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The influence of voltage-dependent inhibitory conductances on firing
rate versus input current (f-I) curves is studied using simulations from a
new compartmental model of a pyramidal cell of the weakly electric fish
Apteronotus leptorhynchus. The voltage dependence of shunting-type inhi-
bition enhances the subtractive effect of inhibition on f-I curves previ-
ously demonstrated in Holt and Koch (1997) for the voltage-independent
case. This increased effectiveness is explained using the behavior of the
average subthreshold voltage with input current and, in particular, the
nonlinearity of Ohm’s law in the subthreshold regime. Our simulations
also reveal, for both voltage-dependent and -independent inhibitory con-
ductances, a divisive inhibition regime at low frequencies (f < 40 Hz).
This regime, dependent on stochastic inhibitory synaptic input and a cou-
pling of inhibitory strength and variance, gives way to subtractive inhi-
bition at higher-output frequencies (f > 40 Hz). A simple leaky integrate-
and-fire type model that incorporates the voltage dependence supports
the results from our full ionic simulations.

1 Introduction

A current problem in single neuron computation is the characterization of
the relation between the synaptic input current, I, received by a neuron and
the frequency, f, of action potentials that the neuron generates in response
to this input. Knowledge of this f-I relationship provides a simplified plau-
sible description of neural input-output operations, which can be used to
model networks of neurons (see, e.g., Abbott, 1991). Adaptive signal pro-
cessing strategies have received much recent interest in the context of these
f-I relationships (see, e.g., Nelson, 1994; Carandini & Hegger, 1994; Nelson
& Paulin, 1995; Holt & Koch, 1997; Abbott, Varela, Sen, & Nelson, 1997;
Tsodyks & Markram, 1997). One such strategy involves gain control via
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feedforward and feedback inhibition. Such feedback alters the sensitivity of
the neuron to excitatory input and thus modifies the f-I relationship.

Inhibitory transmission in the central nervous system is mediated pri-
marily by GABAA and GABAB gated receptors. GABAB receptors are linked
to potassium channels, and their activation results in long-lasting, large in-
hibitory postsynaptic potentials (IPSPs) with a relatively small conductance
change. This inhibition has been referred to as “subtractive” since its pri-
mary effect has been hypothesized to reduce the effect of excitatory input
linearly. The f-I curve is thus shifted to higher excitatory currents, but its
shape is maintained. However, GABAA receptors are connected to chloride
channels that have a reversal potential close to the resting membrane po-
tential of the cell. When activated, these channels produce brief, relatively
small, potential shifts, yet cause large conductance increases; this has been
described as shunting inhibition. It was commonly thought that shunting
gain control is divisive in nature; that is, the slope of the f-I curve is reduced
under shunting (Rose, 1977; Koch & Poggio, 1992). However, Holt and Koch
(1997) have demonstrated that in the suprathreshold regime, the effect of
shunting synapses is subtractive.

Theoretical studies of such effects have assumed voltage-independent
inhibitory conductances. However, there is substantial evidence that this
is not the case. Segal and Barker (1984) and Yoon (1994) have obtained an
increase in GABAA chloride conductance with depolarization in studies on
rat hippocampal cells. Similar results have been obtained for glycine and
GABAA-activated chloride channels in fish brain (Faber & Korn, 1987; Leg-
endre & Korn, 1995; Berman & Maler, 1998a). The putative mechanisms
are thought to involve a voltage-dependent increase in channel open time
(Segal & Barker, 1984; Faber & Korn, 1987; Legendre & Korn, 1995) and de-
crease in channel desensitization (see Yoon, 1994, and additional references
therein).

We therefore reexamined the role of voltage-dependent inhibition in the
sub- and suprathreshold regimes in determining the subtractive or divisive
character of the inhibition. We inserted voltage dependence of shunting in-
hibition (chloride channels) into two neural models: (1) a new detailed com-
partmental model of the basilar pyramidal cell of the electrosensory lateral
line lobe (ELL) of the weakly electric fish Apteronotus letorhynchus and (2) a
simple leaky integrate-and-fire model (LIF). We developed the first model
because of the detailed electrophysiological knowledge of inhibition in the
ELL (Berman & Maler, 1998a, 1998b, 1998c). The second model was inves-
tigated for comparison with the first. Apart from its analytic tractability, it
ensured that our results were not model dependent. Our findings can be
summarized as follows:

• In the subthreshold regime, shunting inhibition has a divisive effect,
and in particular, voltage-dependent inhibition produces a nonlinear
current-voltage relationship.
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• The suprathreshold subtractive nature of the f-I curve observed by
Holt and Koch (1997) is enhanced by the voltage-dependent inhibitory
conductance. Thus, voltage dependence allows for a more effective (as
defined below) subtractive gain control.

• The stochastic nature of the inhibitory input leads to divisive inhibition
at low firing rates, an effect enhanced by the voltage dependence of
the shunting inhibition.

Section 2 presents the model of the pyramidal cell used in our study.
Simulation results for the subthreshold and suprathreshold regimes follow
in section 3. The simple LIF model, which clarifies the origin of the effects
studied here, is examined in section 4. A conclusion and outlook are given
in section 5.

2 Methods

2.1 Compartmental Model. Basilar pyramidal cells in the ELL receive
segregated feedforward and feedback input (see Berman & Maler, 1999,
and references therein). The former is from the electroreceptor’s giving both
excitatory input directly to the basal dendrite bush of the cell and disynaptic
inhibitory GABAergic input to the cell soma. The feedback excitatory input
is to the apical dendrites of the pyramidal cells, while the feedback inhibition
is via a different set of GABAergic interneurons. Both sets of interneurons
use GABAA receptors (τ = 7 ms, Erev = −70 mV).

We developed a two-dimensional, 152-compartment model of the basi-
lar pyramidal cell using confocal images of a Lucifer yellow-filled neuron
(Berman, Plant, Turner, & Maler, 1997). The diameters and length of the com-
partments ranged between 0.5 and 7 µm and 5 and 700 µm, respectively.
However, each compartment was subdivided into a number of isopotential
segments for computational purposes; the maximum section length was
set to 25 µm. Here, we report only on results for inhibitory synapses end-
ing on the soma; the use of the full model is nevertheless justified by the
fact that it provides a realistic passive dendritic load on the soma compart-
ment. The dynamical equations were integrated with NEURON (Hines &
Carnevale, 1997) using a central difference scheme (Crank Nicholson). The
time step was set to 0.025 ms, a value much smaller than the width of mea-
sured synaptic responses (Berman et al., 1997; Berman & Maler, 1999) and
action potentials (Turner, Maler, Deerinck, Levinson, & Ellisman, 1994). For
all compartments, axial resistivity was set to 250 Ä/cm, and capacitance
per unit area was taken as 0.75 µF/cm2, which are realistic values for ver-
tebrate neurons (Mainen & Sejnowski, 1998). The passive characteristics of
the model cell are such that the input resistance, Rin = 30.1 MÄ, and the
passive membrane time constant, τm = 9.1 ms, are comparable to experi-
mental measurements (Berman & Maler, 1998a). The temperature was set
at 28◦ C (Berman & Maler, 1998a).
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2.2 Hodgkin-Huxley Dynamics. We considered the soma as having
nine conductance channels. The differential equation governing the mem-
brane potential at the soma is:

Cm
∂

∂t
Vm + INa + IDr + INaP + IK1 + IK2 + IKV3 + Ileak + Iexc + Iinh = 0. (2.1)

The active channels involve fast sodium INa and delayed potassium IDr;
they are associated with action potential generation. IKV3 is a high-threshold
potassium channel whose kinetics are well known (Wang, Gan, Forsythe, &
Kaczmarek, 1998). Kv3 is abundant in ELL pyramidal cell somata (Turner,
Morales, Rashid, & Dunn, 1999; Rashid, Morales, Turner, & Dunn, 1999) and
has been included for added realism. The channel parameters (see the ap-
pendix) were fitted to experimental voltage clamp tests of cloned HEK cells
(Ray Turner, unpublished observations). INaP is a persistent sodium current
(Mathieson & Maler, 1988; Turner et al., 1994), which is balanced by IK1, a
persistent potassium current. IK2 is a slow-activating persistent potassium
current inserted to mimic the correct firing adaptation under prolonged
stimulus, as observed experimentally (see the appendix). The above six
channels are modeled as modified Hodgkin-Huxley channels (Hodgkin &
Huxley, 1952; Koch, Bernander, & Douglas, 1995). Ileak corresponds to the
standard leak channel. Finally, the synaptic input to the neuron is sepa-
rated into an excitatory current Iexc and inhibitory current Iinh. The fitting of
parameters is discussed in the appendix.

2.3 Synaptic Modeling. A synapse response is modeled as an alpha
function, gsyn(t) = gmax

t
τ

e1− t
τ (Jack, Noble, & Tsien, 1975; Bernander et al.,

1991). The function gives the synaptic conductance change for t > t0, where
t0 is the synaptic response onset time. Here, gmax is the maximum conduc-
tance, reached at t = τ , the synapse time constant. A sigmoidal form was
used for the chloride channel voltage-dependent conductance (for experi-
mental justification of sigmoidal dependence, see Figure 5c of Legendre &
Korn, 1995). This synaptic conductance is still minor in comparison with
the conductances underlying the action potential (gNa, gKV3, and gDr). We
chose the following modification to the classical alpha function, in which
gmax is made voltage dependent:

gsyn(Vm, t) = gmax

(
α

1+ e−
(λ+Vm)

γ

+ β
)

t
τ

e1− t
τ . (2.2)

Here α and β represent the degree of voltage dependence in the synapse,
and λ and γ parameterize the sigmoidal dependence assumed for gmax. We
assume that each inhibitory synapse has a fixed mean rate of firing with ex-
ponential interspike interval distribution (each is driven by a homogeneous
Poisson process). Changing this mean rate varies the amount of inhibition.
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Figure 1: (a) Voltage dependence of the two conductances considered in our
study. Svdep refers to the voltage-dependent coefficient (large bracket in equa-
tion 2.2) with parameters α = 1, β = 0.2, λ = 65 mV, γ = 1 mV, and multiplied
by gmax = 0.00114 µS. Svindep is for the voltage-independent case, with param-
eters α = 0, β = 1, multiplied by gmax = 0.001 µS. These parameters are fixed
throughout our study. (b) Total time-summed conductance from 250 synapses
(summed conductance contributions of all synapses for the length of the simu-
lation −1 s), each firing according to a Poisson shot-noise process with a mean
rate of 10 Hz, as a function of excitatory input current. The voltage-independent
curve shows no dependency on input current. The Svdep curves depend on in-
put current and in fact are similar to the average subthreshold voltage curves in
Figure 2. If we let gvdep

max = 0.00114 µS and gvindep
max = 0.001 µS, then the integrals

of both curves are approximately equal.

2.4 Quantitative Matching of Svindep and Svdep Synapses. Here we com-
pare f-I characteristics for two extreme situations: the voltage-independent
synapse (labeled Svindep: α = 0, β = 1) and a highly voltage-dependent
synapse (labeled Svdep: α = 1, β = 0.2; note that the Svdep synapse was
given some voltage independence to ensure physiological realism). These
parameters were adjusted so as to mimic the two- to three-fold increase in
GABAA channel conductance over ∼ 20 mV of membrane depolarization
observed in ELL pyramidal cells in response to application of exogenous
GABA (Berman & Maler, 1998a).

The λ and γ parameters were chosen to produce a gradual change in
conductance over the whole subthreshold voltage range (Vm < −60 mV).
Figure 1a shows the resulting voltage dependencies of gsyn that were used
in the Svindep and Svdep simulations below. The different gmax values in
Figure 1a were chosen based on the following considerations. In the voltage-
independent case, the total synaptic conductance, summed over all synapses,
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fluctuates around a constant, regardless of the excitatory input current.
However, this is not so for the voltage-dependent case, where higher-input
currents produce larger depolarizations, and thus larger inhibitory conduc-
tances. Figure 1b illustrates this by plotting the total time-summed conduc-
tance from 250 synapses of both types (mean rate of 10 Hz) as a function
of input current. gvdep

max in Figure 1a was chosen so that the integral of these
total conductance curves (Figure 1b) is approximately equal over the 0 to
2 nA input current range. This ensures that changes in f-I characteristics due
to inhibition, over the input current range of interest, are not dominated by
mismatched total conductance magnitudes. For inhibitory input frequen-
cies greater than 10 Hz, the mean subthreshold voltage will decrease, which
reduces gvdep. The matching is nevertheless still good.

3 Simulation Results

The total feedforward and feedback excitation Iexc was modeled as a con-
stant depolarizing current I. For each such current, an average output fre-
quency was computed over a 1000 ms window, following a 100 ms tran-
sient period. This was done for currents of 0.1 nA to 2.0 nA in increments of
0.01 nA in order to create an f-I curve for a given rate of inhibitory synaptic
input. The inhibitory discharge rate was then varied in order to alter the
amount of inhibition, and a new f-I curve was obtained from new simula-
tions.

3.1 Subthreshold Dynamics: Divisive Effects and Gain Control. Fig-
ure 2 plots the average subthreshold voltage as a function of constant in-
put current. The rheobase current Irh refers to the excitatory input current
required to initiate spiking for a given rate of inhibition. This current is
determined by the onset of spiking in Figure 3. For I < Irh in Figure 2,
the subthreshold voltage fluctuates around its average value, due to the
stochastic nature of the inhibitory input. For I > Irh, only the voltages in
the interspike intervals (and for computational purposes, V < −60 mV)
were used to compute the average subthreshold voltage. The shape of the
maxima of these curves will be discussed later; the decrease of the average
subthreshold voltage at higher input currents is the result of the increasing
influence (due to the increasing spiking rate) of the repolarizing potassium
currents (IDr, IKV3, and IK1) that follow spikes.

We ran simulations using each synapse type for 10 Hz and 15 Hz in-
hibitory rates. The average subthreshold voltage was computed in each case
and plotted against input current. The general shape, shown in Figure 2, is
similar for all plots. The Svindep synapses (see Figure 2a) give a linear rise
to Irh, as expected from Ohm’s law, and as the inhibitory strength increases
from 10 Hz to 15 Hz, a divisive effect is clearly seen as a slope reduction
(∼ 25%). For Svdep inhibition (see Figure 2b), the curve grows nonlinearly;
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Figure 2: Average subthreshold voltage as a function of input current for
(a) Svindep and (b) Svdep with 10 and 15 Hz inhibitory firing rates. The rheobase
current Irh and linear fits to the data to the left of Irh are shown in a. Irh is shifted
further to the right in b, and the gain (slope) increases nonlinearly with input
current.

a fit to ρxβ yielded β ∼ 0.44 for the 10 Hz and β ∼ 0.47 for the 15 Hz
case. Again, as inhibition was increased from 10 Hz to 15 Hz, the effect on
the curve is divisive, with a 20% reduction in ρ. It is seen that the linear
divisive effect in Figure 2a (Svindep) is constant (fixed slope) over I < Irh.
However, the divisive effect in Figure 2b (Svdep) has increasing potency
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Figure 3: Mean discharge frequency versus excitatory input current for both
Svindep and Svdep simulations. For each panel, the fixed inhibitory synaptic firing
rate is indicated. In all panels the control simulation (no inhibition) is the left
curve, the Svindep simulation is the middle curve, and the Svdep simulation is the
right curve.

(slope decreases) as I approaches Irh. Further, the shift in rheobase currents
for both rates, Irh(15 Hz)–Irh(10 Hz), is enhanced in the voltage-dependent
case as a result of the nonuniform gain control. This is an explanation for
the increased effectiveness of voltage-dependent inhibition near the onset
of firing (see below).

3.2 Suprathreshold Dynamics: Enhanced Subtractive Inhibition for
Svdep. Figure 3 plots the mean firing rate versus input current for both
synapse types and for mean inhibitory rates of 0 (control), 5, 10, 15, and
20 Hz. The observed subtractive shift (with respect to control) is seen to in-
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crease with this inhibitory rate, in agreement with Holt and Koch’s (1997) re-
sults obtained with a cat pyramidal cell model. Further, the subtractive shift
in the Svdep curves is greater than for the Svindep case for equal synaptic firing
rates; however, the asymptotic slope at high input current is the same in both
cases. The difference in the subtractive shifts between the Svindep and Svdep

f-I curves increases with inhibitory rate; indeed, a 0.25 nA additional current
is required for the Svdep simulation to reach the spiking threshold at a 20 Hz
inhibitory firing rate as compared to the Svindep result. Given the matching
of the total time-summed conductances over the 0.1–2 nA range, discussed
in section 2.4, the increased shift for voltage-dependent inhibition is not
simply the result of increased amounts of inhibitory conductance. Instead,
the result implies a greater effectiveness in the subtractive gain control of
voltage-dependent synapses. By effectiveness, we mean that for equivalent
amounts of inhibitory conductance, voltage-dependent synapses shunt a
greater amount of depolarizing current than voltage-independent synapses.

This effectiveness argument is strengthened by a comparison of the f-I
curves of the Svdep case at 15 Hz and the Svindep case at 20 Hz, shown in
Figure 4a, and their associated total time-summed conductance plots given
in Figure 4b (the conductance is summed over 250 synapses for the length
of a simulation). Figure 4a shows f-I curves that are nearly identical for both
cases, implying that the inhibitory effect is the same for both synapse types.
However, Figure 4b shows that over the whole current range, the voltage-
dependent total time-summed inhibitory conductance is, at all input cur-
rents, less than the voltage-independent case (this is to be expected since the
Svdep synapses are firing ∼ 25% less often than the Svindep synapses). Thus,
for less overall input conductance, the Svdep synapses produce equivalent
subtractive shifts in f-I curves. This increased effectiveness of voltage-de-
pendent inhibition was predicted for inhibitory input to the Mauthner cell
(Faber & Korn, 1987; Legendre & Korn, 1995).

The explanation of the increased effectiveness can be understood from
Figure 1a, the behavior of the average subthreshold voltage (see Figure 2),
and Ohm’s law: iinh = g(Vm, t) ·(Vm−Erev). In section 2.4 we forced the time-
summed conductance of both the Svindep and Svdep synapses to be equiva-
lent, yet this gives no information on how the dynamics of both synapses
differ. We thus give, in Figure 4c, the time series of both the somatic volt-
age (right axis) and the total instantaneous conductance (at each time step
the conductance is summed over all synapses) of Svindep and Svdep (left axis)
during a simulation where 250 synapses of both types fired at a mean rate of
10 Hz. The figure shows that the total instantaneous inhibitory conductance
for Svdep follows the somatic voltage, whereas for Svindep, the conductance is
approximately constant over time (fluctuations due to the stochastic nature
of the inhibition). Near the spiking threshold, gvdep is larger than gvindep,
and the opposite holds after the voltage repolarizes subsequent to a spike,
as anticipated from Figure 1a. Furthermore the battery term in Ohm’s law is
also larger near spiking threshold than after repolarization. Since iinh is the
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product of gvdep and this battery term, then ivdep
inh is much larger near thresh-

old than for the voltage-independent case, where only the battery term
varies with voltage. Thus, interestingly, in the voltage-dependent case, the
inhibitory synapses “spread” their conductance more effectively in time,
tracking the variations of the battery term. In particular, the nonuniform
gain control near rheobase for gvdep (see Figure 2: see section 3.1) is due
to the increased conductance near threshold, which accounts for the en-
hanced subtractive effectiveness of voltage-dependent inhibition. We have
also verified that the time-summed inhibitory currents for Figure 4c are
approximately equal for both synapse types, so that the above argument
applies to the inhibitory current as well for this example.
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3.3 Suprathreshold Dynamics: Subtractive and Divisive Regimes. The
f-I curves have an increasingly sigmoidal shape as inhibition is increased,
a result of combined divisive and subtractive effects. This can be shown
by separating the f-I curves into both a 0–40 Hz and a 40–100 Hz region
and performing a linear regression to the data in each region to obtain f-I
curve slope values. Figure 5a plots the fitted slope as a function of inhibitory
rate for each region and synapse type. The region f > 40 Hz shows almost
no change in slope for both types of inhibition: only subtractive effects are
seen. Holt and Koch (1997) paid close attention to such a region where, they
argued, the spike-repolarizing potassium current clamps the mean mem-
brane potential to more negative values. The shunting inhibition then has
the effect of a constant current source. Figures 2 and 5b show that the aver-
age subthreshold voltage also becomes clamped (i.e., relatively constant) at
higher input currents; according to Figure 5b, this corresponds to f > 90 Hz.
Thus, this clamping mechanism is also at work in our simulations. Interest-
ingly, Figure 5a shows that a purely subtractive effect exists for f > 40 Hz,
that is, before the voltage is clamped, and, further, that this effect occurs for
both synapse types.

A divisive effect in the suprathreshold regime—a reduction in slope
with increasing inhibition—is seen for both synapse types at lower frequen-
cies ( f < 40 Hz; see Figure 5a). Figure 5b shows that this divisive regime
and the maximum of the voltage curve occur over the same input current
range. There, the inhibitory effect is strong since the battery and conduc-
tance terms are large. Changes in excitatory input current then produce only
small changes in firing frequency. Increasing the inhibitory firing rate will
broaden the width of the average subthreshold voltage maximum, causing

Figure 4: Facing page. (a) Discharge frequency versus excitatory input current.
The open squares are for Svindep synapses with a 20 Hz firing rate, and the
solid squares are for Svdep synapses with a 15 Hz rate. (b) Total time-summed
conductance of both synapse types as a function of excitatory input current, with
the inhibitory firing rates given in a. Note that for all input currents, the Svindep

conductance is larger than the Svdep conductances since the Svdep synapses fire∼
25% less often. (c) Total instantaneous inhibitory conductance for both synapse
types is plotted as a function of time (the heavy dashed line shows the Svindep

conductance, and the dotted line represents the Svdep conductance, both plotted
on the left axis) along with the somatic voltage caused by all ionic currents
(solid line plotted on the right axis). The excitatory current was set at 1.5 nA.
The simulation included 250 synapses with Svdep parameters and 250 synapses
with Svindep parameters, both in the soma compartment. Each synaptic firing
rate was set at 10 Hz. The Svindep conductance fluctuates around a constant, but
these fluctuations are not correlated with the voltage, as in the Svdep case. Note
that the data presented in a and b pertain to the same simulations, while c is a
separate simulation, with particulars given above.
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Figure 5: (a) Slope of the f-I curves (as those in Figure 3) as a function of in-
hibitory firing rate. The slope was determined by linear regression in two re-
gions: 0–40 Hz and 40–100 Hz. In the 0–40 Hz region, the slope decreases with
inhibition for both Svindep and Svdep inhibition, that is, a divisive effect is seen.
In the 40–100 Hz region, no change of slope for either inhibition type is seen;
this is a subtractive effect. (b) Mean discharge frequency and average subthresh-
old voltage as a function of input current for an Svdep simulation with a mean
inhibitory rate of 15 Hz at each synapse. The divisive region is marked. The
region around the maximum voltage coincides with the divisive section of the
f-I curve.

an initial divisive effect. This broadening of the voltage maximum is linked
to the stochastic nature of the inhibition.

In the absence of inhibitory input, the average subthreshold voltage in
our model displays a sharp peak at the onset of firing (not shown). This is
also the case when the mean inhibition is modeled using constant (determin-
istic) conductances (reduction via Campbell’s theorem; see Bernander et al.,
1991; Holt & Koch, 1997); consequently, f-I curves then have an abrupt onset
(not shown). However, a nonzero variance of the total stochastic inhibitory
input causes a broadening of the maximum of the average subthreshold
voltage versus input current curve (see Figure 5b); the broadening is pro-
portional to this variance, which depends linearly on the inhibitory firing
rate (by Campbell’s theorem). A broad maximum is required to give the di-
visive regime a sufficient current interval to underlie a firing-rate region of
approximately 40 Hz. This suggests that the stochastic nature of the synap-
tic input causes the overall sigmoidal shape of the f-I curve. We elaborate
on the nature of the dependence of the divisive regime on stochastic input
in the next section.

Note that the Svdep simulations produce a slightly larger divisive effect
since their inhibition is more effective during the voltage maximum than the
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Svindep cases. This is illustrated in Figure 5a in that for equivalent inhibitory
rates, the estimated slope in the divisive regime is always smaller for the
Svdep synapse as compared to the Svindep one. However, the transition from
divisive to subtractive inhibition does occur for both Svindep and Svdep, im-
plying that voltage dependency is not required to produce this transition
(see Figures 3 and 5a).

4 Analytical Model

In this section, we further analyze our results using an LIF model. Let
gshunt(Vm) be the conductance associated with a shunting inhibitory chan-
nel. For analytic simplicity, its voltage dependency is chosen linear in the
membrane voltage Vm rather than sigmoidal:

gshunt(Vm) = g ·
(
αVm

κ
+ β

)
. (4.1)

Here g is the overall strength of the inhibition, α and β are dimensionless
parameters that control the degree of voltage dependency (similar to α and
β in equation 2.2), and κ is introduced to preserve dimensionality and force
both linear and constant terms to be similar in magnitude (we choose κ =
5 mV, the midpoint between reset and threshold voltage). Assuming only
this shunting inhibition and a constant excitation, we have

Cm
dVm

dt
+ g ·

(
αV2

m

κ
+ βVm

)
= 1. (4.2)

The subthreshold case yields the steady-state voltage Vss:

Vss = −βκ2α
+ 1

2

√
β2κ2

α2 +
4κI
gα

. (4.3)

For β À α (voltage-independent inhibition), Vss is linear in I, while for
β ¿ α (voltage-dependent inhibition), Vss rises nonlinearly, as is the case in
Figure 2b for the full ionic model. The case where the steady-state voltage
equals the threshold voltage, Vss = Vthres, corresponds to I = Irh. Inserting
these relations into equation 4.3 yields

Irh =
αgV2

thres

κ
+ gβVthres. (4.4)

Equation 4.4 thus shows that as the inhibition becomes increasingly voltage
dependent (i.e., as α/β increases), the rheobase current Irh shifts to higher
values. This shift is also seen in the compartmental simulations (see Fig-
ure 3).
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Figure 6: Mean firing frequency versus input current in the LIF model. (a) Con-
stant g of 10 nS (weak inhibition). (b) Constant g of 40 nS (strong inhibition).
In each graph, the control case for g = 0 is shown. Each graph displays results
for weak voltage dependence (α < β) and strong voltage dependence (α > β).
Other parameter values are Cm = 1 nF, k = 5 mV, Vth = 10 mV, t0 = 0.001 s.

Further, equation 4.2 is an analytically tractable Ricatti equation (Davis,
1962), with solution for Vm(0) = 0:

Vm(t) = η

2gα
tanh

(
ηt

2κCm
+ arctan h

(
ηβ

κβ2g+ 4αI

))
− βκ

2α
, (4.5)

where η = √(κgβ)2 + 4αgIκ . We can derive frequency of discharge f from
equation 4.5. Letting Vm(T) = Vthres yields the period T between spikes:

T = 2κCm

η
·
(

arctan h
(

2gαVth + gκ
η

)
− arctan h

(
ηβ

κβ2g+ 4αI

))
. (4.6)

The frequency of discharge is then f = 1/(T+ to), where we have added
an absolute refractory period t0 (∼ 1 ms). Figure 6 plots this frequency ver-
sus input current for two extreme cases: high β and low α (weakly voltage
dependent) and low β and high α (strongly voltage dependent). We chose
to keep α + β = 1 in all plots so as to ensure that the inhibitory strength
is controlled by g only, and not by α and β. Increasing g corresponds to in-
creasing the inhibitory firing rate in the compartmental model. According
to Campbell’s theorem, these two quantities are linearly related. The sub-
tractive effect and its increase with g, found in the compartmental model,
is clearly reproduced by this LIF model, as seen in Figure 6. The increased
subtractive effectiveness for the voltage-dependent case (for fixed g) is also
seen.
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Note that in our LIF model, we have used a linear approximation to
the sigmoidal dependence used in the compartmental model. Neverthe-
less, qualitatively similar results are obtained in both cases. This indicates
that the exact dependence of g(Vm) on Vm is not important to establish in-
creased effectiveness of voltage-dependent conductance; only a monotonic
increasing function is required. As verification, we have also incorporated
a sigmoidal dependence in our LIF model and obtained f-I curves using
numerical integration (fourth-order Runge-Kutta, fixed time step of 10−5).
The results (not shown) are qualitatively similar. This not only illustrates
the robustness of the model mentioned above, but also provides further
evidence that the increased subtractive effectiveness of voltage-dependent
inhibition is a consequence of the voltage dependence rather than of some
unsuspected dynamical effect in the full ionic model.

Finally, we recall that the divisive effect ( f < 40 Hz) seen in the com-
partmental model was a consequence of the stochastic nature of the inhi-
bition. Our LIF model does not have a stochastic input, and its average
subthreshold voltage curve has a sharp peak at the onset of periodic fir-
ing (not shown). This deterministic model produces purely subtractive f-I
curve shifts through inhibition (see Figure 6). However, the inclusion of
stochastic input in the LIF model is known to produce sigmoidal f-I curves
as in Figure 3 (see, e.g., Lánský & Sato, 1999, and Figure 7 in this article).
Stochastic forcing also broadens the peak of the average subthreshold volt-
age versus input current curves as in Figure 5b (not shown). In view of this,
we have set out to determine (1) whether a subtractive effect is also present
with stochastic synaptic input and (2) whether stochastic input produces a
divisive regime at lower firing frequencies, as in the compartmental model.

For simplicity we considered only the voltage-independent case (α = 0)
of equation 4.1, since divisiveness was also seen for the Svindep synapses in
the compartmental simulations (see Figure 5a). There are a variety of ways
in which a stochastic synaptic model with reversal potentials can be approx-
imated by diffusion models (Lánský & Sato, 1999). Here we let the conduc-
tance g in the LIF model be a stochastic quantity by setting g = ḡ+ σ(g)η(t)
where ḡ is the mean conductance and η(t) is a stochastic process of standard
deviation σ(ḡ). To match the smoothness of the conductance fluctuations in
the compartmental model, we model η(t) as an Ornstein-Uhlenbeck process
(lowpass-filtered gaussian white noise) with correlation time τ = 75 ms; our
results were not qualitatively sensitive to this correlation time. Equation 4.1
thus becomes a stochastic differential equation with multiplicative noise
(since the noise term multiplies the state variable Vm):

Cm
∂Vm

∂t
+ [ḡ+ σ(ḡ)η(t)]Vm = I (4.7′)

∂η

∂t
= −η

τ
+ ξ (4.7′′)
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where ξ is gaussian white noise with zero-mean and unit standard devia-
tion. Numerical simulations produced sigmoidal curves of mean firing rate
versus input current I (see Figure 7), as expected. Increases in inhibitory
firing rate in the compartmental model were modeled here as increases in
mean conductance ḡ; these increases are linearly related, as discussed above.
Further, and also in accordance with Campbell’s theorem, the variance σ 2 of
the conductance fluctuations was increased linearly with the inhibitory fir-
ing rate, and thus with ḡ. Figure 7a shows that the inclusion of this stochastic
forcing produces f-I curve shifts that are qualitatively similar to those found
for the deterministic LIF and compartmental models; hence, subtractive in-
hibition (Holt & Koch, 1997) is maintained in the presence of such forcing.

Figure 7a also clearly shows a divisive effect as ḡ increases, as in the
compartmental model. The origin of this effect here may lie in the coupling
of the variance of the fluctuations to their mean or in the multiplicative
nature of the noise, or in both. Figure 7b presents f-I curves from simulations
in which the variance was made independent of ḡ. Although the noise is
still multiplicative, divisiveness is no longer seen. We have also verified that
a stochastic LIF with additive noise (i.e., stochastic forcing is simply added
to the right-hand side of equation 4.1) shows divisiveness as well, as long
as the variance increases with the mean conductance (not shown). Thus, the
divisiveness seen in the LIF model, and presumably in the compartmental
model as well, arises from increases in the variance of the stochastic forcing
that accompanies increases in inhibitory input.

The origin of the effect can be seen by comparing the right-most curves
in Figures 7a and 7b. The point of firing onset is one of the two points used
for estimating the slope of the f-I curve at lower discharge frequencies. The
second point is determined by the intersection of the stochastic f-I curve with
a line of constant firing frequency (e.g., 40 Hz was used in the compartmental
model; 10 Hz could be used for the LIF model in Figure 7). The onset of
firing in Figure 7a occurs at a lower input current than in Figure 7b; this
is a consequence of the higher conductance variance in Figure 7a. Since
the estimated slope is inversely proportional to the input current interval
between these two points, it is smaller in Figure 7a than in Figure 7b.

Further, in the voltage-dependent conductance case, the effectiveness of
the inhibition is increased, particularly near the onset of firing (see Fig-
ure 1b). This increases the input current interval used for the slope estima-
tion, yielding a smaller slope in comparison with the voltage-independent
case. Thus, voltage dependence further enhances divisiveness.

5 Conclusion and Outlook

We have presented a morphologically and physiologically realistic com-
partmental model of a pyramidal cell in the electrosensory lateral line lobe
of a weakly electric fish. This model was then used to investigate the effect
of voltage-dependent inhibitory conductances on firing rate versus input
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Figure 7: Mean firing rate f versus input current I for the stochastic LIF model,
given by equations 4.7 and 4.7′. Firing rates were calculated at 0.01 nA steps
using 10 sec simulations for each input current. (a) The mean inhibitory con-
ductance (voltage independent) is proportional to the firing rate of Poisson
inputs, while the standard deviation is proportional to the square root of this
firing rate (Campbell’s theorem). Here we choose σ = a

√
ḡ with a = 3× 10−4. A

clear divisive effect at low firing frequencies ( f < 10 Hz) is present as ḡ increases
from 30 nS to 90 nS. (b) The standard deviation of the conductance is now made
constant at σ = b, with b = 5×10−8. No divisiveness is present as ḡ increases. In
all plots, the deterministic curve (σ = 0) is superimposed. The stochastic inte-
gration used a fixed step (10−5 sec) fourth-order Runge-Kutta method combined
with the Box-Muller algorithm for the gaussian deviates.

current curves. To our knowledge, this article is the first to model this de-
pendence explicitly, and it highlights the importance of this dependence,
especially when dealing with the subthreshold regime. Our results show
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that this kind of shunting inhibition enhances the subtractive shifts reported
in Holt and Koch (1997) and indicates an increased effectiveness of voltage-
dependent inhibitory conductances compared to the commonly assumed
voltage- independent ones. This is due to the tracking of the membrane po-
tential by the inhibitory conductance, such that the inhibitory effect is max-
imal near the onset of spiking. One interesting implication of this increased
effectiveness is that small changes in inhibitory conductance, arising, for
example, from synaptic plasticity, can have strong effects on gain control in
sensory systems (Nelson, 1994; Nelson & Paulin, 1995).

We have also uncovered a divisive regime at low firing frequencies. It
relates to the broadening of the peak of the average subthreshold voltage
versus input current characteristic, a consequence of the stochastic nature
of the inhibitory synaptic input. Our study of the LIF model reveals that
the conductance fluctuations used to model the randomness of the Poisson
inputs in the compartmental model are responsible for producing a divisive
regime at lower discharge frequencies; this is true provided that the variance
of these fluctuations increases with the mean conductance. This divisive-
ness is enhanced by the voltage dependence of the conductance. However,
these fluctuations do not alter the subtractive nature of the f-I curves at
higher discharge frequencies or their enhancement by voltage-dependent
conductances.

The spontaneous firing rate of some classes of ELL pyramidal cells is well
below 40 Hz (Bastian & Courtwright, 1991). During electrolocation of prey
objects (Nelson & MacIver, 1999), only small alterations of electroreceptor
input occur, and it is therefore likely that firing-rate modulations of these
pyramidal cells will remain in the divisive regime. Therefore, divisive in-
hibition of ELL pyramidal cells is functionally relevant for electroreception
and likely relevant for other neural networks as well.

Future work should analyze further the possible interactions of voltage-
dependent inhibition with various voltage-gated inward currents present in
ELL pyramidal cells (NMDA: Berman et al., 1997; persistent sodium chan-
nels: Stuart, 1999; Turner et al., 1994; potassium conductances: Berman &
Maler, 1998b) Further, our study has been performed for fixed inhibitory
rates. However, the inhibitory firing rates are likely to be correlated with
ELL pyramidal cell firing rates (Berman & Maler, 1999). It will be interesting
to investigate the effect of voltage-dependent inhibition in closed loop (Nel-
son, 1994; Nelson & Paulin, 1995). Finally, it will be important to incorporate
eventually more realistic excitatory synaptic input with variable degrees of
correlation with inhibitory input (Berman & Maler, 1999).

Appendix

In this appendix, we provide details on the estimation of parameters for
the pyramidal cell ionic model. The qualitative conclusions of our article
do not depend sensitively on the exact values of our parameters. Figure 8
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Figure 8: Mean discharge frequency versus time from our simulations and from
a single cell in vitro recording (Berman & Maler, 1998b). Parameters are as in
Table 1. The bottom two traces give the experimental and simulation results for
a current injection of 0.3 nA, the middle two for a current of 0.6 nA, and the top
two for a current of 1.2 nA. The simulations were compared to all currents from
0.1 to 1.2 nA in steps of 0.1 nA (the other nine plots are not shown).

plots firing frequency versus time for both a real ELL basilar pyramidal cell
under constant depolarization (0.3 nA, 0.6 nA, and 1.2 nA injections), as
well as the compartmental model measurements under equivalent condi-
tions. We adjusted active and leak channel parameters to obtain reasonable
agreement between simulated and measured firing frequency versus time
plots for a range of excitatory input currents (Mathieson & Maler, 1988). The
final parameters are shown in Table 1. Good agreement is found for 0.3 and
0.6 nA, with increasing discrepancies as the current increases. The inclusion
of a fourth potassium conductance, which will mimic the proper firing sat-
uration at high currents, is planned. The growth of the model is an ongoing
process, yet this parameter choice is deemed reasonable, given the variabil-
ity observed in such experimental data, and the issues addressed here.
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Table 1: Ionic Channel Parameters.

INa IDr INaP IK1 IK2 IKV3 Ileak

Ion Na+ K+ Na+ K+ K+ K+ N/A
η m2h m2 m3 m m m3h N/A

a/b 40/− 3 40/− 3 50/− 7 42/− 5 30/− 1 0/− 18 N/A
45/3 0/40

τ (ms) 0.2 0.4 0.1 2.0 4000 2.0 N/A
0.6 2.0

Erev (mV) +50 −95 +50 −95 −95 −95 −70
gmax (S/cm2) 0.85 0.5 0.03 0.01 0.015 5 7E-5

Notes: Each current is described by I = gmax η . Erev is the reversal potential of the
channel. gmax is the maximum conductance of the channel. η = mihj is the product of
the activation and inactivation variables raised to powers i and j, respectively. τ is the
voltage-independent time constant associated with m or h. a and b are the constants
appearing in the sigmoid expression for m∞ and h∞: x∞ = 1/1+ exp((Vm+ a)/b). The
state variable x evolves as ∂x

∂t = x∞−x
τx

. The columns for INa and IKV3 contain double
entries in some blocks; the top entry is associated with the m parameter, the bottom
with the h.
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