j

iW
(−)
j 0

]

,

(11)

with μ0 = eVg − 2
∑

k |Ṽk|2[(ε − ε̃k)−1 − (ε + ε̃k)−1], W
(±)
0

= ±t0, and μj = μ and W
(±)
j = (� ± t)/2 for all j > 0. The

quantity W
(±)
j is an effective coupling matrix, see Fig. 1(a).

In the wideband limit and assuming a constant Ṽk =
√

2Ṽ ,

we obtain �dot(ε) = −2iŴL and μ0 = eVg = −εdot with the

broadening ŴL = 2π |Ṽ |2ρL and ρL = ρ(εF ) being the DOS

of the leads. Similar to (9), we find, for the first site (j = 1) of

the chain,

M11(ε) = m̃11(ε) + m̃11(ε)W
†
1M21(ε), (12)

with m̃11(ε) = [I − m̄11(ε)W0m̄00(ε)W
†
0]−1m̄11(ε). We can

then recursively obtain the Majorana matrix at any site.

IV. NUMERICAL RESULTS

Following realistic simulations [26,30] and experiments [8],

here we assume t = 10 meV, the dot level broadening ŴL =
4.0 × 10−3t = 40 μeV and set εF = 0 (we also set φ = 0). In

Fig. 1(b), we show the LDOS as a function of the energy ε for

a site in the middle and on the edge of the chain ρbulk [dashed

(red) curve] and ρ1 = ρedge [solid (black) curve], respectively,

for t0 = 0 (decoupled chain) and � = 0.2t = 2 meV. Note

that ρbulk is fully gapped, whereas, ρ1 = ρedge exhibits a

midgap zero-energy peak, corresponding to the end Majorana

state of the chain.

Figures 1(c) and 1(d) show the LDOS of the dot ρdot and

of the first chain site ρ1 as functions of ε for εdot = −5ŴL and

three different values of t0. For clarity, the curves are offset

vertically. For t0 = 0 [long dashed (black) line], we see just

the usual single-particle peak of width ŴL centered at ε = εdot.

Observe that there is essentially no density of states at ε = 0

since the dot level is far below the Fermi level of the leads.

As we increase t0 to 2ŴL [fine solid (red) line], however, we

observe the emergence of a sharp peak at ε = 0 in addition

to the peak at ε ≈ εdot. For t0 = 10ŴL [dashed (blue) line in

Fig. 1(c)], the single-particle peak in ρdot slightly moves to

lower energies, while its zero-energy peak increases to 0.5

(in units of πŴL). As this peak appears in ρdot for increasing

t0’s, the Majorana central peak in Fig. 1(d) decreases. We

can still see a peak in ρ1 for t0 = 10ŴL, dashed (blue) line in

Fig. 1(d), but much weaker than its t0 = 0 value. We further

show ρ̃dot = ρdot(0)/ρmax
dot and ρ̃1 = ρ1(0)/ρmax

1 , ρmax
dot,1 =

max[ρdot,1(ε = 0,t0)] vs t0 in Fig. 1(e), clearly showing the

wire Majorana leakage into the dot.

In Fig. 1(f), we display a color map of the electronic

LDOS ρdot vs ε and eVg for the wire in the topological

phase (� > 0 and |μ| < t) with μ = 0. At eVg = 0, we

see three peaks of ρdot vs ε, similar to those of Fig. 2 of

Ref. [27]. In contrast, by fixing ε = 0 and varying eVg , we

see that the zero-energy peak remains essentially unchanged

over the range of eVg shown. More strikingly, this central

peak is pinned at ε = εF = 0 for eVg > 0 and eVg < 0.

The pinning for εdot below εF = 0 is similar to that of the

Kondo resonance, which, however, is known to occur at πŴL,

cf. Figs. 1(h) and 1(i).

Here again, one can measure G vs Vg [Fig. 1(g)]: For

the wire in its trivial phase (|μ| > t), e.g., μ = 1.5t [circles

(black)], G exhibits a single peak, whose maximum corre-

sponds to εdot(Vg) crossing the Fermi level. Note that the peak

is not at eVg = 0 but slightly shifted. This arises from the

small real part of the self-energy in the dot Green’s function.

In the topological phase (|μ| < t), e.g., μ = 0 and μ = 0.75t

[squares (red) and diamonds (blue), respectively], we see

an almost constant G ≃ e2/2h for eVg up to ±10ŴL. This

conductance plateau is similar to that produced by the Kondo

resonance [1], except that here G is half of it (per spin) and

the plateau occurs even for εdot > εF .

The Majorana LDOS Adot and Bdot shown in Figs. 2(a)

and 2(b), respectively, as functions of ε and eVg [same

FIG. 2. (Color online) Color map of the local density of states

for Majoranas “A” (top) and “B” (bottom) at the dot (left) and at

the first site of the chain (right) as a function of ε and eVg for t =
10 meV, � = 0.2t, ŴL = 40 μeV, t0 = 10ŴL, and μ = 0. Panel (d)

shows 104
B1.

165314-3
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FIG. 3. (Color online) Conductance G as a function of μ for t =
10 meV, � = 0.2 meV, and (a) t0 = 10ŴL and different values of

εdot and (b) εdot = 0 and distinct t0’s. The lighter (yellow) and darker

(green) regions in (a) and (b) highlight the topological (|μ| < t) and

trivial (|μ| > t) phases of the chain, respectively. Panels (c) and (d)

correspond to (a) and (b), respectively, but for � = 0.

parameters as in Fig. 1(f)], display a zero-energy peak inAdot

and none in Bdot. This shows that the pinned dot-Majorana

peak in Fig. 1(f) arises from the Majorana A only. We note

that the peaks in Bdot at ε ≈ ±7ŴL (for eVg = 0) are affected

by the dot-wire Majorana coupling as compared to the � = t

case. For couplings to any ordinary fermionic wire modes, the

dot LDOS would obey Adot = Bdot, and it would split and

would broaden.

Figures 2(c) and 2(d) show that the Majorana LDOS of the

first chain site A1 and B1 have no zero-energy peaks, thus,

indicating that the wire end mode has, indeed, leaked into the

dot. We see two peaks in A1 at ε = ±7ŴL [see Fig. 2(b)]

resulting from the coupling ∼ t0 between A1 and Bdot; see

Fig. 1(a). A careful look at Fig. 2(c) reveals an enhancement

of the zero-energy peaks for eVg � 5ŴL as a result of the

coupling between the dot Majorana A and the Majoranas of

the chain via a finite εdot. The strength of this peak is much

smaller than its magnitude without the dot.

Figure 3(a) shows the conductance G vs μ for several

εdot’s [same parameters as in Figs. 1(f) and 1(g)]. For εdot = 0

[circles (black)] and |μ| > t (trivial phase), G arises from

the single-particle dot level at εF . The effect of the chain is

essentially to shift and broaden εdot so that the value e2/h

is reached only for |μ| ≫ t . As μ varies across ±t , the wire

undergoes a trivial-to-topological transition, and G suddenly

decreases to e2/2h as the leaked dot Majorana appears. For

εdot �= 0, the asymptotic (|μ| ≫ t) value of G is no longer

e2/h as εdot cannot attain εF . The squares (red) and diamonds

(blue) in Fig. 3(a) show a tiny conductance for μ > t . However,

as |μ| becomes smaller than t , both curves rapidly go to e2/2h.

In Fig. 3(b), we fix εdot = 0 and plot the conductance

G as a function of μ for distinct t0’s. As t0 increases, G

remains pinned at e2/2h in the topological regime, whereas, it

decreases in the trivial phase since the dot level shifts due to the

chain self-energy ∼ t2
0 . Figures 3(c) and 3(d) show G for � = 0

and the same parameters as in Figs. 3(a) and 3(b), respectively.

For |μ| < t , G is very sensitive to εdot for a fixed t0 = 10ŴL

[Fig. 3(c)] and to t0 for εdot = 0 [Fig. 3(d)], which contrasts

with its practically constant value for � = 0.2t , Figs. 3(a)

and 3(b). This is so because the wire acts as a third normal lead

for � = 0 and t0 �= 0, so the source drain G, e.g., for μ = 0,

reduces to G = (e2/h)ŴL/(ŴL + Ŵchain), where Ŵchain = 2t2
0 /t

is the broadening due to the chain [31]. Curiously, for t0 =
11.18ŴL and εdot = 0, the G curves are indistinguishable for

� = 0 and � �= 0, being pinned at e2/2h in the topological and

trivial phases, cf. squares in Figs. 3(d) and 3(c). Therefore, the

peak value G = e2/2h, first found in Ref. [27] in a similar setup

as ours but only for an on-resonance dot (i.e., εdot = 0 = εF ), is

not per se a “smoking-gun” evidence for a Majorana end mode

in conductance measurements as we find that this peak value

can appear even in the trivial phase of the wire. One should

vary, e.g., εdot and/or t0 to tell these phases apart as we do in

Fig. 3. Finally, the kinks in Fig. 3(d) [e.g., diamonds (blue)

and stars (green)] result from discontinuities in �chain [31] at

μ = ±t .

V. CONCLUDING REMARKS

We have used an exact recursive Green’s-function approach

to calculate the LDOS and the two-terminal conductance

G through a quantum dot side coupled to a Kitaev wire.

Interestingly, we found that the end Majorana mode of the

wire leaks into the quantum dot, thus, originating a resonance

pinned to the Fermi level of the leads εF . In contrast to the usual

Kondo resonance arising only for εdot below εF , this unique

dot-Majorana resonance appears pinned to εF even when the

gate-controlled energy level εdot(Vg) is far above or below

εF , provided that the wire is in its topological phase. This

leaked Majorana dot mode provides a clear-cut way to probe

the Majorana mode of the wire via conductance measurements

through the dot.
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