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Subtleties in Robust Stability of Discrete-time Piecewise Affine Systems

M. Lazar, Member, IEEE W.P.M.H. Heemels A.R. Teel, Fellow, IEEE

Abstract— In this paper we consider (inherent) robustness of
discrete-time piecewise affine (PWA) systems. We demonstrate,
via examples, that globally exponentially stable discrete-time
PWA systems may have no robustness. More precisely, we
show that the exponential stability property cannot prevent that
arbitrarily small additive disturbances keep the state trajectory
far from the origin. Mathematically speaking, this means that
the system is not input-to-state stable with respect to arbitrarily
small disturbances. The non-robustness property is related to
the absence of a continuous Lyapunov function. These results
indicate that one should be careful with existing stability
analysis and synthesis methods for PWA systems that rely
on discontinuous Lyapunov functions, as no robustness might
be present. However, as the search for Lyapunov functions
for discrete-time PWA systems often employs discontinuous
Lyapunov functions (e.g. piecewise quadratic ones), robustness
tests based on discontinuous Lyapunov functions are needed.
Such tests are proposed in this article.

Index Terms— Hybrid systems, Piecewise affine systems,
Discrete-time, Stability, Robustness.

I. INTRODUCTION

Discrete-time piecewise affine (PWA) systems are a pow-
erful modeling class for the approximation of hybrid and
nonlinear dynamics [1], [2]. The modeling capability of
discrete-time PWA systems has already been shown in sev-
eral applications, including switched power converters [3],
direct torque control of three-phase induction motors [4],
applications in automotive systems [5] and systems biology
[6]. Therefore, there is an increasing interest in developing
efficient tools for stability analysis and stabilizing controller
synthesis for discrete-time PWA systems, as it is illustrated
by several articles on this topic, see, for example, [7]–[10],
to mention just a few.

In the case when asymptotic stability is established via a
continuous Lyapunov function, such as a common quadratic
Lyapunov function (i.e. V (x) = x>Px for some matrix P > 0),
it is well known [11] that inherent robustness to perturbations
is achieved. This is a desirable property, as nominally stable
closed-loop systems are always affected by perturbations in
practice. However, it is also well known [8] that there exist
discrete-time PWA systems that do not admit a common
quadratic Lyapunov function, but they admit a piecewise
quadratic (PWQ), possibly discontinuous Lyapunov function.
As inherent robustness is not necessarily guaranteed when
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stability is established via discontinuous Lyapunov functions,
it is important to answer the following question:

• Is it possible that nominally asymptotically stable (or
even stronger, exponentially stable) discrete-time PWA
systems can have no robustness to arbitrarily small
perturbations?

By no robustness we mean that in spite of the asymptotic
stability property, the system is not input-to-state stable
(ISS) [12], [13] with respect to arbitrarily small additive
disturbances.

One of the contributions of this article is answering the
above question. We present two examples, a one-dimensional
discrete-time PWA system and a two-dimensional discrete-
time PWA system that are globally exponentially stable (no-
tice that the existence of a discontinuous Lyapunov function
is then guaranteed by Lemma 4 in [14]). For both examples,
we show that arbitrarily small perturbations can keep the
state trajectory far from the origin. Furthermore, via the
results of [11], we then establish that:

• There exist globally exponentially stable discrete-time
PWA systems that admit a discontinuous Lyapunov
function, but not a continuous one.

Previous results on stability of discrete-time PWA systems
[7]–[10] only indicated that continuous Lyapunov functions
may be more difficult to find than discontinuous ones, but
until now it was not shown that there exist exponentially sta-
ble PWA systems for which a continuous Lyapunov function
does not exist. This is the case for the examples presented
in this paper.

These results issue a warning regarding nominally stabi-
lizing state-feedback synthesis methods for PWA systems
[7]–[10], including those of model predictive control (MPC)
[15]–[18]. These synthesis methods lead to a stable PWA
closed-loop system and often rely on discontinuous Lya-
punov functions. For example, in MPC the most natural
candidate Lyapunov function is the value function corre-
sponding to the MPC cost, which is generally discontinuous
when PWA systems are used as prediction models [18]. As
such, these controllers may result in closed-loop systems that
are not ISS when arbitrarily small perturbations affect the
system, which is always happening in practice. Therefore, in
the case of discrete-time PWA systems for which a continu-
ous Lyapunov function is not known, but a discontinuous
Lyapunov function is available, robustness tests based on
discontinuous Lyapunov functions are needed. In this paper
we will present robustness tests based on discontinuous
Lyapunov functions.
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II. PRELIMINARIES
A. Nomenclature and basic definitions

Let R, R+, Z and Z+ denote the field of real numbers,
the set of non-negative reals, the set of integers and the set
of non-negative integers, respectively. We use the notation
Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1,c2 ∈ Z+.
Let ‖·‖ denote an arbitrary norm on Rn and let | · | denote the
absolute value of a real number. For a sequence {zp}p∈Z+

with zp ∈ Rl let ‖{zp}p∈Z+‖ := sup{‖zp‖ | p ∈ Z+}. For a
sequence {zp}p∈Z+ with zp ∈ Rl , z[k] denotes the truncation
of {zp}p∈Z+ at time k ∈ Z+, i.e. z[k] = {zp}p∈Z[0,k] .

For a set S ⊆ Rn, we denote by ∂S the boundary, by
int(S ) the interior and by cl(S ) the closure of S . For two
arbitrary sets S ⊆Rn and P ⊆Rn, let S ∼P := {x∈Rn |
x+P ⊆S } and S ⊕P := {x+ y | x ∈S ,y ∈P} denote
their Pontryagin difference and Minkowski sum, respectively.
For any µ > 0 we define Bµ := {x ∈ Rn | ‖x‖ ≤ µ}. Let
B := B1 denote the closed unit ball in Rn. A polyhedron
(or a polyhedral set) is a set obtained as the intersection of
a finite number of open and/or closed half-spaces.

The Hölder p-norm of a vector x ∈ Rn is defined as:

‖x‖p :=

{
(|x1|p + . . .+ |xn|p)

1
p , p ∈ Z[1,∞)

maxi=1,...,n |xi|, p = ∞,

where xi, i = 1, . . . ,n is the i-th component of x. For a
matrix Z ∈ Rm×n let ‖Z‖p := supx 6=0

‖Zx‖p
‖x‖p

, p ∈ Z≥1, denote
its induced matrix norm.

A function ϕ :R+ →R+ belongs to class K (ϕ ∈K ) if
it is continuous, strictly increasing and ϕ(0) = 0. A function
ϕ :R+→R+ belongs to class K∞ (ϕ ∈K∞) if ϕ ∈K and it
is radially unbounded. A function β :R+×R+→R+ belongs
to class K L (β ∈K L ) if for each fixed k ∈R+, β (·,k)∈
K and for each fixed s ∈ R+, β (s, ·) is non-increasing and
limk→∞ β (s,k) = 0.

B. Input-to-state stability

To study robustness, we will employ the input-to-state
stability (ISS) framework [12], [13]. Consider the discrete-
time perturbed nonlinear system:

xk+1 = g(xk,vk), k ∈ Z+, (1)

where x∈Rn is the state, v∈Rdv is an unknown disturbance
input and g : Rn ×Rdv → Rn is a nonlinear, possibly dis-
continuous function. For simplicity of notation, we assume
that the origin is an equilibrium for (1) and zero disturbance
input, meaning that g(0,0) = 0. We use the notation xk to
denote the solution of (1) at time k ∈ Z+, obtained from
initial condition x0 at time k = 0.

Definition II.1 A set P ⊆ Rn with 0 ∈ int(P) is called a
robustly positively invariant (RPI) set with respect to V for
system (1) if for all x ∈P it holds that g(x,v) ∈P for all
v ∈ V.

Next, we introduce the notion of global input-to-state stabil-
ity for the discrete-time system (1), as defined in [13].

Definition II.2 The perturbed system (1) is globally input-
to-state stable (ISS) if there exist a K L -function β (·, ·)
and a K -function γ(·) such that, for each initial condition
x0 ∈ Rn and all {vp}p∈Z+ with vp ∈ Rdv for all p ∈ Z+, it
holds that the corresponding state trajectory satisfies

‖xk‖ ≤ β (‖x0‖,k)+ γ(‖v[k−1]‖) for all k ∈ Z≥1.

In this paper we will also use the following local ISS notion.

Definition II.3 Let X and V be subsets of Rn and Rdv ,
respectively, with 0∈ int(X). We call system (1) ISS in X for
disturbances in V if there exist a K L -function β (·, ·) and a
K -function γ(·) such that, for each x0 ∈X and all {vp}p∈Z+

with vp ∈ V for all p ∈ Z+, it holds that the corresponding
state trajectory satisfies

‖xk‖ ≤ β (‖x0‖,k)+ γ(‖v[k−1]‖) for all k ∈ Z≥1.

Throughout this article we will employ the following suffi-
cient conditions for analyzing ISS of discrete-time systems.

Theorem II.4 [13], [19] Let α1,α2,α3,σ ∈ K∞ and let V
be a subset of Rdv that contains the origin. Let X with 0 ∈
int(X) be a RPI set with respect to V for system (1) and let V :
X→R+ be a function with V (0) = 0. Consider the following
inequalities:

α1(‖x‖)≤V (x)≤ α2(‖x‖), (2a)
V (g(x,v))−V (x)≤−α3(‖x‖)+σ(‖v‖). (2b)

If inequalities (2) hold for all x ∈ X and all v ∈ V, then
system (1) is ISS in X for disturbances in V. Furthermore, if
inequalities (2) hold for all x∈Rn and all v∈Rdv , then system
(1) is globally ISS.

Definition II.5 A function V (·) that satisfies the hypothesis
of Theorem II.4 is called an ISS Lyapunov function.

Note the following aspects regarding Theorem II.4:
(i) the hypothesis of Theorem II.4 allows that both g(·, ·)

and V (·) are discontinuous. The hypothesis only requires
continuity at the point x = 0, and not necessarily on a
neighborhood of x = 0;

(ii) if the inequalities (2) are satisfied for α1(s) = asλ ,
α2(s) = bsλ , α3(s) = csλ , for some a,b,c,λ > 0, then the
hypothesis of Theorem II.4 implies exponential stability of
system (1) with zero disturbance input.

C. Lyapunov functions

To make a distinction with respect to Lyapunov functions
in the classical sense, which are only required to have a
non-negative one step forward difference, in this section we
will introduce various types of Lyapunov functions for the
unperturbed system corresponding to (1), i.e. xk+1 = g(xk,0),
k ∈ Z+. Let X⊆ Rn be a positively invariant set for xk+1 =
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g(xk,0) with 0 ∈ int(X), let α1,α2,α3 ∈ K∞, let V : Rn →
R≥0, V (0) = 0, and consider the inequalities:

α1(‖x‖)≤V (x)≤ α2(‖x‖), ∀x ∈ X, (3a)
V (g(x,0))−V (x)≤ 0, ∀x ∈ X, (3b)
V (g(x,0))−V (x) < 0, ∀x ∈ X\{0}, (3c)
V (g(x,0))−V (x)≤−α3(‖x‖), ∀x ∈ X. (3d)

Definition II.6 A function V (·) that satisfies (3a) and (3b) is
called a Lyapunov function. A function V (·) that satisfies (3a)
and (3c) is called a strict Lyapunov (SL) function. A function
V (·) that satisfies (3a) and (3d) is called a uniformly strict
Lyapunov (USL) function.

Notice that a USL function can also be defined by replacing
(3d) with the intermediate property

V (g(x,0))−V (x)≤−δ (x), ∀x ∈ X, (4)

where δ : Rn → R≥0 is a continuous and positive definite
function. However, it can be shown that given such a USL
function one can always find a new USL function that
satisfies (3d), using ideas from [20]. Also, in the case when
g(·,0) and V (·) are continuous it can be proven that SL
functions and USL functions that satisfy (4) are equivalent.

D. Robust global asymptotic stability

To make use of robustness results from [11] we need
to define the robust global asymptotic stability property
(RGAS) for systems of the form:

xk+1 = h(xk), k ∈ Z+, (5)

where h : Rn → Rn with h(0) = 0 is an arbitrary nonlinear,
possibly discontinuous function. For a continuous function
δ :Rn →R≥0 we define a perturbed version of (5) as follows:

xk+1 ∈ hδ (xk) := {h(xk +δ (xk)v)+δ (xk)v | v∈B}, k∈Z+.
(6)

Let Sδ (x0) denote the set of all solutions of (6) correspond-
ing to initial state x0 at time k = 0.

Definition II.7 We call system (5) RGAS if there exist a
δ : Rn → R≥0 continuous and positive definite function and
a βδ ∈K L such that for every x0 ∈ Rn and all solutions
xδ

k ∈Sδ (x0) it holds that ‖xδ
k ‖≤ βδ (‖x0‖,k), for all k ∈Z≥0.

E. Discrete-time PWA systems

In this paper we focus on nominal and perturbed discrete-
time, possibly discontinuous, PWA systems of the form

xk+1 = G(xk) := A jxk + f j if x ∈Ω j, (7a)
x̃k+1 = g(x̃k,vk) := A j x̃k + f j + vk if x ∈Ω j, (7b)

where A j ∈ Rn×n, f j ∈ Rn for all j ∈ S and S :=
{1,2, . . . ,s} is a finite set of indices. The collection {Ω j | j ∈
S } defines a partition of Rn, meaning that ∪ j∈S Ω j = Rn,
Ωi ∩Ω j = /0 for i 6= j and int(Ωi) 6= /0 for all i ∈ S . Each
Ω j is assumed to be a polyhedron, which is not necessarily
closed. Let S0 := { j ∈S | 0 ∈ cl(Ω j)} and let S1 := { j ∈

Fig. 1. A one-dimensional PWA system with no robustness.

S | 0 6∈ cl(Ω j)}, so that S = S0∪S1. For the origin to be
an equilibrium in the Lyapunov sense in (7a) we assume as
in [8] that f j = 0 for all j ∈S0.

III. EXAMPLES OF NON-ROBUST PWA SYSTEMS

First, we present a simple one-dimensional example in-
spired by [11].

Example 1: Consider the discontinuous nominal and per-
turbed PWA systems given by (7) with vk ∈ Bµ = {v ∈
R | |v| ≤ µ} for some small positive parameter µ > 0,
j ∈ S := {1,2}, k ∈ Z+, and where A1 = A2 = 0, f1 = 0,
f2 = 1 and the partition is given by Ω1 = {x ∈ R | x ≤ 1},
Ω2 = {x ∈ R | x > 1}. Figure 1 shows the values of the
function G(x).

One can easily observe that any solution xk at time
k ∈ Z+ of system (7a) starting from an initial condition
x0 ∈ R satisfies |xk| ≤ |x0| (even |xk| < |x0| when x0 6= 0)
and converges exponentially to the origin. Moreover, any
trajectory xk reaches the origin in 2 discrete-time steps or
less. Furthermore, it can be proven that V (x) := ∑∞

i=0 x2
i is

a USL function, where xi denotes the solution of system
(7a) at time i ∈ Z+, obtained from an initial condition
x0 := x ∈ R. For example, since V (x) = ∑∞

i=0 x2
i = x2

0 + x2
1

for any x0 = x ∈R, it holds that V (G(x))−V (x)≤−α3(|x|)
for all x ∈ R, where α3(s) := s2. An explicit expression for
V (·) is:

V (x) =
∞

∑
i=0

x2
i = x2

0 + x2
1 =

{
x2 +1 if x > 1
x2 if x≤ 1,

which shows that V (·) is discontinuous at x = 1.
Now consider the case where vk = µ > 0 for all k ∈

Z+ in (7b). Then, the origin of the perturbed system (7b)
corresponding to the nominal system (7a) is not ISS, as
xk = 1+ µ is an equilibrium of (7b) to which all trajectories
with initial conditions x0 ∈ R>1 converge. Hence, no matter
how small µ > 0 is taken, the system (7b) is not ISS in R
for disturbances in Bµ . 2

The following conclusions can be drawn from this ex-
ample: globally exponentially stable (GES) discontinuous
discrete-time systems can be non-robust and, the existence of
a discontinuous USL function does not guarantee robustness
for discontinuous systems.

Note that the GES PWA system of Example 1 also
admits a continuous SL function, i.e. V (x) := |x|, which
satisfies V (G(x))−V (x) < 0 for all x 6= 0. However, V (x) =
|x| is not a USL function, as for any α3 ∈ K∞ it holds
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that limx↓1 (V (G(x))−V (x)) = limx↓1(1− x) = 0 > −α3(1).
Hence, the existence of a continuous SL function does
not necessarily guarantee any robustness for discontinuous
systems.

Furthermore, we show via an example that for discontin-
uous systems a continuous SL function does not even imply
global convergence, necessarily.

Example 2: Consider the PWA system (7a) with j ∈S :=
{1,2}, A1 = f1 = 0, A2 = 0.5, f2 = 0.5 and the partition is
given by Ω1 = {x ∈ R | x ≤ 1}, Ω2 = {x ∈ R | x > 1}. One
can easily check that limk→∞ xk = 1 for any x0 ∈ R>1 and
thus, this system is not globally asymptotically stable (GAS).
Consider the function V (x) := |x|. Clearly, for x ∈ Ω1 \ {0}
we have V (G(x))−V (x) = −V (x) < 0 and, for x ∈ Ω2 we
have V (G(x))−V (x) = 0.5|x+1|−V (x) < |x|−V (x) = 0.2

Hence, the system of Example 2 admits a continuous SL
function but the trajectories do not converge to the origin
globally. This indicates that SL functions which are not USL
functions are virtually useless for discrete-time discontinuous
systems.

The next example shows a constrained 2D PWA system
that is exponentially stable but it has no robustness.

Example 3: Consider the discontinuous nominal and per-
turbed PWA systems

xk+1 = A jxk + f j if xk ∈Ω j, (8a)
x̃k+1 = A j x̃k + f j + vk if xk ∈Ω j, (8b)

with vk ∈ Bµ = {v ∈ R2 | ‖v‖ ≤ µ} for some µ > 0, j ∈
S := {1, . . . ,9}, k ∈ Z+, and where

A j =
[

1 0
0 1

]
for j 6= 7; A7 =

[
0.35 0.6062

0.0048 −0.0072

]
;

f1 =− f2 =
[

0.5
0

]
; f3 = f4 = f5 = f6 =

[
0
−1

]
;

f7 =
[

0
0

]
; f8 =

[
0.4
−0.1

]
; f9 =

[−0.4
−0.1

]
.

The system state takes values in the set X :=∪ j∈S Ω j, where
the regions Ω j are polyhedra (the exact representations are
omitted due to space limitations), as shown in Figure 2.
The state trajectories1 of system (8a) obtained for the initial
states x0 = [0.2 3.6]> ∈ Ω2 (square dotted blue line) and
x0 = [0.2 3.601]> ∈ Ω1 (circle dotted blue line) are plotted
in Figure 2. 2

Proposition III.1 The following statements hold:
(i) The function V (x) := ‖x10‖∞ +∑9

i=0 ‖Qxi‖∞, where Q =
0.04I2 and xi is the solution of system (8a) obtained at time
i∈Z[0,10] from initial condition x0 := x∈X, is a discontinuous
USL function for system (8a);

(ii) The PWA system (8a) is exponentially stable in X;
(iii) For any small positive parameter µ > 0 the PWA

system (8b) is not ISS in X for disturbances in Bµ .

1Note that the regions Ω1 and Ω2 are such that for all x ∈ ∂Ω1 ∩ ∂Ω2
the dynamics xk+1 = A2xk + f2 is active, i.e. ∂Ω1 ∩∂Ω2 ⊆Ω2.

Fig. 2. A two-dimensional PWA system with no robustness: nominal
state trajectories (square and circle dotted blue lines) and perturbed state
trajectory (star solid red line).

Remark III.2 While the disturbance signal used in Ex-
ample 1 does not have a particular structure, a specific
disturbance signal was employed in Example 3 to destroy
ISS. However, in practice there is often still some structure
in the disturbances (for example, time delays in embedded
systems or cyclic sensor/encoder errors), which makes such
a situation not highly unlikely to happen.

IV. ROBUSTNESS TESTS
BASED ON DISCONTINUOUS USL FUNCTIONS
In this section we consider the case when a discontinuous

USL function V (·) is available for the PWA system xk+1 =
G(xk) = A jxk + f j, if xk ∈ Ω j, k ∈ Z+, while a continuous
USL function is not known. We consider discontinuous
Lyapunov functions V :Rn→R+, with V (0)= 0, of the form:

V (x) := Vi(x) if x ∈ Γi, i ∈J , (9)

where2 for each i∈J , Vi :Rn→R+ is a continuous function
on Rn. In (9), {Γi | i ∈J }, with J := {1, . . . ,M} a finite
set of indices, denotes a partition of Rn, where the regions
Γi, i ∈J , are convex sets.

Note that the class of Lyapunov functions of the form
(9) captures a wide range of frequently used Lyapunov
functions for PWA systems, such as PWQ, PWA or piecewise
polynomial functions, including the value functions that arise
in model predictive control of PWA systems.

The goal is now to establish either robustness (i.e. ISS in
a desired domain of attraction for bounded and sufficiently
small disturbances) or non-robustness (i.e. ISS is destroyed
by arbitrarily small disturbances for at least one initial
condition inside the desired domain of attraction) of system
(7), despite the fact that a continuous USL function is
not known. We propose to achieve this goal by using the
available information on the discontinuous USL Lyapunov
function (9).

2In fact, the results developed in this section only require that, for each
i∈J , Vi(·) is defined on cl(Γi)⊕Bµ and continuous, where µ > 0 denotes
a small positive parameter.
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The first idea consists in examining the trajectory of the
PWA system (7a) with respect to the set of states at which
V (·) may be discontinuous. Let P ⊂Rn with 0∈ int(P) be
a compact RPI set for system (7b) with respect to Bµ , i.e.

R1(P)⊆P ∼Bµ ,

where R1(P) := {G(x) | x ∈P} is the one-step reachable
set for system (7a) from states in P . Let XD ⊂P denote
the set of all states in P at which V (·) is not continuous.
If one can verify that the state xk of (7a) is µ > 0 distance
away from the set XD for all x0 ∈P and all k ∈Z≥1, then it
can be proven that ISS is achieved for additive disturbances
in Bµ , as formulated in the following result.

Theorem IV.1 Let P ⊂ Rn with 0 ∈ int(P) be a compact
RPI set for system (7b) with respect to Bµ . Suppose that
the PWA system (7a) is globally asymptotically stable and
it admits a discontinuous USL function of the form (9).
Furthermore, suppose that there exists a µ > 0 such that

d(x,XD) > µ for all x ∈R1(P), (10)

where d(x,XD) := infy∈XD ‖x− y‖. Then, the PWA system
(7b) is ISS in P for disturbances in Bµ .

The constant µ can be calculated as follows:

µ = min
j∈S

{
min

y∈Ω j∩P, ȳ∈XD
‖(A jy+ f j)− ȳ‖

}
. (11)

If the set XD is the union of a finite number of convex
subsets (or of a finite number of polyhedra), a solution to
the optimization problem (11) can be obtained by solving a
finite number of convex optimization problems (or a finite
number of LP problems). After solving (11), if one obtains a
strictly positive µ , then µ > 0 can be considered as a measure
of the (worst case) inherent robustness of system (7).

The sufficient condition (10) can be relaxed, as follows.

Proposition IV.2 Let P ⊂Rn with 0∈ int(P) be a compact
RPI set for system (7b) with respect to Bµ . Suppose that
the PWA system (7a) is globally asymptotically stable and
it admits a discontinuous USL function of the form (9).
Furthermore, suppose that there exists α3 ∈K∞ such that

max
i∈I

Vi(G(x))−V (x)≤−α3(‖x‖), ∀x ∈ Rn. (12)

Then, the PWA system (7b) is ISS in P for disturbances in
Bµ .

Notice that the above result is simply based on a stronger,
more conservative extension of the stabilization conditions
from [7]–[10], as it requires that the Lyapunov function is
decreasing irrespective of which dynamics might be active
at the next step.

The sufficient condition (12) can be significantly relaxed,
as follows. Consider the set of states

Z := {x ∈P | [G(x)⊕Bµ
]∩XD 6= /0}

and let

I (x) :=
{i ∈J | x ∈Z , G(x) 6∈ Γi,

[
G(x)⊕Bµ

]∩Γi 6= /0}.

Theorem IV.3 Let P ⊂ Rn with 0 ∈ int(P) be a compact
RPI set for system (7b) with respect to Bµ . Suppose that
the PWA system (7a) is globally asymptotically stable and
it admits a discontinuous USL function of the form (9).
Furthermore, suppose that Z 6= /0 and there exists a µ > 0
and a K -function α̃3(·) such that

max
i∈I (x)

Vi(G(x))−V (x)≤−α̃3(‖x‖), ∀x ∈Z . (13)

Then, the PWA system (7b) is ISS in P for disturbances in
Bµ .

Remark IV.4 The results of Theorem IV.1 and Theo-
rem IV.3 require that a RPI set is known for the PWA system
(7b) with respect to disturbances in Bµ . This can be avoided
by taking P =Rn, which is an RPI set for any disturbance.
In this case, however, one needs to assume that for each
function Vi(·), i ∈J , there exists a function σi ∈K∞ such
that |Vi(x)−Vi(y)| ≤ σi(‖x− y‖) for all x,y ∈ Rn. Then, the
ISS results of Theorem IV.1 and Theorem IV.3 hold in Rn

for disturbances in Bµ .

V. ROBUSTNESS TESTS
BASED ON THE RGAS PROPERTY

The tests presented so far can only be employed to
establish if a discontinuous USL function can be used as a
candidate ISS Lyapunov function. However, if both tests fail,
one cannot say anything about robustness (or non-robustness)
as the conditions of Theorem II.4 are only sufficient. A
different method for checking robustness of discontinuous
discrete-time nonlinear systems was presented in [11]. This
method can establish robustness of a discontinuous discrete-
time system by checking nominal stability for an upper
semicontinuous set-valued regularization of the dynamics.

Non-robustness of a PWA system for which the proposed
tests fail can be established via the method of [11] as
follows. Recall the discontinuous nonlinear system (5) and
its perturbed version (6), which include the unperturbed PWA
system (7a) and the perturbed PWA system (7b), respectively,
as a particular subclass. According to [11], a regularization
of the discrete-time dynamics (5) is defined as the difference
inclusion xk+1 ∈ F(xk), k ∈ Z+, with:

F(x) :=
⋂

ρ>0

cl(h(x⊕Bρ)).

Note that F(·) is a set-valued mapping in general. By
Theorem 14 of [11] the following statements are equivalent:

1) The origin is GAS for the regularization xk+1 ∈ F(xk)
of system (5);

2) The origin is RGAS for system (5);
3) System (5) admits a continuous USL function.

Therefore, as observed in [11], it is sufficient to find an initial
condition for which the state trajectory is not converging to
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the origin for the regularization of (7a) (i.e. xk+1 ∈ F(xk) =⋂
ρ>0 cl(G(xk⊕Bρ))) to establish non-robustness.
However, this test may be difficult to implement as one has

no criterion for selecting an initial condition. That is why it
is useful to first perform the robustness tests of Theorem IV.1
and Theorem IV.3. Then, if these tests fail, the set of states
Z contains suitable candidates for initial conditions that may
result in non-robustness.

For example, the tests of Theorem IV.1 and Theorem IV.3
fail for the PWA system of Example 3 and the discontinuous
USL function defined in Proposition III.1, and they reveal the
state x = [0.2 3.6]>. The evaluation of the set-valued map
F(x) at x0 = [0.2 3.6]> and G(x0) = [−0.3 3.6]> yields:

F(x0) =
{

[−0.3 3.6]>, [0.7 3.6]>
}

=
{

G(x0), [0.7 3.6]>
}

F(G(x0)) =
{

[−0.8 3.6]>, [0.2 3.6]>
}

=
{
[−0.8 3.6]>, x0

}

Therefore, xk = x0, k = 0,2,4, . . ., and xk = G(x0), k =
1,3,5, . . . is a limit cycle of xk+1 ∈ F(xk) for initial condition
x0 = [0.2 3.6]>. This implies that the origin is not attractive
for xk+1 ∈ F(xk), k ∈ Z+, and initial state x0 and thus, it
is not GAS. Hence, from 1)⇔ 2) it follows that the PWA
system of Example 3 is not RGAS (and hence, non-robust)
for the considered initial state.

Furthermore, 1) ⇔ 3) implies that the PWA system of
Example 3 does not admit a continuous USL function.
Therefore, there exist exponentially stable PWA systems that
do not admit a continuous USL function.

VI. CONCLUSIONS
We have considered robust stability of discrete-time PWA

systems, as this is a crucial property for many practical
applications. Via examples, we have shown that globally
exponentially stable discrete-time PWA systems can be non-
robust (i.e. not ISS or RGAS) when arbitrarily small per-
turbations are present. The main points of the paper can be
summarized as follows (for brevity, let ⇒ and ; stand for
“implies” and “does not necessarily imply”, respectively).

The following statements are true for discontinuous (non-
linear) hybrid systems:
• The existence of a continuous SL function ; global

convergence (attractivity) - Example 2;
• GES ; the existence of a continuous USL function -

Example 1, [11];
• The existence of a continuous or discontinuous USL

function ⇒ GAS - [19];
• GAS ⇒ the existence of a discontinuous USL function

- [14];
• RGAS ⇒ the existence of a continuous USL function

- [11];
• The existence of a discontinuous USL function ;

robustness (ISS or RGAS) - Example 1, Example 3.
Several robustness tests based on discontinuous Lyapunov

functions were presented. These tests can be employed to
establish robustness of nominally asymptotically stable PWA
systems in the case when a continuous USL function is not
known, but a discontinuous USL function is available.
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