
January 1991 Report No. STAN-CS-91-1356

Thesis

PB96-i49745

SUBTREE-ELIMINATION ALGORITHMS IN DEDUCTIVE
DATABASES

by

Yatin Saraiya

nSMäHwmgwj

* - ■jss.as'fcaaiiwBwnw

(»TIC QUALITY IHSBgosEB &

Department of Computer Science

Stanford University

Stanford, California 94305

19970422 030

SUBTREE-ELIMINATION ALGORITHMS IN DEDUCTIVE
DATABASES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Vat in Saraiya
Jamiarv 1991

© Copyright 1991 by Yatin Saraiya
All Rights Reserved

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Jeffrey D. Ullman
(Principal Advisor)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Vaughan Pratt

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Yehoshua Sagiv

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

in

Abstract

A deductive database consists of a set of stored facts, and a set of logical rules (typically,
recursive Horn clauses) that are used to manipulate these facts. A number of optimizations
in such databases involve the transformation of sets of logical rules (programs) to simpler,
more efficiently evaluable programs. We consider a class of optimizations in which the
transformation is a simple syntactic restriction on the form of the original program, and in
which the correctness of the transformation indicates the existence of a normal form for the
proof trees generated by the program. For example, the existence of basis-linearizability in
a nonlinear program indicates that the program is inherently linear, and permits the use
of special-purpose query evaluators for linear recursions. The canonical example of a basis-
linearizable program is the program that computes the transitive closure of a binary relation;
the corresponding normal form for the proof trees is that of right-linearity. Similarly, if a
program is sequencable, then it is conducive to a pipelined evaluation. In addition, the
existence of k-boundedness in a program permits the elimination of recursion overhead
in evaluating the program. We investigate the complexity of detecting such optimization
opportunities, and provide correct (but not always complete) algorithms for this purpose.

Each of the problems that are mentioned above may be described in terms of the
subtree-elimination problem, which we define and analyze. We relate the detection of basis-
linearizability, sequencability and 1-boundedness to the complexity classes j\fC, V and A''P,
and show that the first two of these problems are, in general, undecidable. The techniques
used in our analysis provide a complete description of the complexity of deciding the equiv-
alence of conjunctive queries (single-rule, nonrecursive programs), and tight undecidability
results for the detection of program equivalence.

IV

Acknowledgements

First and foremost, I would like to thank Jeff Ullman, who had a major role in defining

and shaping this thesis. His insight and interest contributed greatly to my understanding

of the problem, and his kindness and generosity made it a pleasure to be a member of this

Department.

I would also like to thank Vaughan Pratt for his patience, Shuky Sagiv for his numerous

and invaluable comments at various stages in the development of this thesis, and Moshe

Vardi for posing hard problems.

I'd like to express my appreciation to the following people: Tomas Feder and Jack

Snoeyink, for letting me bounce my ideas off them; members of the NAIL! group, past and

present, for the stimulating environment that they provided; Gene Klotz, for giving me my

first shot at research; and Ed Skeath, for getting me started on this whole business. Ed will

be sorely missed.

I am grateful to the following organizations for their support: NSF (IRI-88-12791),

AFOSR (88-0266), and IBM (equipment grant).

On a personal note, I'd like to thank my mother Indu, my father Pratap and my brother

Nakul for all the love and support they have shown me over the years. I'd also like to thank

all the friends who have helped out at various stages; they know who they are, and they

know I know.

Y. P. S.

Stanford, CA

Contents

Abstract 1V

Acknowledgements v

1 Subtree eliminations 1

1.1 Introduction 1
1.2 Deductive databases 1

1.2.1 Syntax 2

1.2.2 Semantics 3
1.2.3 Proof trees 4

1.2.4 Optimizations 5
1.3 Top-down expansions ?

1.3.1 Conjunctive queries 9
1.3.2 Containment and equivalence 10
1.3.3 Tree shapes H
1.3.4 Changing shapes 15

1.4 Subtree eliminations 1"
1.4.1 Normal-form optimizations 1"
1.4.2 One-boundedness: definition and results 19
1.4.3 Base-case linearizability: definition and results 22
1.4.4 Sequencability: definition and results 25
1.4.5 Subtree eliminations as a descriptive mechanism 28

1.5 Subtree-elimination algorithms 30
1.5.1 Basis-independence 30
1.5.2 Generating sufficient conditions 31
1.5.3 Fast algorithms 3/

1.6 Overview of Chapters 2, 3 and 4 42
1.6.1 Complexity results 43

2 The complexity of conjunctive query containment 44

2.1 Introduction 11
2.2 The ^-containment problem 44

2.2.1 Conjunctive query containment 45

vi

2.2.2 Conjunct mappings -16
2.2.3 The fc-containment problem 48
2.2.4 Pruning 49
2.2.5 Equivalence of the containment and distinguished-destination problems 51
2.2.6 Complexity of ^-containment 52

2.3 Applications 61
2.3.1 Approach and notation 61
2.3.2 One-boundedness 63
2.3.3 Rule sequencability 66
2.3.4 Basis-linearizability 68

3 A decision procedure for basis-linearizability 71

3.1 Introduction 71
3.1.1 Related results 72

3.2 The algorithm 73
3.3 Proof Outline 77
3.4 Adjuncts 77
3.5 Proof 80

3.5.1 Proof outline 80
3.5.2 Sufficiency 81
3.5.3 Necessity 86

4 Undecidability of the general problems 117

4.1 Introduction 117
4.1.1 Definitions 117

4.2 Results 118
4.2.1 Related results 120

4.3 Outline 120
4.4 Preliminaries '. 120

4.4.1 Context-free grammars 120
4.4.2 Datalog programs 122

4.5 Linear Logic Programs 123
4.5.1 The construction 124
4.5.2 Using the construction 131

4.6 Single-recursive-rule programs 133
4.6.1 The construction 133
4.6.2 Using the construction 113

5 Concluding remarks 145

Bibliography 147

VII

List of Tables

5.1 Complexity results 145

V11J

List of Figures

1.1 Proof tree 4
1.2 Top-down expansion 8
1.3 Top-down expansion with specified root 9
1.4 Changing the order of expansion 14
1.5 The Expansion Theorem 16
1.6 Assumption for the Splicing Theorem 17
1.7 Illustrating the Splicing Theorem 18
1.8 A one-bounded expansion 19
1.9 Illustrating Example 1.16 21
1.10 A right-linear expansion 23
1.11 Illustrating Example 1.17 24
1.12 A sequenced expansion 26
1.13 Illustrating Example 1.18 27
1.14 Minimum-depth violation of one-boundedness 29
1.15 Minimum-depth violation of basis-linearizability 29
1.16 Minimum-depth violation of sequencability 30
1.17 Illustrating Theorem 1.7 32
1.18 Proving one-boundedness 33
1.19 An acceptable mapping 33
1.20 Tj in Theorem 1.8 34
1.21 The rectification procedure of Theorem 1.8 35
1.22 Proving sequencability 37
1.23 The rectification process of Theorem 1.9 38
1.24 Notation 39
1.25 W in Theorem 1.10 39
1.26 W in Theorem 1.11 41

2.1 Distinguished-destination instance 49
2.2 Pruning 50

2.3 Testing the containment C3 C CA in Kxample 2.9 53
2.4 Valid labelling 57
2.5 Illustrating the construction 59
2.6 Priming (;3

IX

2.7 The expansions of Theorem 2.7 64
2.8 The construction of Theorem 2.11 67
2.9 The construction for Theorem 2.13 "0

3.1 Expansions used in the algorithm 75
3.2 Acceptable mapping 70
3.3 Right strut 78
3.4 The induction 79
3.5 Right-linear expansion 80
3.6 Necessity: Tx C T5 81
3.7 Assume T\ C T2 or T\ C T3 82
3.8 Assume Tx C T5 82
3.9 Show Ti C T4 S3
3.10 Naming and renaming conventions 84
3.11 Persistence of A' 85
3.12 Trees S and R 85
3.13 Assume Tx C T5 86
3.14 Unacceptable mapping from T3 into T\ 87
3.15 Assume 7\ C T5 87
3.16 Conclude 7\ C T4 88
3.17 Ts C T6 C T9 89
3.18 Minimal program: T\ C Ti or T\ C T3 91
3.19 Unacceptable containment mapping 92
3.20 g : T3 - 7\ 95
3.21 Assume 1\ C T5 96

3.22 The case /(p(1)) = P(i)P(i) 9T

3.23 The cases /(p(1)) = P(i)P(2) and /(P(i)) = 1>(2) 98

3.24 The case /(p(1)) = P(i)P(i) 99
3.25 Trees T6 and T5 105
3.26 Normalised mapping 107
3.27 One-boundedness 108

3.28 The case /(p(ij) = P(i)P(2) 110

3.29 The case /(p(i)) = P(2) 1^

4.1 Right-linear query 118
4.2 Sequenced query 119
4.3 Simulating a derivation 127
4.4 Generating a string 128
4.5 Illegal expansion 128

Chapter 1

Subtree eliminations

1.1 Introduction

A deductive database system represents the use of predicate logic as a programming language
for database systems. One may think of this programming language as the extension of
relational algebra ([11]) through the use of recursion. This extension provides a strict
increase in the expressive power of the database query language ([2]). but makes query
evaluation potentially more expensive; that is, a general-purpose query evaluator is likely
to be inefficient when applied to a "simple" program. Many of the optimization strategies
that have been incorporated into the experimental deductive database systems currently
under construction ([23, 22, 21], for example) are based on the recognition of programs on
which limited yet efficient query evaluators may be used. In this dissertation, we provide an
alternative optimization strategy: the replacement of programs by semantically equivalent
but syntactically simpler programs, such that efficient algorithms may be used with respect
to the transformed programs. The optimizations that we investigate are based on the
detection of "normal forms" for the proof trees generated by the program in question. The
problems that we address are decision problems; that is, given a program and a normal form,
we ask whether the normal form applies to the given program. In this thesis, we present a
uniform framework for the description of normal forms, a mechanism for the construction
of conditions that are sufficient (but not always necessary) for the detection of each such
normal form, and complexity results for the detection of three common normal forms. Our
results have implications to the complexity of deciding equivalence among recursive and
nonrecursive programs.

1.2 Deductive databases

For our purposes, a deductive database system1 consists of a finite set of stored ground
facts (the extensional database or EDB), and a finite set of rules (Horn clauses) that an'
used to manipulate the EDB. A set of rules is termed a program. The program comprise*

'See [35, 36] for a comprehensive treatment.

CHAPTER 1. SUBTREE ELIMINATIONS

the intensional database or IDB. Relations are denned in terms of predicates; that is, for
any predicate p, the relation for p is the set of tuples « such that p(a) is true. In this
report, we will use the terms "predicate" and "relation" interchangeably. A predicate that
corresponds to an EDB relation is termed an extensional or EDB predicate, and a predicate
that is defined by a rule is termed intensional or IDB. We assume without loss of generality
that no predicate is both intensional and extensional.

1.2.1 Syntax

Programs will be written using Prolog syntax. A rule is of the form

p(X):-b1{Y1),...MYn)-

The " :- " represents the "if" operator, and a comma represents the "and" operator. The
atomic formula (atom) p(X) is termed the head of the rule, and the conjunction on the
right of the "if" symbol is termed the body of the rule. Each atomic formula in the body
is termed a subgoal. The rule defines the predicate p, and p is hence intensional. The
variables appearing in the head of the rule are termed distinguished, and all other variables
are termed nondistinguished. Distinguished variables are universally quantified over the
rule, and nondistinguished variables are implicitly existentially quantified in the body of
the rule. That is, if Wx,..., Wk are the distinguished variables in the rule and Zx,..., Zm

are the nondistinguished variables, then the rule represents the formula

\/Wu ..., Wk((3Zu..., Zm61(f1) A ... A bn(Yn)) D p(A))

Example 1.1 The following program V consists of the two rules rx and r2, and defines the
intensional predicate p. We assume that 6 is an extensional predicate.

,1:7,(A\y):-p(A-,tO,p(t/,r).
r2:p(X,Y):-b(X,Y).

p(X,Y) is the head of each rule. The conjunction p(X,U),p(U,Y) is the body of rule r,.
and b(X,Y) is the body of rule r2. The meaning of ride rx is: for all A" and Y, p{X,Y) is
true if for some U, p(X,U) and p(U,Y) are both true; that is, r, represents the formula

VX,Y((3Up(X,U)Ap(U,Y)) D p(X,Y))

D

If a predicate p appears in the head of a rule and q appears in the body of the rule,
then /; is said to depend on q. A predicate p is termed recursive if p depends transitively
upon itself, and a rule is termed recursive if a predicate q appearing in the body of the
rule depends transitively upon the predicate p appearing in the head of the rule. All other
predicates and rules are termed nonrecursive. A program is termed recursive if any rule is
recursive, and nonrecursive otherwise. In the example above, the predicate p and rule ;•] are

1.2. DEDUCTIVE DATABASES

recursive (so the program is recursive), and the predicate 6 and the rule r2 are nonrecursive.
A nonrecursive rule is also termed a basis or initialisation rule. A rule is said to be linear \[
at most one subgoal in the rule is intensional, linear recursive if exactly one sub-goal in the
body is recursive with the head of the rule, and bilinear if exactly twosubgoals are recursive
with the head. Rule r\ in Example 1.1 is bilinear, and rule r2 is linear. Rule ?'i in Example
1.2 below is also linear. A program is termed linear if every rule in the program is linear,
and linear recursive if every rule is linear recursive or nonrecursive.

1.2.2 Semantics

The accepted semantics for Horn-clause programs consists of the unique minimum Herbrand
model or least fixed point ([38]). The idea is that we may think of the "application" of a rule
as the bottom-up (forward-chaining) use of the Horn clause represented by the rule. Then,
the relation for each intensional predicate is the smallest relation that satisfies each of the
rules in the program; that is, the smallest relation that is closed under the application of
the rules in the program as described above. Alternatively, we may generate the intensional
relations by initialising each intensional predicate to be empty, adding all facts generated
by basis rules and then applying the rules in a bottom-up (forward-chaining) manner until
no new facts are generated. The first of these views, that of the relation for a predicate
being the smallest relation satisfying the initialisation rules and closed under the recursive
rules, is integral to the approach taken by this report. Since programs may be viewed as
generalised closures, we have focussed our attention on optimizations that may be performed
on programs that compute such common relations as the symmetric and transitive closures
of a binary relation.

Example 1.2 The program

r, : p{X.Y):-p{Y,X).
r2: p(X,Y):-b(X,Y).

computes the symmetric closure of the basis predicate 6. The recursive rule r{ states thai p
is symmetric, the basis rule insists that b C p and minimality is imposed by the semantics
of the program. Note that the program is linear (and linear recursive). D

Example 1.3 We repeat here the program of Example 1.1.

r,:p{X.Y):-p(X,UU{U,Y).
r2:p{X,Y):-b{X.Y).

The first rule says that p is transitive and the second requires inclusion; thus, the program
computes the transitive closure of b. If we think of b as the "parent" relation, then this
program computes the "ancestor" relation. This program is important in that there is no
nonrecursive program computing the transitive closure of b ([2]). justifying our earlier claim
that the addition of recursion to relational algebra, increases the expressive power of the
language. □

CHAPTER 1. SUBTREE ELIMINATIONS

p{joe, ann)

p(joe,bob) p(bob,ann)

| I
b(joe,bob) b(bob,ann)

Figure 1.1: Proof tree.

Example 1.4 The program

r^.piXA^-.-piX^^iPdJX)-
r2:p(X,Y):-p(Y,X).
r3:p(X,Y):-b(X,Y).

computes the symmetric, transitive closure of b. □

A rule is said to be safe if for every rule, every distinguished variable appears in the
rule body. A program is said to be Datalog if it is safe and function-free; the programs of
Examples 1.1-1.4 are all Datalog programs. In this report, we will for the most part restrict
our attention to Datalog programs. Such programs are commonly used because they are
powerful enough for the description of many real-life problems, but always generate finite
relations from a finite database (because the Herbrand universe is finite).

1.2.3 Proof trees

For the purposes of this report, it will be convenient to view the relation generated by a
program in another way. We say that an atom is ground ii no variable appears in it. A rule
is termed instantiated if every atom in the rule is replaced with a ground atom with which
it unifies, such that the implied unifications are consistent. A proof tree is a tree in which
the vertices are ground atoms such that

1. The leaves of the tree are atoms appearing in the EDB; and

2. If an interior node a has the children bu....bn, then there is an instantiated rule in
the program whose head is a and whose body is by,...,bn.

If c is the root of a proof tree, then we say that the proof tree establishes the fact c.

Example 1.5 Assume that the relation for 6 in Example 1.3 is {b(joe, bob),b{bob, ann)}.

The proof tree of Figure 1.1 establishes p(joe, ann). D

Now, given any program and database, the relation produced by the program for some
predicate p from this database is precisely the set of farts pit!) that are established by proof

trees.

1.2. DEDUCTIVE DATABASES

1.2.4 Optimizations

In typical database applications, the extensional database is much larger than the size of
a program that manipulates it. Hence, the preferred optimization techniques are data-
independent. Two programs are said to be equivalent if they generate the same relations
for every predicate from every extensional database; the optimizations that we consider are
based on program equivalence, and are hence independent of any particular database. A va-
riety of efficient query evaluation techniques have been proposed (see [7],[36] for overviews)
and these techniques vary in application domain and efficiency. In this report, we investi-
gate opportunities for transforming programs into equivalent programs for which efficient
query evaluation techniques become available. The following examples illustrate optimiza-
tions that may be performed on the closure programs of the preceding examples; these
optimizations will serve as canonical examples for three optimization problems that we will
consider throughout this dissertation.

Example 1.6 Consider the symmetric closure program (say, V) of Example 1.2. We may
think of the basis relation b as the edge relation in a directed graph; that is, b(u,v) is true
precisely when there is an edge u — v in the graph. Then, the symmetric closure of the
graph may be obtained by adding the edge v — u to the graph, where u —? v is any edge
in the original graph. That is, the program of Example 1.2 is equivalent to the following
nonrecursive program Q.

r[: p(X,Y) :- b(Y,X).

r2: p{X,Y) :- b(X,Y)-

The program Q is obtained from the program V by replacing the recursive subgoal p{ Y. X)
in the body of rule rj by the nonrecursive subgoal 6(1', A"). The gains of such a replacement
stem from the elimination of recursion overhead in evaluating the program with respect to
a database; that is, we may use a query evaluator that is specific to nonrecursive programs.
D

Example 1.7 Consider the bilinear program V of Example 1.3, computing the transitive
closure of the basis predicate b. It is a well-known fact that V is equivalent to the following
linear recursive program Q.

r{: p{X,Y):-b(X,U),p[U,Y).
r2: p(X,Y):-b(X,Y).

The program Q is obtained from V by replacing the first recursive atom in the body of rt.
7>(A", U). with the nonrecursive atom b(X, U). An intuitive understanding of the equivalence
is as follows. Assume that b stands for the "parent" relation, and that p is the "ancestor"
relation, as we have previously discussed. Then, the recursive rule in V says that "V is A"-
ancestor if A" has some ancestor U whose ancestor is)'". and the recursive rule in Q say-
that "Y is A"'s ancestor if A' has some parent I wh.»<> ancestor is Y." The gains of replacing

CHAPTER 1. SUBTREE ELIMINATIONS

V by Q is that fast query evaluators that are specific to linear recursions become available
for application to the linear program Q. Specifically, assume that we wish to answer the
query p(joe,Y)1; that is, "who are the ancestors of joe". Then, the "'magic sets" technique
([36]) applied to V generates the entire p relation, and takes time that is quadratic in the
size of b (in the worst case): however, "right-linear evaluation" ([36]) computes the answer
in time that is linear in the size of 6 2. A proof of this claim is contained in [36]. □

Example 1.8 Finally, consider the program V of Example 1.4, computing the symmetric,
transitive closure of b. Again, we may think of b as the edge relation in a directed graph;
then, p(u, v) is true iff there is a path from u to v in the graph, obtained by following edges
in a forward or backward manner (in a mixed fashion). A little thought should suffice to
convince the reader that p may be computed by

1. First, computing the symmetric closure of the graph.

2. Then, computing the transitive closure of the result.

That is, the program V is equivalent to the following program, where the new predicate q

is the symmetric closure of b.

ri: p(X,Y):-p(X,U),p(U,Y).

Sl: p(X,Y):-q(X,Y).
r'2: q(X,Y):-q{Y,X).
r3: q(X,Y) :- b{X,Y).

Now, since p is defined only by rules rx and si, and since q is defined by rules r'2 and 7-3, we
may apply the optimizations of the previous examples to create the equivalent program

r{: p{X,Y) :- q{X,U),p(U,Y).

Sl : p{X,Y) :- q(X,Y).
r'{: q(X,Y):-b(Y,X).

7-3 : q(X,Y):-b(X,Y)-

Finally, since q is now defined only by the nonrecursive rules r'2' and r3, we may substitute
these rules for the predicate q to obtain the linear recursive program

r{': p(X.Y):-b(X,U),p(U,Y).
p(X,Y):-b(U,X),p(U,Y).
p(X,Y):-b(Y,X).
p(X,Y):-b(X,Y).

ri"

„11

The gains of such a replacement are again obtained from the use of a query evaluator that
is specific to linear recursions. That is, magic sets takes quadratic time (in the size of b) to
evaluate p{joe.Y)1 with respect to the original program, but right-linear evaluation takes
linear time when applied to the linear recursive program above. □

2Riglit.-iinear evaluation may be extended to the nonlinear I ransitivc-closure program, but does not extend
to arbitrary nonlinear programs.

1.3. TOP-DOWN EXPANSIONS

1.3 Top-down expansions

Recall that, the facts generated by a program from a database are precisely those facts that
are established by proof trees. A top-down expansion is obtained by lifting the arguments
of a piece of a proof tree to variables; that is, the top-down expansion specifies the relation
between the leaves and the root of a proof-tree piece. Alternatively, one may think of a
top-down expansion as a state in a top-down query evaluation.

Definition 1.1 Consider a (not necessarily function-free) program V with rules rx. rn,
and let p be any intensional predicate defined by V. Assume that p has arity k. A top-down
expansion of p by V is defined inductively, as follows.

1. The tree with root p(A'i,..., AY) and leaf p(A'l5..., Xk), where Xu ..., Xb are dis-
tinct variables, is a top-down expansion of p by V. By convention, this top-down
expansion is said to have depth 0.

2. Let 7-j be a rule

h :- B.

in which the rule head h has principal functor p. The tree T with root h and leaves
B (in which the order of subgoals in B is preserved) is a top-down expansion of p by
V. The depth of this top-down expansion is 1.

3. Consider any top-down expansion T of;;. Assume that q(Z) is the /th leaf in T. Let
R be a. top-down expansion of depth 1, in which all variables have been renamed to
make them distinct from the variables in T, and let r be the mgu of q(Z) with the
root of R. Let S be the expansion Ä, in which each variable Y appearing in the root
of R is replaced by T(Y) throughout R. Replace every variable Y in T that appears
in the root of S by T(Y), and replace the /th leaf in the result by the subtree S. The
result is a top-down expansion of p by V: the depth of the expansion is the depth of
the resulting tree.

D

Recall that a variable appearing in a rule is distinguished if it appears in the head of
the rule, and nondistinguished otherwise. The reason that nondistinguished variables are
renamed at each stage of the expansion is that these variables are implicitly existentially
quantified in the body of the rule. Distinguished variables are renamed only to make them
distinct from variables (perhaps nondistinguished) in the parent tree.

Note that the definition of a top-down expansion requires that subgoals in a rule are
written in a way that preserves the order of the subgoals in every rule. Throughout this
report, we will assume that both proof trees and top-down expansions are written in a way
that preserves the left-to-right order of the subgoals in every rule3.

"This assumption refers to the writing down of proof trees, and has no bearing on the order in which
subgoals are evaluated by a query evaluator.

CHAPTER 1. SUBTREE ELIMINATIONS

p(X,Y)

p(X,V) p(U,Y)

(a)

Figure 1.2: Top-down expansion.

Note also that the construction of a top-down expansion is polynomial in the size of the
expansion (since unification is polynomial [36]). For Datalog programs, this procedure may
easily be performed in LOGSPACE.

Example 1.9 Consider the program of Example 1.3. Recall that this program computes p
as the transitive closure of the basis predicate b: that is. we may think of b as the parent
relation and p as the ancestor relation. The trees of Figure 1.2 are top-down expansions of
p(X, Y) using the rules in this program.

Note that the variable U is renamed at depth 2 in the tree of Figure 1.2 (b). Intuitively,
the top-down expansion states that Y is an ancestor of A" if A' has some parent [/*', U' has
some parent U and U has the parent Y. That is. V is A":s great-grandparent in this case.
D

We will also speak of a top-down expansion of an atom]>{X); that is, we will specify an
atom to be unified with the root of the tree. Let T be a top-down expansion and p[X) an
atom. Assume that this atom unifies with the root of T under the most general unifier r.
Then, the expression T{T) represents the expansion obtained by replacing every variable Y
in T that appears in the root by T(Y). We say that T(T) is a top-down expansion of p(X)

byV.

Example 1.10 Consider the program

r,: p(f(X)):-q(X,U).

r2: q(X.X):-b(X).

Figure 1.3 (a) shows a. top-down expansion of/; with depth 2. and Figure 1.3 (b) exhibits
a top-down expansion of p{f(f[A)).

In Figure 1.3 (a), the variable A" in rule r-2 has been renamed to the variable V\ □

1.3. TOP-DOWN EXPANSIONS

P(f(Y)) p(f(f(A)))

I I
<l(Y,Y) (j(f(A)J(A))

I I
b(Y) b(f(A))

(a) (b)

Figure 1.3: Top-down expansion with specified root.

1.3.1 Conjunctive queries

A single-rule, nonrecursive program is called a conjunctive query ([10]). That is. a conjunc-
tive query is of the form

P(X) :- B.

where B is a conjunction of atomic formulae all of whose principal functors are EDB pred-
icate names. Each top-down expansion with EDB predicates at the leaves defines a con-
junctive query in a natural way; that is, if T is such a top-down expansion, then the
corresponding conjunctive query is

h :- B.

where h is the root of T, and where B is the conjunction of the fringe of T.

Example 1.11 The top-down expansion of Figure 1.2 (b) represents the conjunctive query

p(X,Y) :- b(X.U'),b(U',U),b(U,Y).4

D

We will also speak of top-down expansions with IDB predicates at the leaves as con-
junctive queries. The intention, in this case, is that the conjunctive query is applied nonre-
cursively.

Example 1.12 The top-down expansion of Figure 1.2 (a) represents the conjunctive query

p(X,Y):- ,,(XA-),p[U,Y).

The idea is that this conjunctive query represents all ways in which twop-facts (presumably
generated by the program) may be combined to produce a new />fact using the top-down
expansion. D

4This conjunctive query is often written {A'V ! In X. I''). h([■", U). b(U, Y')}; however, we will use tl
notation illustrated above for the purposes of nuifoiiiiii v

10 CHAPTER 1. SUBTREE ELIMINATIONS

We may now view a program as the (possibly infinite) union of the conjunctive queries
that it generates, such that the bodies of the conjunctive queries are occupied by only
extensional predicates. In fact, we will also speak of an arbitrary union of conjunctive

queries as a "program".

1.3.2 Containment and equivalence

Let V and Q be programs defining the predicate p (perhaps among other IDB predicates).
We say that V is contained in Q with respect to p (written V Cp Q, or just V C Q if p
is understood) iff for every database, the relation for ;; that is produced by V is a subset
of that produced by Q. The programs V and Q are said to be equivalent with respect to p

(written V =p Q) iff V CP Q and Q Cp V\ as before, we omit all references to the predicate

p if this predicate is understood from the context.
Since a conjunctive query is a single-rule, nonrecursive program, these definitions apply

equally to such queries. However, for the purpose of deciding containment among con-
junctive queries, we need make no reference to the predicates being defined by the queries
because each conjunctive query defines a unique predicate. That is, if the heads of two
conjunctive queries are labelled by two different predicates, then there is no containment;
otherwise, the containment is defined with respect to the common predicate defined by the

queries.
Chandra and Merlin ([10]) have proposed a syntactic test for the containment of one

conjunctive query in another. Consider the conjunctive queries

d: p(X):~ B,.

C2 : q(Y) ■- B2.

where B\ and B2 are conjunctions. Let / be a function on the variables in C2. We extend /
to all symbols in C2 by requiring / to be the identity on constants. Finally, we may extend
/ to terms (and atomic formulae) in the obvious way; that is, we define J{qUh -dk))
to be f(q)(f(di),...,f(dk)). We say that / is a containment mapping from C2 into C\

(written / : C2 -^ C\) iff the following are true.

i- l{q{Y)) = p{X).

2. For each atom t in B2, the atom f(t) appears in Bx.

For any atom in C2, f(t) is termed the destination of / under /.
The value of containment mappings is illustrated in the following theorem of Chandra

and Merlin ([10]).

Theorem 1.1 Containment mapping theorem (Chandra and Merlin).
For any conjunctive queries C\ and C2, C\ C C2 iff there is a containment mapping / :

C2-Cr. □

In Chapter 2 of this dissertation, we will present a dual to the containment mapping,
the conjunct mapping, which is also a necessary and Milliriont condition for the detection

1.3. TOP-DOWN EXPANSIONS 11

of conjunctive query containment. The value of the concept of conjunct mappings is that
the concept permits of a complete description of the complexity of deciding containment
among conjunctive queries; the description is also contained in Chapter 2.

Example 1.13 Consider the conjunctive queries C\ and C2, as defined below.

Cx : p(X) :- a(X,B),b{A,B),b(CB),c(B,B).c(A,D).
C2: p(X):-a(X,V),b(U,V),c(U,W).

The function / defined by f(X) = XJ(V) = BJ(U) = A, f{W) = D is a containment
mapping from Ci into C\. The destination (under /) of p(X) is p(A'), of a(X, V) is a(X, B).
of b(U, V) is b(A, B) and of c(U, W) is c('A, D).

However, there is no containment mapping g : Cx —*• CV Assume such a g exists.
Then, the destination of c(B,B) under g would have to be c(U,W) (the only c-atom in
C2). However, g(c(B,B)) = c(U, W) requires that g(B) be both U and IV, contradicting
the functionality of g. □

Now, we may define the containment of top-down expansions (with IDB predicates
permitted at the leaves) as the containment of the corresponding conjunctive queries. Given
the relations between rules, top-down expansions and conjunctive qeuries, we will sometimes
also speak of the containment of a top-down expansion in a rule.

Finally, recall that we may think of a program as a (possibly infinite) union of conjunctive
queries, where the bodies of these queries are atomic formulae whose principal functors are
EDB predicates. Sagiv and Yannakakis ([29]) use this idea to reduce program containment
to the containment of conjunctive queries. The theorem of Sagiv and Yannakakis says that,
for a program V to be contained in a program Q, each conjunctive query generated by
V must be contained in some conjunctive query generated by Q; that is, there can be no
"mixing and matching".

Theorem 1.2 (Sagiv and Yannakakis).

Consider programs V and Q, defining the IDB predicate p. Then, V Cp Q iff for every
conjunctive query Cj> generated by V with EDB predicates at the leaves and p at the root,
there is a conjunctive query CQ generated by Q with EDB predicates at the leaves such
that C-p C CQ. □ ~

1.3.3 Tree shapes

As we will show in the next section, the optimizations of the previous section can be
described in terms of normal-form proof trees. That is, each optimization is made possible
because all facts generated by the relevant program are generated by proof trees of a certain
"shape".

Recall that proof trees (and top-down expansions) are written in a way that preserves
the left-to-right order of the subgoals in any rule. The idea of a proof-tree shape is the
intuitively obvious one, given this assumption. Following Helm ([13]), we may formalise the
concept by defining a shape as a list over the rule names.

12 CHAPTER 1. SUBTREE ELIMINATIONS

Definition 1.2 Let V be a program with rules ru..., r„. A iree shape (or just s/iapc) is a

list that is defined as follows.

1. The empty list [] is a shape. This list represents all top-down expansions of depth 0.

2. Let ri be a rule defining the predicate p, with intensional subgoals (in order) h,..., tk
(that is, the principal functor of each U is an intensional predicate name). Then, the

list

is a shape. This shape represents the top-down expansion of p with depth 1, in which
r; is used to construct the expansion. The (j + l)th component of this list is said to

represent the leaf tj.

Let S be a nonempty shape, representing some top-down expansion T of some predi-
cate p. Assume that the ith occurrence of the empty list in 5 represents the ith leaf
q(Z) in T. Assume further that the head of rule Tj unifies with this leaf under the mgu
r, and that Tj has the intensional subgoals (in order) qi{Z\), ■ ■ .,<?fc(Zfc). Construct
the top-down expansion V by expanding the ith leaf q(Z) in T through rule ry Let

S" be the shape S. where the empty list representing the ith leaf q(Z) in T is replaced

bv the list
k

[r; [CO]
Then S' is a shape, representing the top-down expansion V. Further, the ith occur-
rence of the empty list in the above list is said to represent the /th leaf ry/(r(Z/)) in

the newly-added subtree.

It is clear that every top-down expansion has a well-defined shape. We will also speak
of the shape of a top-down expansion of a specified atom, and of the shape of a proof tree.

Example 1.14 Figure 1.2 contains top-down expansions generated by the program of
Example 1.3. The expansion of Figure 1.2 (a) has the shape [nflO], and expansion (b)
in that figure has the shape [rilnfoMfa]]. Similarly, Figure 1.3 exhibits top-down
expansions generated by the program of Example 1.10. Figure 1.3 (a) contains a top-down
expansion with the shape [ri[r2]], and part (b) of that figure contains a top-down expansion
with the same shape, but with the specified root p{f(f{A))). ü

The structure of a shape can be simplified if the program in question is linear (recall
that a program is linear if at most one atom in the body of any rule is intensional). In the
linear case, each top-down expansion may be represented as a string over the rule names,
and sets of top-down expansions may be represented by regular expressions over the rule

names ([25]).

1.3. TOP-DOWN EXPANSIONS 13

Example 1.15 Consider the linear logic program of Example 1.10. The top-down expan-
sions of Figure 1.3 have the shape rj^; note that the order in which the rule names appear
in the shape corresponds to the order in which rules are applied in a top-down fashion,
starting with the root. The set of all top-down expansions generated by the program, with
EDB predicates at the leaves, may be denoted by the regular expression r*7'2- □

Extending functions

We formalise our earlier notions of the extensions of functions on the variables in an ex-
pansion, as follows. Let / be any function defined on some of the variables in a top-down
expansion T. We extend / to all variables, and to constants, by requiring / to be the
identity on all variables on which it is not defined, and on all constants. Similarly, for any
term, we define f{q(di,.. .,<4)) to be f{q){f{di),...,f(dic)). Finally, we define f(T) to be
the result of replacing every atom « in T by f(a). The idea, as before, is that we merely
replace every occurrence of every variable on which / is defined by its image under /. In the
remainder of this chapter, we will assume that all functions have been extended as described
above.

Labels

Consider any sequence T\,... ,T„ of top-down expansions, not necessarily of different shapes.
We will assume that each node in each expansion is labelled to be distinct from all other
nodes in the expansion, and from all nodes in every other expansion. Given a label /. the
node to which / refers will be written node(l). We assume that labels are preserved through
the application of functions to a top-down expansion, as described above. Now, given any
containment, mapping / : T? —^ T\ where T\ and T-i are labelled top-down expansions, we
assume the selection of a labelled destination for each labelled node in T? under /; that is,
for each node node(k) that is a leaf or the root in T2, we select a unique label / such that
f(node(k)) = node(l).

Uniqueness of shapes

It is easily seen that every shape uniquely defines a top-down expansion, up to the renaming
of variables. The idea is that the top-down application of rules '•commute", and we may
therefore construct a top-down expansion of a given shape using any order of rule applica-
tions. More formally, let 7\, T2 and T3 be top-down expansions in which all variables in
each expansion are renamed to be distinct, and where T2 and T3 have depth 1 (i.e. each
represents the application of a single rule). Let node(l) and node(k) be distinct leaves in
T\. Assume that we expand the leaf node(l) in T\ through T2 under any unifier r1? and
expand node(k) in the result through T3 under any unifier r2 to create some expansion 5
(see Figure 1.4).

Then, we may create S in the following way.

1. Expand node(k) in T\ through T3 using the unifier o-i = T2(TI) (recall that all functions
are extended to be the identity on variables on which they are not defined).

14 CHAPTER 1. SUBTREE ELIMINATIONS

Figure 1.4: Changing the order of expansion.

1.3. TOP-DOWN EXPANSIONS 15

2. Define the unification <Tj to be the identity on variables in T\ and T3, and to be T2[T1)
on the variables in Tj- Expand node(l) in the result of 1 above through Ti using the
unification at-

That is, the unifications 0\ and oo permit us to construct the same expansion S by ap-
plying the expansions Ti and T3 to node(l) and node(k) in reverse order. Hence, if we
use the mgu at each stage, then both orders of applications must yield equally general
top-down expansions. An induction on n allows us to reach the same conclusion if the
leaves node(k\),..., node(kn) are expanded through the depth-1 expansions S\,...,Sn re-
spectively. A straightforward induction on the size of a shape permits us to claim that,
every shape uniquely defines a top-down expansion, up to renaming of variables. Hence, we
may abuse notation by speaking of the containment of a shape (or top-down expansion) in
a shape.

Note that the uniqueness of shapes allows us to construct a top-down expansion from
top-down expansions T\, Ti and T-$ of arbitrary depth, by renaming the variables of the
expansions apart, expanding some leaf in 7\ through T2 using the mgu of the leaf in T\
with the root of Ti, and similarly expanding any leaf in the result through T3.

1.3.4 Changing shapes

We present some results that will be of use in the following sections. The idea is that
containment mappings between top-down expansions remain essentially unchanged under
certain operations that are performed on the expansions in question, and expansions can
therefore be robustly manipulated to change their shapes.

Replicating expansions

Let Ti,...,T„ be a sequence of expansions, not necessarily of different shapes. Assume
that the label of each node in T,- is a list of the form [i,l], where / is an integer unique to
the relevant node in T,-. We will speak of replicating some tree T,- in the above sequence.
To create k copies Tu,.. .,Tu. of T,. we construct k rename functions ren\,.. ..ren^ that
rename each variable in T, to be distinct from any variables in T\,...,Tn (or their copies.
if any), such that the ranges of these rename functions are distinct. Then, for each j. 7',,
is renj(T{). Further, the labels of each copy of T, are propagated by setting the label of
node(m) in Tij to [j\m].

Theorem 1.3 Expansion Theorem

Let Ti and T3 be top-down expansions with distinct variables, and let T2 and T,(be expau
sions with distinct variables. Assume that / : To — T'i and g : T4 —■• T3 are containment
mappings. Assume that R is obtained by expanding the leaf node(l) in T\ through '/■..
Let node{ki),.. .,node(kn) be leaves in T2 such that /(node(ki)) = node{l). and let S !><•
the result of expanding each leaf node{kt) in '/'_> through the ith replica T4l- of T4. Then,
there is a containment mapping h : S —^ R that preserves the destinations of / and g: thai
is, if f(node(c)) = node(d) and node(c) is a leaf in S. then h(node(c)) = node(d): and. if
g(node(c)) = node(d), then h(node([i\c}) = m>dnd) for all /. Figure 1.5 depicts this claim.

16 CHAPTER 1. SUBTREE ELIMINATIONS

t r

Ml

T. 41

r4n

• ffl,• • •,9n■

''3

4,

Figure 1.5: The Expansion Theorem.

Proof. Let the roots of Ti,r2,T3 and T4 be ri,r2,r3 and ?-4 respectively. Similarly, let
the root of T4j be r4j for all j. Let r be the most general unifier of node(l) with the root
r3 of T3, and a the most general unifier of the sequence r41,.. . ,r4n with the sequence of
leaves node(ki),..., node(kn) in T2. Since p is a containment mapping from T4 into T3, the
domain-disjoint functions (jj = g(reiij~l) are containment mappings from T4/ into T3 that
preserve the destinations of g. Define the function p as follows.

p(V) =
T(/(V)) for V in T2

r(gj(V) for V" in T4j

Now, p is a unification under which the leaves node(ki),..., node(kn) may be expanded
through the subtrees T41,.. .,T4n respectively (to create some expansion 5'. say). Consider
any leaf node(m) in T2; assume that the destination of node(m) under / is uode(i) in 7\.
Then, node(m) in 5' is syntactically identical to node(i) in Ä. Similarly, consider any leaf
node(m) in T4; assume that the destination of node(m) under <y is node(i) in T3. Then for
each j, node{[j\m]) in 5' is syntactically identical to node(i) in R. That is. the identity /
is a containment mapping from S' into Ä that preserves the destinations of / and g. If a is
the most general unifier of node(ki),.... node(kn) with the roots 7-41 r4n of T4i,.. ..T4n.
then by the properties of the most general unifier there is some function h such that p = h{a)\
hence, /;. is a containment mapping from S into S' such that h{node(i)) - node(i) for all
nodes in S, and our result follows by composing h and /. D

1.4. SUBTREE ELIMINATIONS

Figure 1.6: Assumption for the Splicing Theorem.

Theorem 1.4 Splicing Theorem

Let Xi, T2, T3 and T4 be top-down expansions with distinct variables. Assume that node(l)
is a leaf in T\ and node(m) is a leaf in T2, and that there is a containment mapping
/ : T4 —* Ti. Let node(ki),..., node(kn) be the leaves in T4 whose destination under / is
node(m) (see Figure 1.6). Construct the expansion R by expanding node(l) in Tx through
T2, and expanding node(m) in the result through T3. Construct 5 by expanding node(l) in
Tx through T4, and expanding each leaf node(kj) in the result through the jth replica T3j

of T3. Then, there is a containment mapping h from S into R. such that the destination of
each leaf node(i) in S is as follows.

1. If node(i) is a node in Ti, then h(node(i)) = node(i).

2. If node(i) is a node in T4, then h(node(i)) = f(node(i).

3. If i is of the form [p|3], then h(node(i)) = node(p).

Figure 1.7 depicts the idea.

Proof. The identity is a containment mapping from 7\ into Tx, and the function g} = ren~x

is a containment mapping from the jth replica of T3 into T3; our result follows by two
applications of the Expansion Theorem. D

1.4 Subtree eliminations

1.4.1 Normal-form optimizations

In this section, we will present a variety of optimizations that are defined in terms of normal-
form conjunctive queries. The domain on which we will define these optimizations is that
of single-IDB programs; that is, programs in which there is only one intensional predicate.
p. We do not assume that the programs are either safe or function-free. The following

18 CHAPTER 1. SUBTREE ELIMINATIONS

[31 T, 3n T3

Figure 1.7: Illustrating the Splicing Theorem.

1.4. SUBTREE ELIMINATIONS 19

Figure 1.8: A one-bounded expansion.

program V will serve as the canonical example of a single-IDB program; the IDB predicate
defined by the program is the predicate p.

Let V consist of the n recursive rules

n: p{X10):-p{Xu),...p(Xlkl)Xi-

ri ■ p[Xio) '■- P&), • • .p{Xiki),Ci.

Tn ■■ P(Xn0) •■- P(Xni), . ■ . p(A'nfcJ, C„.

and the m nonrecursive rules

h : p(Yio) :- V1.

bj : p(Yj0) :- Vj.

bm ■ p{Ym0) :- Vm.

where the C{ and Vj are arbitrary conjunctions of EDB predicates. Examples 1.1 - 1.1
exhibit such programs.

Let us define a top-down expansion to be closed \[all its leaves are EDB predicates.

1.4.2 One-b.oundedness: definition and results

Define a top-down expansion to be one-boiuxhd if at most the root is expanded through a
recursive rule; that is. if the top-down expansion has depth at most 2 (see Figure 1.8). The
program V is said to be one-bounded iff one-boundedness is a normal form for the proof
trees generated by the program; that is, iff every closed conjunctive query generated by V
is contained in some closed one-bounded conjunctive query.

If V is one-bounded, then V can be converted into an equivalent nonrecursive program
Q by expanding each recursive atom in each rule through each nonrecursive rule. That is.
the equivalent nonrecursive program Q is constructed as follows.

20 CHAPTER 1. SUBTREE ELIMINATIONS

Let 5 be a new predicate symbol. Construct the program Q, with n + m + 1 rules
{r- | 1 < i < n} U {b'{ | 1 < i < m) U {c}, as follows. If r, is a recursive rule, then replace
7-, by the rule

r{: Ä):-?(4),-,&),Ci.

That is, we replace all recursive occurrences of p in r; with a corresponding occurrence of

9-

Next, we introduce the rule c, which merely initialises p to 9:

c: pCVi,...,^):-?^!,...,^).

The Fs are distinct variables. Finally, each nonrecursive rule 6, is replaced by the rule

b\ : q(Yl0) :- V{.

which initiahses q using the nonrecursive rules for p. Assume V is one-bounded; then, the
closed top-down expansions of V are isomorphic to the closed top-down expansions of Q:
that is, each such top-down expansion generated by either program can also be generated
by the other program. The equivalence of V and Q then follows by the theorem of Sagiv
and Yannakakis (Theorem 1.2).

Example 1.16 Consider the program V of Example 1.2. The program Q is the program

rj: p(X,Y):-q(Y,X).
c: p(X,Y):-q(X,Y).
6'i:(?(A-,y):-6(A\y).

The intermediate predicate q can, in this case, be eliminated to obtain the linear program
Q' of Example 1.6, repeated below.

r'x: p(X,Y):-b(Y,X)

r2:p(X,Y):-b(X,Y).

The closed one-bounded expansions of V are easily seen to be isomorphic to the closed
expansions of Q', as indicated by Figure 1.9. ü

The gains of converting V into Q in this way ;irc obtained from the elimination of
recursion overhead in query processing.

1.4. SUBTREE ELIMINATIONS 21

P{X,Y) p(X,Y)

I I
P(Y,X) b(X,Y)

I
p(X.Y)

p(X,Y)

I
b(X,Y)

(a) (b)

p{X.Y) P(X.Y)

I I
P(Y,X) b{Y.X)

I
P(X,Y)

P(Y,X)
I

b(Y,X)

(c) (d)

Expansions of P Expansions of Q'

Figure 1.9: Illustrating Example 1.16.

22
CHAPTER 1. SUBTREE ELIMINATIONS

Results

One-boundedness is easily seen to be decidable; we sketch a proof in Section 1.5. The
complexity of one-boundedness has been investigated by Kanellakis ([20]) for a restricted
class of programs. A sirup is a single-IDB , Datalog program with a single recursive rule,

and a. basis rule of the form

p{X1,...,Xk):-b(X1,...,Xk).

where the Xs are distinct variables, and where the EDB predicate b appears nowhere else
in the program. Kanellakis ([20]) has shown that one-boundedness in A/P-hard for linear
sirups; that is, for programs that in addition to the basis rule above contain the recursive

rule
p(Y) :-p{Z)MWi),-..,en(Wn).

Kanellakis' result, however, assumes an unbounded number of repetitions of EDB predicates
in the bodv of the recursive rule. In Chapter 2, we will show that one-boundedness is MP-
hard even'if there are no more than 4 repetitions of any EDB predicate in the body of
the recursive rule. In the same chapter, we will show that one-boundedness is decidable m
polynomial time for linear sirups in which no EDB predicate is repeated in the body of the
recursive rule. Finally, in Section 1.5, we will present a polynomial-time algorithm that is
sufficient (but not necessary) to detect one-boundedness in arbitrary single-IDB programs;

the idea is a reduction to the decision procedure for linear sirups.

1.4.3 Base-case linearizability: definition and results

Recall our running assumption that top-down expansions are written in a way that preserves
the left-to-right order of the subgoals in every rule. Define a top-down expansion generated
by V to be right-linear if only the rightmost occurrence of p is ever recursively expanded in
the expansion (see Figure 1.10). The program P is said to be linearizable by basis m right-
linearity is a normal form for the proof trees generated by the program; that is, iff every
closed conjunctive query generated by P is contained in some closed right-linear conjunctive

query.
If P is basis-linearizable, then P can be converted into an equivalent linear recursive

program, as follows.
Let q be a new predicate symbol. Construct the program Q, with n + m + 1 rules

{r'i | 1 < i < n} U {b't | 1 < i < m] U {c}, as follows. If rt is a nonlinear rule {kt > 1),

then replace r, by the linear rule

r'i : p(Xl0) :- q{Xn), ■ - •.?(Xik-i), p(Xik,),d-

That is. we replace all but the last recursive occurrence of p in rt- with a corresponding

occurrence of q. If ;■«■ is linear {k, = 1). then r't is the same as r,:

r'i-. p(A',o):-p(-V,i).<:,.

1.4. SUBTREE ELIMINATIONS 23

Figure 1.10: A right-linear expansion.

Next, we introduce the rule c, which merely initialises p to q:

c: p(Vu...,Vk):-q(Vu...,Vk).

The Vs are distinct variables. Finally, each nonrecursive rule 6; is replaced by the rule

b'i : q(Yl0) ■- Vt.

which initialises q using the nonrecursive rules for p.
If V is basis-linearizable, then the closed right-linear top-down expansions of V are

isomorphic to the closed top-down expansions of Q; that is, each such top-down expansion
generated by either program can also be generated by the other program. The equivalence
of V and Q then follows by the theorem of Sagiv and Yannakakis (Theorem 1.2).

Example 1.17 Consider the program V of Example 1.3. The program Q is the program

r[: p(X,Y):-q(X,U),p(U.Y).

c: p{X,Y):-q(X,Y).
b[:q(X,Y):-b(X,Y).

The intermediate predicate q can, in this case, be eliminated to obtain the linear program
Q' of Example 1.7, repeated below.

r\: p(X,Y) :- b(X,U),p{U,Y).
r2:p(X,Y):-HX,Y).

The closed right-linear expansions of V are easily seen to be isomorphic to the expansions
of Q', as indicated by Figure 1.11. O

24 CHAPTER 1. SUBTREE ELIMINATIONS

KAM')

b(X,U) p(U,Y)

b(U,V) p(V,Y

V 0'

Figure 1.11: Illustrating Example 1.17.

The gains of replacing V by Q are obtained through the use of special-purpose query
evaluators for linear recursive programs. In fact, Ullman and van Gelder ([37]) have shown
that the evaluation of programs with the polynomial fringe property (a superset of linear
recursive programs) may be performed in AfC.

Results

Basis-linearizability was proposed by Zhang et al. ([40]5), who studied this property in
terms of a bilinear sirup with rectified rule heads (i.e., no variable is repeated in the head
of any rule), such that there is at most one EDB subgoal in the body of the recursive rule.
That is, they consider programs of the following form.

p{X\,...,Xk) :- p{Y),p(Z),e{W)).
p(Xu...,Xk):-b{Xi,...,Xk).

They claim a polynomial-time decision procedure for the detection of basis-linearizability
for such programs, although their proof has a flaw in a key lemma; we will discuss the error
in Chapter 3. In Chapter 3, we will show that basis-linearizability is decidable for bilinear
sirups with an unbounded number of EDB subgoals in the recursive rule, as long as the
EDB predicates are distinct; that is, we consider programs of the following form, in which
the es are distinct.

p(Xu...,Xk) :- p(y),p(Z),6,(11-,) en(Wn).

p(.Y1,...,.YA):-6(A-1, Yjt).

The techniques of Chapter 2 can be used to show that our decision procedure is polynomial.
We will show in Chapter 3 that the proof of [40] does not directly extend to such programs,

5This paper has recently been published in the ACM Tr.ins.x nous on Database Systems, but the proof
has been omitted.

1.4. SUBTREE ELIMINATIONS 25

and in fact we also cover (as they do not) the case in which the program can be linearized
in a different way; however, our proof has been motivated in large part by their treatment.

Ramakrishnan et al. ([25]) have .shown that the decision procedure of Chapter 3 does

not extend to the case in which EDB repetitions are permitted in the body of the recursive
rule, and show that detecting basis-linearizability is .VP-hard in this case; however, their

reduction involves an unbounded number of repetitions of EDB predicates in the recursive

rule. In Chapter 2, we show that the detection of basis-linearizability is .V7Miard for bilinear

sirups, even if no EDB predicate appears more than 4 times in the body of the recursive

rule.

In Chapter 4, we show that the detection of basis-linearizability in head-rectified, single-

IDB Datalog programs in undecidable even if the program has one bilinear rule, an un-

bounded number of linear rules and only 5 basis rules. Our treatment also shows that
program containment is undecidable for a restricted class of linear Datalog programs.

Finally, in Section 1.5, we provide polynomial-space and polynomial-time algorithms
that are sufficient (but not necessary) for the detection of basis-linearizability in arbitrary

single-IDB Datalog programs.

1.4.4 Sequencability: definition and results

Define a top-down expansion generated by V to be sequenced if a recursive atom generated

by the (top-down) application of a recursive rule r, is never expanded through the rule ?-;. if

/ > j (see Figure 1.12). The program V is said to be sequencable iff sequencing is a normal
form for the proof trees generated by the program: that is, iff every closed conjunctive
query generated by V is contained in some closed, sequenced conjunctive query. If V is
sequencable, then it may be replaced by the following program Q.

Let f/i ■ ■ .qn be new and distinct predicate symbols, and construct the program Q from

program V, as follows. First, replace the rule ?! by the two rules 7'j and s\. where r[is the
same as r\:

r\ ■■ P{X10) :- p{Xn),...p(Xlkl),Ci-
sn p{V1,...,Vk):-q1(Vl,...,Vk).

The V's a.re distinct variables. Next, replace each recursive rule r, (/ > 1) by the two rul<^

r\ : <7i-i(X(t_1)0) :- qi-i(Xi\). ■ ■ .ft-i(A'iA,)•£.-■
*,-: qt-X(Vu...,Vk):-qi(Vu...,Vk).

As before, the Vs are distinct variables. Finally, replace each nonrecursive rule b, by tin1

rule

K ■
rln{Yt0) :-Vi.

Q computes those facts which would be produced by a bottom-up evaluation of V, in which

we initialise [> using the 6,-, and then, in sequeiir«'. close under 7'n.'n-i 'i It 's ^asiK

26 CHAPTER l. SUBTREE ELIMINATIONS

V

applications of rx

 p

applications of J-J

applications of ?•„

application of one ol' bi,..., 6„

Figure 1.12: A sequencecl expansion.

1.4. SUBTREE ELIMINATIONS 27

P(X,Y) P(X,Y)

p(X\U) p(U,Y) p(X,U) p(U,Y)

P(U,X) ; q(X,U) \

I I
b(U,X) q(U,X)

I
b(U,X)

V Q

Figure 1.13: Illustrating Example 1.18.

seen that the normal-form closed conjunctive queries of V are isomorphic to the closed
conjunctive queries of Q. Therefore, if V is sequencable, then V and Q are equivalent.

Example 1.18 For the program of Example 1.4, the program Q is the program

r[: p(X,Y):-p(X,U),p(U,Y).
s, : p(X,Y) :- q(X,Y).
r'2: q(X,Y):-q(Y,X).
s2: q(X,Y):-b(X,Y).
b[: q2(X,Y) :- c(X,Y).

Figure 1.13 sketches the idea behind the isomorphism between the closed sequenced expan-
sions of V and the closed expansions of Q. D

The gains of replacing V by Q are obtained in several ways. For example, the evaluation
of the transformed program Q can be pipelined. Most importantly, however, the detection
of sequencability can often set up further optimizations, as in Example 1.8. Sequencabilitv
is also essential to the detection of separability ([24]) in linear programs.

Results

Sequencability is not known to be decidable for any interesting classes of programs. In
Chapter 4, we will show that the detection of sequencability is undecidable for head-rectified.
single-IDB Datalog programs with only two recursive rules and 9 basis rules. Our treatment
provides a tight undecidability result for program equivalence.

28 CHAPTER 1. SUBTREE ELIMINATIONS

Sequencability has only been studied for linear Datalog programs with two recursive
rules and a single basis rule, and the decidability of sequencability is open even on this
restricted domain. A variety of sufficient conditions have been proposed ([25], [17]) in this
case. In Chapter 2, we show that sequencability is vVP-hard for such programs if EDB
predicates are allowed to appear up to 3 times in the body of each recursive rule, and in
fact that all the proposed sufficient conditions are also AfP-hard in this case. We also show
that a popular sufficient condition is polynomial if no EDB predicates are allowed to repeat

in any recursive rule.
Finally, we provide in Section 1.5 a polynomial-space algorithm that is sufficient (but

not necessary) for the detection of sequencability in arbitrary Datalog programs.

1.4.5 Subtree eliminations as a descriptive mechanism

The normal forms implied by these problems are susceptible to a uniform description, as
the elimination of subtrees of a certain shape from the proof trees generated by a program.
As a dual to the concept of a closed top-down expansion, let us define a top-down expansion
to be open iff the only rules used to construct the expansion are recursive rules.

Definition 1.3 Let V be the canonical single-IDB program of the preceding subsection.
A subtree elimination instance is the program V and a finite set S of finite shapes over
the recursive rules rl . ..rn (that is, the shapes define open expansions). Let Q be the set
of closed top-down expansions generated by V, such that no subtree of the expansion is
described by a shape in S. Then the answer to the instance is "yes" iff V = Q (recall that
we speak of any union of closed top-down expansions as a program). □

The set of such instances is called the subtree-elimination problem (SEP). Since Q
is a subset of the conjunctive queries generated by V, and by the theorem of Sagiv and
Yannakakis (Theorem 1.2), we may conclude that the answer to an SEP instance is "yes"
iff each conjunctive query generated by V is contained in some conjunctive query generated

by Q.
The transformations of the previous sections may all be described within the framework

of SEP. The idea is that the violations of the required normal form are represented as

subtree shapes.

One-boundedness

Let V be the canonical single-IDB program of this section. Let a minimum-depth violation
of one-boundedness (or just a violation) be an open top-down expansion of depth 2. and let
S = {.?1 sn} be the set of shapes of the minimum-depth violations. It is easily seen
that the set of one-bounded top-down expansions generated by V is precisely the set of
expansions in which no subtree has the shape st for any ■/. Thus, V is one-bounded iff the

answer to the SEP instance < V,S > is "yes".

Example 1.19 For the program of Example 1.2. the set S is the singleton {['i[''i[]]]},
representing the single minimum-depth violation of figure 1.14. ü

1.4. SUBTREE ELIMINATIONS 29

p(X,Y

I

Figure 1.14: Minimum-depth violation of one-boundeclness.

Figure 1.15: Mininiuni-depth violation of basis-linearizability.

Linearizability by basis

Let a minimum-depth violation of right-linearity (or just a violation) be an open top-down
expansion of depth 2, in which the rightmost recursive subgoal that is a child of the root
is not expanded, and in which at least, one other child of the root is expanded. Let S =
{•*i,..., sn} be the set of shapes of the minimum-depth violations. It is easily seen that i ho
set of right-linear top-down expansions generated by V is precisely the set of expansions in
which no subtree has the shape s, for any i. Thus, V is linearizable by basis iff the answer
to the SEP instance <V,S > is "yes".

Example 1.20 For the program of Example 1.3. the set S is the singleton {[7-i[''i[][]]0]}-
representing the single minimum-depth violation of Figure 1.15. D

Sequencability

Let a minimum-depth violation of sequencability (or just a violation) be an open top-down
expansion of depth 2, in which if r, is used tu expand the root, then at least one child of
the root is expanded through some rule ;•, Midi that j < i. Let 5 = {s\,.. ., sn} be the
set of shapes of the minimum-depth violations. It is easily seen that the set of sequeiuvd
top-down expansions generated by V is proc'iM-lv the set of expansions in which no subtree
has the shape s, for any •/. Thus, V is si'<|u.M,<-al>le iff the answer to the SEP instance
< P.S > is "ves".

30 CHAPTER 1. SUBTREE ELIMINATIONS

Figure 1.16: Minimum-depth violation of sequencability.

Example 1.21 For the program of Example 1.4, the set S is the singleton {[r2[ri[][]]]}.
The corresponding minimum-depth violation is depicted in Figure 1.16. □

1.5 Subtree-elimination algorithms

We now present a. uniform framework for the generation of sufficient conditions for the
solution of an SEP instance. In each case, the program that we consider is the generic
single-IDB program V of Section 1.4.1.

1.5.1 Basis-independence

Recall that an expansion is termed open if only recursive rules are used in the construction
of the expansion, and closed if all the leaves are EDB predicates. Our sufficient conditions
will focus on the rectification of open top-down expansions; that is, we will show that
every open expansion generated by V is contained in a normal-form open expansion. This
procedure is sufficient to prove that every closed top-down expansion is contained in a closed,
normal-form expansion, as we show below; the only wrinkle is introduced if the containing
expansion has depth 0. Recall that the top-down expansion of depth 0 (the expansion with
shape []) is the top-down expansion generating the conjunctive query

p(Xl,...,Xk):-p(X,....,Xk).

where the A's are distinct variables. Now, assume that an expansion Ti is contained in [].
and that / is the containment mapping proving the containment. By the properties of the
containment mapping, T\ must have some leaf that is syntactically identical to its root.

Theorem 1.5 Assume that Tj is an open top-down expansion that is contained in the
expansion of depth 0. Then every closed top-down expansion obtained by applying basis
rules to the leaves of T\ is contained in an initialisation rule.
Proof. Since Tx is contained in the depth-0 expansion, there must be some leaf (labelled /.
say) that is syntactically identical to the root. Henc«. if the basis rule 6, is used to expand
node(l) in 1\. then the result is contained in b, by tin- Kxpansion Theorem. □

1.5. SUBTREE-ELIMINATION ALGORITHMS 31

By our assumption that all violations in our SEP instance are open, we conclude that
each basis rule (considered as a top-down expansion) is in the indicated normal form; that
is, no such expansions are prohibited. Now, every closed top-down expansion is either a
basis rule, or is obtained by expanding every p-leaf in an open expansion through some
basis rule. Hence, by the Expansion Theorem and Theorem 1.5, the rectification of all open
expansions is sufficient to prove that the answer to a given SEP instance is "yes"; that
is, that every closed top-down expansion is contained in a closed, normal-form expansion.
Note that this result holds independently of the set of initialisation rules in V; that is, the
transformations that we will consider are basis-independent.

The following theorem shows that if an expansion T is contained in the empty expansion,
then the result of expanding any leaf of T through the expansion [/ is contained in either
the empty expansion or in U.

Theorem 1.6 Assume that T\ is an open top-down expansion that is contained in the
expansion of depth 0 (the expansion with shape []). Let T3 be the expansion obtained by
expanding node(l) in T\ through the expansion T2. Then, either T3 C [], or there is a
containment mapping from T2i (a replica of T2) into T3 such that for any leaf node([l\j])
in T21, the destination of no(/e([l|j]) is node(j) in T3.
Proof. Let / be a containment mapping from [] into T\. As before, there is some leaf (say,
node(k)) in 7\ that is syntactically identical to the root of 7\.. There are two cases. If
/,■ ^ /, then / is a containment mapping from [] into T3. If k = /, then the subtree rooted
at node(i) in 7\ is 7"(T2), where r is the mgu of the root of T2 with node{l) in 7\; hence.
T{ren\~l) is a containment mapping from T2i into T3, where ren\ is the rename function
that creates Ti\ from T2. □

1.5.2 Generating sufficient conditions

Ramakrishnan, Sagiv, Ullman and Vardi ([25]) have proposed a framework for the construc-
tion of conditions that are sufficient (but not necessary) to prove that the proof trees of a
program satisfy a normal form. Let < V, S > be an SEP instance, where 5 = {v\,..., I>A-}

is a complete set of violations to the desired normal form. The process of [25] consists of
two steps:

1. For each u,, show that there is a containment mapping of a restricted form from some
normal-form top-down expansion qi into r,.

2. Show that the results of (1) may be used to inductively rectify all top-down expansions
of V.

Such a technique is called a proof-tree transformation technique.

One-boundedness

By Theorem 1.5 and the Expansion Theorem, the containment of every open expansion
of depth at least two in an open expansion of depth at most one suffices to prove one-
boundedness in V.

32 CHAPTER 1. SUBTREE ELIMINATIONS

Ti{

T
J

V c

p ... p c

T4

Figure 1.17: Illustrating Theorem 1.7.

Theorem 1.7 Assume that every minimum-depth violation of one-boundedness is contained
in an open expansion of depth at most 1. Then V is one-bounded.
Proof. By induction on the number i of rule applications in the top-down expansion, we
will show that every expansion of depth at least 2 is contained in an expansion of depth at
most 1. The basis, i — 2, follows by assumption. For the induction, assume the truth of
the hypothesis for 2 < / < i.

Consider a top-down expansion T\ obtained through / rule applications. T\ is obtained
by expanding some leaf node(n) in some expansion T? (constructed using i- 1 rule applica-
tions) through some rule rj (see Figure 1.17). By our inductive hypothesis, T2 is contained
in a tree T3 of depth at most one; assume that / is a containment mapping proving the
containment. If T3 has depth 0, then by Theorem 1.6, 73 C [] or T3 C rj, and our result
follows.

Assume that T3 has depth 1. By the Expansion Theorem, we may expand each node
in T3 whose destination under / is node(n) through rj, to produce an expansion T4 of
depth 2 such that 7\ C T4 (see Figure 1.17). However, by assumption, T4 is contained in a
top-down expansion of depth at most 1, and our result follows because the composition of
containment mappings is a containment mapping. □

Example 1.22 Consider the program of Example 1.2. The minimum-depth violation of
one-boundedness is contained in the top-down expansion of depth 1. under the identity
mapping f[X) = X,f(Y) = Y (see Figure 1.18). Hence, the program is one-bounded. □

A similar procedure on closed top-down expansions may be used to show that one-
boundedness is decidable. That is. V is one-bounded iff every closed expansion of depth 3
is contained in a closed expansion of depth at most 2. Our treatment has, however, been
motivated by the interests of exposition, and by the setting up of an efficient algorithm for
the detection of one-boundedness: the latter is contained in the next section.

1.5. SUBTREE-ELIMINATION ALGORITHMS 33

p(X,Y) p{X,Y)

I I
MY, A") P(X,Y)

I
p(X,Y) /

<*
/

Figure 1.18: Proving one-boundedness.

P(X,Y)

p(X,U) P(U,Y) p(X,A

p(X,V) p(V,U) s^' p(A,B)

Figure 1.19: An acceptable mapping.

Linearizability by basis

By definition, the open expansion of depth 0 is right-linear. By Theorem 1.5 and the
Expansion Theorem, if we show that every non-right-linear open expansion is contained
in a right-linear open expansion, then we may conclude that V is basis-linearizable. The
following treatment is an extension of a result of [25]; they consider a Datalog program with
a single recursive rule, which is bilinear.

Let T\ and T2 be open expansions, let node(l) be the rightmost />leaf in T\ and let
node(k) be the rightmost p-leaf in T2. We say that a containment mapping / : T2 -^ 1\ is
acceptable for- right-linearity (or just acceptable) iff nocle(l) is the destination (under /) of
no leaf, or is the destination of node(k) only.

Example 1.23 Consider the program of Example 1.3. Figure 1.19 shows that the minimum-
depth violation of right-linearity is contained in a right-linear expansion under the accept-
able mapping /(A) = XJ(Y) = YJ(A) = VJ(B) = U. D

Theorem 1.8 Assume that every minimum-depth violation of right-linearity is contained in
a right-linear expansion, and that the containment is provable by an acceptable containment
mapping. Then V is basis-linearizable.
Proof. By induction on the number /' of rule applications in the top-down expansion, wo
show that every non-right-linear expansion is contained in a right-linear expansion. The
basis, / = 0 (representing the top-down expansion of depth 0), is trivial. For the induction,
assume the truth of the hypothesis for 0 < / < /. where i > 0.

34 CHAPTER 1. SUBTREE ELIMINATIONS

p ... p I
\

T,

Figure 1.20: T\ in Theorem 1.8.

Consider a top-down expansion T\ obtained through / rule applications. If T\ is right-
linear, then the result follows; if 7\ is a minimum-depth violation, then the result follows by
assumption. Otherwise, T\ is obtained by expanding some leaf node[n) in some expansion
T-2 (constructed using i— 1 rule applications) through some rule r, (see Figure 1.20).

By our inductive hypothesis, Ti is contained in a right-linear tree T3. If T3 has depth 0.
then our result follows by Theorem 1.6.

Assume that T3 has depth at least 1. By the Expansion Theorem, wc may expand each
node in Tz whose destination under / is nofle(n) through /-,. to produce an expansion T4
such that T\ C T4. If T4 is right-linear, the result follows. Otherwise. 7".| is a tree that
is obtained from some right-linear tree by expanding some non-right most /^-leaves in the
right-linear tree through the rule r3. We call such an expansion almost right-lineai:

We may rectify T4 in a. bottom-up manner, using the Splicing Theorem and the fact
that the composition of containment mappings is a containment mapping, as follows. At
any stage in the process, we have a situation as shown in Figure 1.21; that is. we have an
almost-right-linear tree T5 whose rightmost />nodi> is expanded through a violation V. such
that t he rightmost /;-node of V" is a leaf or is expanded t hrough some right-linear t ree TV

By assumption, there is an acceptable mapping ln>m M>me right-linear expansion R into
1'. Hence, by the Splicing Theorem, we may spin.' // in tor I": the /.«-leaves of R nunain

1.5. SUBTREE-ELIMINATION ALGORITHMS 35

^-t>

11

Figure 1.21: The rectification procedure of Theorem 1.8.

36 CHAPTER 1. SUBTREE ELIMINATIONS

leaves, except for the rightmost p-leaf in R which may be expanded through the right-linear
tree Te- An inductive repetition suffices to complete the rectification. □

By the observations of Example 1.23, we may now claim that the transitive-closure
program of Example 1.3 is basis-linearizable.

Complexity If P is a Datalog program, then the minimum-depth violations may be
constructed in polynomial time, and the containments under acceptable mappings may bo
tested in polynomial space by the chase algorithm of [25]. In the non-Datalog case, the chase
may not terminate; however, we may generate sufficient conditions by placing a bound on
the depth of the containing right-linear expansion. A suitable heuristic may be one based
on size preservation; that is. we may insist that the containing query be no bigger than the
contained expansion.

Sequencability

By convention, the open expansion of depth 0 is sequenced. By Theorem 1.5 and the
Expansion Theorem, if we show that every non-sequenced open expansion is contained in
a sequenced open expansion, then we may conclude that V is sequencable. The following
result is an extension of an algorithm proposed independently by [25] and [17]: they consider
Datalog programs with only two recursive rules, both of which are linear.

For any / < j. define an r-rrj violation of sequencability (or just an /•,-/', violation) to
be an open expansion of depth 2. such that rj is used to expand the root, one or more of
the children are expanded through ?•;, and all other children of the root are leaves.

Let us further define an /-,-'';-sequenced expansion to be a sequenced expansion using
only the rules r, and 7-, such that ?•; is used at most once (that is. ?-, can only be used to
expand the root).

Example 1.24 Consider the program of Example 1.4. The minimum-depth violation of
sequencability in this program is the expansion [^b'l [][]]] (see Figure 1.22); this expansion is
an Ti-V2 violation. The minimum-depth violation is contained in the ri-v^-seqiienced expan-
sion [?'i[''2[]][''-2[]]]: as shown in the figure; the containment follows because both expansions
have the same root and leaves. □

Let us define a node violation of rt to be the root of an ?■,•-/■;• violation for any j.

Theorem 1.9 Assume that for all / and j, each /-,-;•, violation is contained in some r,-rr

sequenced expansion. Then P is sequencable.
Proof. By induction on the number m of rule applications in a top-down expansion T
generated by P. we prove that T is contained in a sequenced expansion. The proof is
similar to that of Theorem 1.8: we merely sketch the inductive step. Assume that the /»th
rule applied is ;,. By the inductive hypothesis and the Kxpansion Theorem. T is contained
in some top-down expansion T'. which is obtained by expanding some leaves in a sequenced
expansion through ?•,-. We inductively rectify T' iisinu the Splicing Theorem, by "bubbling

1.5. SUBTREE-ELIMINATION ALGORITHMS

Figure 1.22: Proving sequencability.

up" the node violations of 7-, as follows. Consider any node violation at maximum depth;
assume it is the root of the V{-Tj violation V, in which some leaves may be expanded through
sequenced expansions in which every rule used is of the form r^ for k > j (where j > i). By
assumption, V is contained in an /^-r^-sequenced expansion 5. By the Splicing Theorem,
we may splice S in for V; this process either reduces the number of node violations of /-,
by 1 or replaces the node violation by a node violation at a smaller depth. Further, the
splicing-in of S for V does not create any ;•/,-?•/-violations for k ^ i. Hence, we may proceed
in stages, in each stage removing all node violations of rt at maximum depth, until the
tree T' is sequenced. The situation is depicted in Figure 1.23. In the figure, R\ ... /?;, are
sequenced subtrees in which the rules ;•]... .,»•,• are not used. D

By the observations of Example 1.24. we may conclude that the program of Kxamplc
1.4 (computing the symmetric, transitive closure) is sequencable.

Complexity As before, the tests of Theorem 1.9 may be performed in polynomial space
for Datalog programs through the chase algorithm of [25]. In the non-Datalog case, we may
construct sufficient conditions by placing a bound on the depth of each containing /•;-'',-
sequenced expansion, perhaps by using the size-maintaining heuristic that was presented in
the previous subsection.

1.5.3 Fast algorithms

Finally, we present restricted algorithms for the detection of one-boundedness and basi>-
linearizability. In Chapter 2, we will show that for Datalog programs, these algorithms
are polynomial in the size of V: they perform polynomial-time reductions to restricted
programs for which the detection of the appropriate normal form is known to be decidable
in polynomial time. The idea behind the algorithms is to further restrict the destination-
of an atom under a mapping that proves the containment of a violation in a normal-form

38 CHAPTER 1. SUBTREE ELIMINATIONS

/N

}S

> r,

Figure 1.23: The rectification process of Theorem 1.9.

expansion. That is, we essentially rename different occurrences of the recursive atoms in
each rule.

Let us assume that for any i and j. the jlh subgoal in the rule / is given the superscript.
ij, and that this superscript is carried through all top-down expansions6. That is, if ?-, is
used to expand a p-atom and the jth subgoal has principal functor q. then the jth child of
the expanded atom is referred to as a q'3-atom (or just qlJ). The root of the expansion, and
the body of the top-down expansion of depth 0. are merely p-atoms. Figure 1.24 illustrates
this notation on the non-right-linear top-down expansion of Figure 1.19, representing the
minimum-depth violation of basis-linearizability in the program of Example 1.3.

One-boundedness

For all /'. define a violation of degree i to be a minimum-depth violation of one-boundedness
in which exactly / children of the root are expanded. Now. for any open top-down expansions
T\ and TJ. we say that a containment mapping / : 7\ — 'A is restricted \1i the destination
of any «y'-'-atom in T\ under / is a r/'-'-atom in 7V Note that the number and size of
the violations of degree 1 are polynomial in the si/.'- of V. and that each violation can be
constructed in polynomial time.

Note that lliis concept is distinct from the idea of labels in .i top-down expansion

1.5. SUBTREE-ELIMINATION ALGORITHMS 39

P(AM')

Pn(X,U) pu(U.Y

pu(X,V)^ P12{V,U)

Figure 1.24: Notation.

T {

P' J
kj C

> w

Figure 1.25: 11*' in Theorem 1.10.

Theorem 1.10 Assume that every violation of degree 1 is contained in a top-down expan-
sion of depth no more than 1. and that the containments are proved by restricted mappings.
Then. V is one-hounded.
Proof. We prove by induction on /' that every violation of degree i is contained in a tree of
depth at most one, and that the containment is proved by a restricted mapping: our result
then follows by Theorem 1.7. The basis. / = 1. follows by assumption.

Now, assume the truth of the inductive hypothesis for 1 < / < •'. Consider any violation
T of degree i. This violation must be obtained by expanding some //'''-leaf at depth 1 in
some violation V of degree * — 1 through some rule rr By our inductive hypothesis. F F
contained in some expansion 11* of depth at most 1 under a restricted containment mapping.

If the depth of IF is 0, then by Lemma l.(i and the Expansion Lemma, T is contained
in [] or i-j under a restricted mapping.

If the depth of IF is 1. then let W be tin- result of expanding the //'''-leaf in IF through
the rule ;•,■ (see Figure 1.25). By the F\p.ui-ion Lemma, T is contained in IF' under
a restricted mapping. However. IF' is a \ml.iiion of degree 1. and is (by assumption.'
contained in a tree of depth at most 1 under .i ;■-nicied mapping: our result follows because

40 CHAPTER 1. SUBTREE ELIMINATIONS

the composition of restricted mappings is a restricted mapping. □

This theorem leads to the following algorithm that is sufficient (but not necessary) to
prove one-boundedness.

Algorithm 1.1

INPUT: A single-IDB program V.
OUTPUT: "yes" only if V is one-bounded.

(1) Construct all violations of degree 1. and all expansions of depth at most 1.

(2) If each violation of degree 1 is contained in an expansion of depth at most 1 under a
restricted mapping, then answer ''yes'"; otherwise, answer "no".

D

There are a polynomial number of degree-1 violations, so Step (1) may be accomplished
in polynomial time. Step (2) involves a polynomial number of containment tests, each
involving the existence of a restricted mapping from an expansion of depth 0 or 1 into
a violation. Testing for the existence of a mapping from a depth-0 expansion into any
expansion is clearly polynomial. Consider tests of the second kind; that is. tests for the
existence of a restricted mapping from a depth-1 expansion T into a violation V. Each atom
in T has at most 2 possible destinations in \' under a restricted mapping, and we will show
in Chapter 2 that such tests may be accomplished in polynomial time. Hence. Algorithm
1.1 is in V.

Basis-linearizability

A similar process may be applied to create .sufficient conditions for the detection of basis-
linearizability.

As before, we define a violation of degree i to be a minimum-depth violation of right-
linearity in which exactly / children of the root are expanded. Now. for any violation T|
and right-linear expansion T?, we say that a containment mapping / : T{ — T-i is restricted
if for any <y'J'-leaf in T\ that is not the rightmost />-leaf in T\, the destination of this </'•'-atom
in T\ under / is a </,J-atom in T-i. Note that a restricted containment mapping is acceptable
for right-linearity. Again, we observe that the number and size of the violations of degree 1
are polynomial in the size of P, and that each violation can be constructed in polynomial
time.

Theorem 1.11 Assume that every violation of degree 1 is contained in a right-linear top-
down expansion, and that the containments are proved by restricted mappings. Then. V is
basis-linearizable.
Proof, We prove by induction on / that every violation of degree / is contained in a right-
linear expansion, and that the containment is pro\<-d by a restricted mapping: our result
then follows by Theorem 1.8. The basis. /' = 1. follow- liy assumption.

1.5. SUBTREE-ELIMINATION ALGORITHMS -II

, p

na\

pak" C

\
\
\

pc\c c

Mb

\
•■.aka j)a" ... paK° c

/ \
\
\

T vv

Figure 1.2(5: II' in Theorem 1.11.

Now, assume the truth of the inductive hypothesis for 1 < / < •/. Consider any violation
T of degree ■/. This violation must be obtained by expanding some ;;u!'-leaf at depth 1 in
some violation V of degree / - 1. such that this leaf is not the rightmost child of the root.
through some rule r,- (see Figure 1.26). By our inductive hypothesis. V is contained in some
right-linear expansion W under a restricted containment mapping.

If the depth of W is 0, then by Theorem 1.6. T is contained in r3 or [] under a restricted
mapping.

If the depth of W is 1 or larger, then let \V be the result of expanding every //''-loaf in
W whose destination is the newly-expanded leaf in V through the rule /■,-. By the Expansion
Theorem, T is contained in W under a restricted mapping. Note that IF' is obtained l>\
expanding some pa6-leaves in a right-linear expansion through •/•,•; that is, at any stage of i h^
tree, at most two sibling />atoms are expanded. By assumption, each violation of degr.-.-
1 is contained in a right-linear expansion under a restricted mapping, and a bottom-np
rectification as in the proof of Theorem 1.8 serves to complete the proof. D

This theorem yields the following sufficient i hut not necessary) condition for the del.-.-
lion of basis-linearizability. \Y> will show in Cliaptcr 2 that the algorithm is polynomial

42 CHAPTER 1. SUBTREE ELIMINATIONS

the key is to test whether every degree-1 violation is contained in a right-linear tree of depth

at most 2 under a restricted mapping'.

Algorithm 1.2
INPUT: A single-IDB program P.
OUTPUT: "yes" only if V is basis-linearizable.

(1) Construct all violations of degree 1, and all right-linear expansions of depth at most 2.

(2) If each violation of degree 1 is contained in a right-linear expansion of depth at most 2
under a restricted mapping, then answer "yes"; otherwise, answer "no".

O

There are a polynomial number of degree-1 violations and a polynomial number of right-
linear trees of depth at most 2, so Step (1) may be accomplished in polynomial time. Step
(2) involves a polynomial number of containment tests, each involving the existence of a
restricted mapping from a right-linear expansion of depth 0, 1 or 2 into a violation. As we
mentioned in our treatment of one-boundedness in the previous subsection, testing for the
existence of a mapping from a depth-0 expansion into any expansion is polynomial. Con-
sider tests for the existence of a restricted mapping from a depth-1 or depth-2 right-linear
expansion T into a violation V. Let N be the size of V: remember that N is polynomial
in the size of the program V. By the definition of a restricted mapping, one atom (say. a)
in T has up to N possible destinations in V. and each other atom has at most. 2 possible
destinations. Hence, by a case analysis on the destinations of a. we may reduce the test
to Ar tests for the existence of a mapping from T into V such that each atom in T has
at most 2 allowed destinations in V. We will show in Chapter 2 that such tests may be
accomplished in polynomial time. Hence. Algorithm 1.2 is in V.

Sequencability

A similar algorithm may be devised for the detection of sequencability, but we omit the

treatment in the interest of brevity.

1.6 Overview of Chapters 2, 3 and 4

In the remainder of this report, we will investigate the complexity of the subtree elimi-
nation problem, focussing on the detection of one-boundedness. basis-lineari/.ability and
sequencability.

In Chapter 2. we investigate the complexity of detecting containments among conjunc-
tive queries. We extend the conjunctive query containment problem to the k-cnntainmrnt
problem, and show that ^--containment and kSAT are essentially the same problem. This in-
vestigation results in a complete description of the complexity of conjunctive query contain-
ment. These results are then extended to show that one-bouudedness. basis-linearizability

"The algorithm is polynomial for any given choice of depth fur the right-linear trees

1.6. OVERVIEW OF CHAPTERS 2, 3 AND 4 43

Polynomial time AT-hard Undecidable

One-
boundedness

linear sirup.
< 1 reps

linear sirup.
< 4 reps

never

Basis-
linearizability

bilinear sirup.
< 1 reps

bilinear sirup.
< 4 reps

1 nonlinear rule.
5 basis rules.

Sequencability ???
2 recursive rules

(both linear),
< 3 reps,

1 basis rule

2 recursive rules.
9 basis rules.

and sequencability are A'TMiard for restricted classes of programs. In this chapter, we also
prove that the sufficient conditions of Section 1.5.3 (Algorithms 1.1 and 1.2) are in V.

In Chapter 3, we provide a decision procedure for the detection of basis-linearizability
in a class of recursive programs. The decision procedure can be seen to be polynomial using
the techniques of Chapter 2.

Finally, in Chapter 4, we show that sequencability and basis-linearizability are undecid-
able for multi-rule, nonlinear programs. The techniques of this chapter also provide tight
undecidability results for the detection of program equivalence.

1.6.1 Complexity results

The results of our investigation are presented in Table L.l. The programs considered
are all Datalog. The expression < / reps means that each recursive rule in the program has
at most / occurrences of an EDB predicate in the body of each recursive rule.

Chapter 2

The complexity of conjunctive
query containment

2.1 Introduction

In this chapter, we will characterize the complexity of testing containments among pairs
of conjunctive queries. Recall that a conjunctive query is a single-rule, nonrecursive pro-
gram, and that the theorem of Sagiv and Yannakakis (Theorem 1.2) relates containments
among recursive programs to containments among the conjunctive queries generated by
these programs.

In Section 2.2, we characterize the complexity of the conjunctive query containment
problem. Our results are obtained by defining and analysing a closely related problem,
which we term the Ic-containment problem. We also show that a restricted version of the
2-containment problem is in .VC, and is hence efficiently computable in parallel.

In Section 2.3, we extend the results of Section 2.2 to provide yVT-hardness results for
the one-boundedness, sequencability and basis-linearizability problems. We also justify the
title of Section 1.5.3 by showing that the algorithms of that section are in V. as we claimed.

2.2 The /j-containment problem

Let us consider the complexity of the conjunctive query containment problem. In this
section, we will define the /.•-containment problem a> a parametrized version of the conjunc-
tive query containment problem, and show thai while i he 2-containment problem is in P.
the 3-containment is .VT-complete. We also show th.it lor Datalog (that is. function-free)
conjunctive queries, the 2-containiuent problem i> in \ I ()(ISPACE (and hence in A'C).

4-1

2.2. THE K-CONTAINMENT PROBLEM

2.2.1 Conjunctive query containment

Recall from Section 1.3.1 that a conjunctive query is a single-rule, nonrecursive program.
That is, a conjunctive query is of the form

p(X) :- B.

where B is an arbitrary conjunction of atomic formulae. Strictly speaking, the predicate /;
must not occur within B; however, we will ignore this restriction when it is clear from Hie
context that such an expression is to be applied nonrecursively.

Consider the (not necessarily function-free) conjunctive queries

C\ : «o(cV) :- "i(£/i),. ..am(Um).

C2:b0{W0) :-bl{W1),...h,(Wi).

We assume without loss of generality that there are no repetitions of any atomic formula in
the body of C\. or in the body_of C2 (although predicates may appear repeatedly). That
is, for no i and j, i ^ j. are at-(#,-) and aj(Uj) syntactically identical (or 6,(lf',) and 6,(11"*',)
identical). Subgoal repetitions can clearly be identified and eliminated in polynomial'time.
The conjunctive queries C\ and C2 will serve as generic conjunctive queries in the remainder
of this chapter.

The theorem of Chandra and Merlin

The following treatment, is a synopsis of Section 1.3.2. which presents a syntactic lest for
the containment of a conjunctive query in another (see Theorem 1.1). The basic tool used
is the containment mapping, as described below in terms of the generic conjunctive queries
C\ and C-2 presented at the beginning of this section.

Let / be a function on the symbols in C2 that leaves constants unchanged. We may
extend / to terms (and atoms) in the obvious way; that is, we define /(<y(r/i dk)) u,
be /(</)(/(rfi),...,/(4)), where the d, are arbitrary terms. Such a function is said to be a
containment, mapping from C2 into C\ if the following are both true.

1- f(K(Wo)) = a0(Uo)-

2. For 1 < j < I there is an /, 1 < / < m. such that /(bj(Wj)) = ",('",)■

If there is a containment mapping / : C2 - C\. then for every atom / in (',. we sav t l,;,i
f(t) is the destination of / under /. Since / is a function and there are (by assumption) n..
subgoal repetitions in C\. each atom in C2 lias a unique destination under f.

The theorem of Chandra and Merlin (Theorem 1.1) states that for any conjunct i\-
queries C\ and C2. C\ C C2 if and only if there is a containment mapping / : C2 — (\.

Example 2.1 Consider the conjunctive queries C, and C.,, as defined below.

C3:p(X) :- a{X,B).b(A.B).b(C.B),b.(l).l)).r(n.n).c((\n),c(~[.D)
C, :p(X) :- a(X.V).l>(U.V).c((-.\V).

46 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

The function / defined by /(A) = A',/(F) = BJ(U) = A, f(W) = D is a containment
mapping from C4 into C3. The destination (under /) of>(A) is p(A), of «(A", V) is «(A. /?),

of b(U, V) is 6(/l, B) and of c([/, W) is c(A, D).
However, there is no containment mapping g : C3 — C4. If there were such a mapping

</, then the destination of c(B,B) under # would have to be c{U,W) (the only c-atom in
C4); however, the requirement g{c{B, B)) = c(U, W) would imply g(B) = U and g(B) = W,

contradicting the assumed functionality of g. □

2.2.2 Conjunct mappings

The theorem of Chandra and Merlin is based on the existence of a mapping on symbols.
An alternative viewpoint, and one which lends itself to a description of the complexity of
deciding conjunctive query containment, is based on the existence of a mapping on atoms.

Definition 2.1 Let 5 and / be two arbitrary atomic formulae. We say that there is a partial
mapping from .? to t (written $ -- t) if there is a substitution for the variables in s under

which s is made syntactically identical to /.. □

Each partial mapping s ->• t (if it exists) implies a unique substitution for each variable
in s\ the set of such assignments is termed the assignment set induced by the partial mapping.
Two assignment sets are said to be consistent if no variable is assigned a different value
by the two assignment sets, and a pair of partial mappings is said to be consistent, if the
assignment sets induced by the mappings are consistent.

Example 2.2 In Example 2.1, the partial mapping b(l\V) — b{A,B) induces the as-
signment set {U := A,V := B). Further, the partial mappings «(A, V) — a{X.B)
and b(CKV) — b(A,D) are inconsistent, since the variable V is assigned a different value
by these mappings. Finally, as indicated in Example 2.1. there is no partial mapping

c(B.B)- c(UAV}. D

The existence of a partial mapping may be tested and the induced assignment set gener-
ated through term-matching (Ullman ([36])), and may hence be accomplished in time that
is polynomial in the total size of s and t. Testing for consistency is clearly polynomial in the
size of the assignment sets. The following lemma shows that for function-free atoms, both
these procedures may be accomplished in LOGSPACE. The central idea is the fact that in
the function-free case, the existence of a partial mapping and the consistency of a pair of
partial mappings may each be tested by testing the equality or inequality of arguments in

the relevant atoms.

Example 2.3 Consider the queries of Example 2.1. There is a partial mapping b{UA') —
b{A. R). but no partial mapping c{B,B) — c(U. IT). In the latter case, both arguments of
c(B.B) are equal, but the arguments of c{U. IT) are unequal. D

For any atom p{X) and integer i, let p(X)[i] denote the i\\\ argument of p{X).

Theorem 2.1 Let p{X) and q(Y) be atoms. Then, then- is a partial mapping p(X) — </(V)

iff the following conditions are true.

2.2. THE K-CONTAINMENT PROBLEM 47

1. p and q are the same predicate, and have the same arity (say, n).

2. For 1 < i < n, if p(.V)[i] is the constant c, then ?(y)[J] is the same constant c.

3. For 1 < / < j < n, if p(.Y)[t] = p{X)\j], then q(Y)[i] = q{Y)[j}.

Proof. If conditions 1, 2 and 3 are met, then the set

{p{X)[i] := q(Y)[i] | 1 < i < n, p(X)[i\ is a variable}

is a substitution under which p(X) is made syntactically identical to q(Y). The converse
follows by the definition of a partial mapping. D

Theorem 2.2 Let p be a predicate of arity n and q a predicate of arity m. Assume that
the partial mappings p(X) -- p(Y) and q(W) -> q(Z) exist. These partial mappings are
consistent iff for 1 < i < n, 1 < j < m, if p{X)[i] = q(W)[j], then p{Y)[i] = q{Z)[j).
Proof. If the condition is met, then the set

{p(X)[i] := p(Y)[i] | 1 < t < n, p{X)[i] is a variable}
U

{q(W){J} ■= q(Z)[j] | 1 < j < m, q{W)[J) * a variable}

is single-valued for each variable in X U W, and is a substitution under which p(X) is made
syntactically identical to p(Y) and q{W) made syntactically identical to q(Z). The converse
follows by the definition of consistency. □

The importance of partial mappings lies in the duality that such mappings enjoy with
containment mappings. More precisely, if there is a function / and atoms s and t such that
f(s) = /, then (by definition) there is a partial mapping s —»• t; in addition, the existence
of a partial mapping s —>■ t uniquely .defines a function / such that f(s) = t. Further, the
assignment set induced by the partial mapping is merely an extensional definition of the
function /.

Example 2.4 Consider the queries C$ and CU of Example 2.1. The function / defined by
f(U) = AJ(V) = B maps b{U,V) to b{A,B) (that is, f(b(U,V)) = f(A.B)). The partial
mapping b(U, V) —>■ b(A, B) exists, and the assignment set induced by the partial mapping
is {U := A,V:=B). U

These observations lead us to the following characterization for conjunctive query con-
tainment.

Definition 2.2 Let C\ and C-i be the generic conjunctive queries of the preceding subsec-
tion. We say that a conjunct mapping M from Ci into C\ (written M : Ci — C\) is a
sequence < m0,...,m/ > of (not necessarily distinct) atoms in C\ such that the following
are all true.

48 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

1. m0 is OoiUo)-

2. For 1 < j < /, 77i,- is <ij ({/,•) for some i £ [l,m].

3. For each j, 0 < j < /, there is a partial mapping &j(Wj) —' trij.

4. Each pair of partial mappings is consistent.

For each j, m.j is the destination of bj(Wj) under the conjunct mapping. The partial

mapping b0(W0) — a0(Uo) is termed the head mapping. □

The value of conjunct mappings is illustrated by the following theorem.

Theorem 2.3 (Conjunct mapping theorem) For any conjunctive queries Ci and Ci, there
is a containment mapping from C2 into C\ iff there is a conjunct mapping from Ci into C\.

Corollary C\ C Ci iff there is a conjunct mapping M : Ci —>■ C\.
Proof. Let C\ and C2 be as above. If there is a containment mapping / : Ci -^ C\, then
the sequence < f{b0(W0)),.. .f(bi(Wi)) > defines a conjunct mapping from C2 into C\.
Conversely, assume that M is a conjunct mapping from C'i into C\. The function defined
by the union of the assignment sets induced by the partial mappings bj(Wj) -* mj, for
0 < j < /, is a containment mapping from Ci into C\. The proof of the corollary follows by
the containment mapping theorem. □

Example 2.5 Consider the conjunctive queries C3 and C'4 of Example 2.1. There is a
conjunct mapping M : C4 => C3 in which the destination of p(X) is p(X), of a(X,V) is
n(.Y, B), of b(U, V) is b{A, B) and of c{U, W) is c{A, D). D

2.2.3 The /.-containment problem

We extend the conjunctive query containment problem by permitting the placement of
restrictions on the destinations that a conjunct mapping may include.

Definition 2.3 Let C\ and Ci be the generic conjunctive queries of Section 2.2.1. and let
V be the sequence < D0, D\,.. .D\ >, where

1. D0 = {(IO(UQ)}, and

2. For 1 < ;' < /, D0 C {o,-(C7t-) | 1 < i < m}.

V
We say that C\ C Ci under V (written C\CCi) if there is a conjunct mapping M :

C'i => C\ such that nij 6 Dj, for all j . Determining such a containment is an instance of
the distinguished-destination problem. The Dj are termed destination sets, since they limit
the possible destinations of each atom under a conjunct mapping. If any destination set D}

is empty, then C\ flC-i-

2.2. THE K-CONTAINMENT PROBLEM 49

C3:p{X) :- a{X,B),b{A,B).b{C,B),b.(D,D),c{B,B),c(C,B),c{A,D).

C4:p(A-) :-a(X,V), b[V,V), c{U.W).

Figure 2.1: Distinguished-destination instance.

Similarly, if we are given conjunctive queries C\ and C'2, and destination sets V\ and "Do,

then we may define the equivalence of C\ and C2 under V\ and P2 (written Ci = C'2)
Pi" Z>2

to be d C C2 and C2 CC\. □

Example 2.6 Consider the conjunctive queries C3 and C4 of Example 2.1, and define V by
the arrows in Figure 2.1. < Ci,C'2,V > is a distinguished-destination instance. Note that
the atom b(D,D) is not an allowed destination for b{U,\r). but is an allowed destination
for c(U.W). D

We further parametrize the problem by the maximum cardinality of the destination sets
Dj.

Definition 2.4 An instance of the k-containment problem is an instance of the distinguished-
destination problem, in which \Dj\ < k for all j\ that is. no destination set has more than
k elements. □

Example 2.7 The problem of Example 2.6 is an instance of the 4-containment problem.
D

2.2.4 Pruning

Given conjunctive queries C\ and C'2 (the generic conjunctive queries of Section 2.2.1) and
a set V of destination sets, we may prune the destination sets in V as follows. For each j.
let Dj be the set {djq\l < q < iij}. where », is the cardinality of Dj.

Definition 2.5 We say that the distinguished-destination problem < C'i,C'2-T> > is primal
iff

1. For all p,s, if dps G Dp then bp(Wp) — </..,: that is, there is a partial mapping from
every atom in C'2 to each of its allowed declinations: and

50 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

C3:p(X) :- a{X,B),b{A,B),b(C,B),b,{D,D),c{B,B).c{C,B),c{_A,D).

C4 : p(X) :- a(X, V), b(U, V),c(U, W).

Figure 2.2: Pruning.

2. For all p, s, if dps € -Dp, then for all q there is a t such that dqt G Dt and the partial

mapping bp(Wp) —>■ dps is consistent with the partial mapping bq(Wq) —► d?t; that
is, every allowed destination for some atom is consistent with at least one allowed
destination for every other atom.

D

Define any dps £ Dp to be a violation of Class 1 if it violates condition (1). and a
violation of Class 2 if it violates condition (2). If dps is a violation of Class 1 or 2, then
by the definition of a conjunct mapping, the destination of bp(Wp) cannot be dps under
any conjunct mapping. Hence, the removal of a Class 1 or Class 2 violation dps from the
destination set Dp does not affect the existence of a containment. We prune the destination

V
sets Dj by iteratively removing all violations to produce a set V such that C\CC-2 iff

V
<s'icc2.

Example 2.8 Consider the distinguished-destination instance of Example 2.6. There is no
partial mapping c{U, W) — b{D,D) (since b and c are different predicates), and the partial
mapping c(U, W) — c(B, B) is inconsistent with every choice of destination for &({/, V). The
pruned distinguished-destination instance is shown in Figure 2.2. Note that the instance is
now a 2-containment problem.

D

Algorithm 2.1

INPUT: CUC2,V as above.
V V

OUTPUT: V, containing no violations, such that C\ C Co iff C\<zC-i.

(1) change <— true

(2) while change
(3) change <— false
(4) for 0 < j < I

(5) for s £ Dj

2.2. TEE K-CONTAINMENT PROBLEM 51

% If ^ is a. Class 1 violation, remove it.

(6) if bjiW^ + s
(7) Dj - Dj - {s}

(8) else
% If s is a. Class 2 violation, remove it.

(9) violation *- false
(10) for 0 < i < I

(11) temp <— true

(12) for t e D{

(13) if bj(Wj) —► 5 is consistent with MlT*,-) —■ *
(14) temp <— /«/.?e
(15) violation <— violation V /emp
(16) if violation
(17) Di «- A - {s}
(18) change <— /nie

P' is the set of the resulting Dj. □

The correctness of the algorithm follows from the fact that the removal of a violation
cannot affect the existence of a containment. Termination is guaranteed since each as-
signment of true to change (at line 1) accompanies the deletion of a destination from a
destination set. The algorithm is easily seen to run in polynomial time, and in LOGSPACE
for Datalog queries by Theorems 2.1 and 2.2.

In the remainder of this chapter, we assume that all distinguished-destination instances
have been pruned.

2.2.5 Equivalence of the containment and distinguished-destination prob-

lems

It turns out that the conjunctive query containment and distinguished-destination prob-
lems are essentially the same problem, in the sense that these problems are polynomially
equivalent.

Given conjunctive queries C\ and C? and an integer k such that no predicate appears
more than k times in the body of C\, we may construct a /„--containment instance by setting
Do to be a singleton set containing the head of C\, and setting each other Dj to be the set
of the atoms in the body of C\ that have the same principal functor as l>}. That is, each
atom in the body of Ci is allowed to map to every occurrence of the same predicate in I In-
body of C\.

The following algorithm performs the reduction in the opposite direction.

Algorithm 2.2

INPUT: a /c-containment instance Ci, C-2 and V.
OUTPUT: conjunctive queries C{ and C2 such that no predicate appears more than /.: tinx-s

V
in the body of C[. and such that C[C d2 iff (\CC>.

52 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

(1) The heads of C[and C2 are those of C\ and Ci-, respectively.1

(2) Let the jth atom in the body of C2 be e(Wj). Since V is pruned, each member of the

destination set Dj must also have principal functor e. Let Dj be {<?(£/,,)|1 < q < n,-},
where (by assumption) ny < k. Create a new predicate symbol (jj. Then, add the

atom gj{Wj) to the body of C2, and an atom gj(Uj) to the body of C{ for 1 < q < nr

D

Example 2.9 Consider the pruned distinguished-destination instance of Example 2.8. The
algorithm produces the following queries.

Cl:p(X) :- d(X,B),e{A,B),e{C,B),g{C,B),g{A,D).
C'4:p(X) :- d(X,V),e(U,V),g(U,W).

□

The algorithm is clearly polynomial. In step 2, each predicate gj is made to appear at
most 77j < k times in the body of C{, and thus no predicate appears more than k times in

V
the body of C\. Finally, to prove that C\CCi iff C[C C'2, we observe the following.

1. Both instances involve the same head mapping, yielding the same induced assignment
set.

2. If the j'-th atom in the body of C2 is e(Wj) with destination set Dj = {e(Ujq)\l < q <

n,j}, then for any q, there is a partial mapping e(Wj) -^ e(Uj) inducing the assignment

set S iff there is a partial mapping gj(Wj) — gj(Uj,) inducing the assignment set 5.

2.2.6 Complexity of fc-containment

The ^-containment problem is clearly in NV\ merely guess a conjunct mapping and ver-
ify using the conjunct mapping theorem. It turns out that the /.'-containment problem
and Ä.-SAT are essentially the same problem. That is, for k > 2, the ^-containment prob-
lem is no harder than fcSAT; since 2SAT is known to be polynomial, we may conclude
that the 2-containment problem is also polynomial. In fact, the reduction may be per-
formed in LOGSPACE for Datalog queries, and the 2-containment problem is therefore
in NLOGSPACE (and hence MC [9]). Further, for k > 3. kSAT is no harder than the
A:-containment problem, and the 3-containment problem is therefore .V'P-complete.

'To preserve the safety of the queries, we may create a new predicate /, and place the atom /(t'o) i" the
body of C[and the atom f(W0) in the body of C?.

2.2. THE K-CONTAINMENT PROBLEM 53

C*3: p(X):- d(X,B) e(A,B) e(C\B) g{C,B) g(A,D).

t T ^ f t /
t = 1 J/ = l ä = 1 u; = 1 r = 1 -s = l

I I- \ / I /
A' := A A := A U := A U := C U := C U := .4

V := 5 V := B V := B W := 5 W := D

C4: p(X)
\ V

d(X,V) e(U,V g(U,W).

2SAT instance: Class 1 clauses: {t}{y}{z + ic}{r + s}
Class 2 clauses {z + f}{iü + s)

Minimal satisfying truth assignments:
t=y=w=r=l

Figure 2.3: Testing the containment C'z C C4 in Example 2.9

Polynomial time

We will provide a polynomial-time reduction from any instance of the k- con tain merit prob-
lem to an instance of fcSAT, for k > 2. We assume that the conjunctive queries C\ and C-i
are the generic queries described in Section 2.2.1.

The basic idea is that we carry a Boolean variable representing each choice of destination
for each atom. The clauses produced are of two kinds.

1. Clauses that enforce the requirement that each atom in C-i have a legal destination in
C\. We call such clauses Class 1 clauses.

2. Consistency constraints that disallow inconsistent pairs of partial mappings. Such
clauses are termed Class 2 clauses.

Example 2.10 illustrates the construction.

Example 2.10 Consider the pruned 2-containmcnt instance of Example 2.9. Let the fol
lowing Boolean variables indicate the followiuu, clioicos of destinations (see Figure 2.3).

54 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

Boolean variable atom destination

t PIA') P(X)

y d{X,V) d(X,B)

z e{U,V) e(A,B)

w e(U,V) e(C,B)

r g(U,W) 9(C,B)
s g(U,W) 9(A,D)

Recall that the Class 1 clauses represent the statement "Every atom in C± has a legal
destination". Now, the only allowed destination for p(X) is p(A"), yielding the Class 1
clause {t}. Similarly, the allowed destinations for b(U,V) are b(A,B) and b(C,B); the
corresponding Class 1 clause is {z + iv}. The set of Class 1 clauses is {t}{y}{z + w}{r + s}.

The Class 2 clauses enforce consistency of the corresponding partial mappings. The
mapping b(U,V) — b(A,B) is inconsistent with c(U, W) -+ c(C\ B) (yielding the clause
{z + ?"}), and the mapping b(U,V) -+ b(C,B) is inconsistent with c(U,W) — c[A,D)

(yielding the clause {w + s\).
The 2SAT instance created is {t}{y}{z + iu}{r + s}{z+r}{iö + s}, with the two satisfying

truth-assignments t = y = z = s = l and t = y = w = r = l. The first such assignment
gives a conjunct mapping as indicated by the heavy arrows in Figure 2.3. Note that in the
general case, the cardinality k of the Class 1 clauses is the parameter of the /.'-containment
instance, and Class 2 clauses always have cardinality 2. G

In general, more that one member of a Class 1 clause may be true in a. satisfying truth
assignment (signifying more than one possible destination for some atom). In this case, any
one choice of destination suffices.

The following is a formal statement and proof of the algorithm.

Algorithm 2.3
INPUT: a pruned ^.--containment instance < Ci-C^V >, with k > 2.
OUTPUT: a A:-SAT instance 1 that is satisfiable iff there is a fc-containment.

(1) If any destination set Dj is empty, output the unsatisfiable instance {.r}{x}.

(2) Create (/ + l)k Boolean variables {xJt\0 < j < /. 1 < / < k} and (/ + 1)/,* set variables
{Aj,|0 < j < /, 1 < i: < A:}; the former will be used to construct the /cSAT instance, and
the latter to hold induced assignment sets. Each destination set Dj is {r/j;|l < / < n,}.
where by assumption iij < k.

(3) for 0 < j < I

(4) add the clause {.tji + ... + Xjn } to 1

(5) for 1 < q < n.j

2.2. THE K-CONTAINMENT PROBLEM 55

(6) Ajq <— the assignment set induced by the partial mapping bj(Wj) — djq

(7) for 0 < j < i < I

(8) for 1 < q < rij,l <p < iii

(9) if Ajq is inconsistent with A[ip]

(10) add {xjq~ + x~^ } to Z

D

The algorithm is clearly polynomial. As before, we term the clauses that are added to I
at Step 4 Class 1 clauses, and those that are added at Step 10 Class 2 clauses. Since Class
1 clauses have cardinality at most iij < k and Class 2 clauses are doubletons, I is a &SAT
instance.

By the form of the Class 1 clauses, we may observe that in any satisfying truth-
assignment for 1, some Xjq is true for each j. Define a satisfying truth-assignment to
be minimal iff exactly one Xjq is true for each j.

Lemma 2.1 2 is satisfiable iff it has a minimal truth-satisfying assignment.
Proof. If I has a minimal satisfying truth-assignment, then it is clearly satisfiable. For the
converse, assume that S is a satisfying truth-assignment for 1. By previous discussion, at
least one member of each Class 1 clause is true under S. Arbitrarily pick one such member
of each Class 1 clause, and set every other member to be false. Such a procedure cannot
make either a Class 1 clause or a Class "2 clause untrue if it was true under S; hence, the
result is a minimal satisfying truth- assignment for I. □

V
Lemma 2.2 If C1CC2, then X is satisfiable.

V
Proof. If C\CC-2, no destination set Dj is empty, and the algorithm does not terminate at
Step 1. Let < (IQSO, .. .,diSl > be a conjunct mapping from C'2 into C\, where djs € D3 for
all j. Construct a truth-assignment for I by setting Xjs to be true, and all other variables
to be false. Such an assignment satisfies all Class 1 clauses. Further, by the properties of
a conjunct mapping, each Class 2 clause is satisfied as well. Hence, this truth-assignment
satisfies I. G

V
Lemma 2.3 If I is satisfiable, then CjCCV
Proof. Assume I is satisfiable, and let S be a minimal satisfying truth-assignment for I.
Assume that the variables that are true under S are :r0so....,.T/S,. Then < d0so, disi :■
is a conjunct mapping from C2 into C\ that obeys P. since the Class 1 clauses enforce tic
requirement that djS] £ Dj, and the Class 2 clauses enforce the requirement that no two
choices of destination are inconsistent. D

56 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

Note that a similar reduction may be performed from a ^-equivalence problem
< C\,C2,T>1,T>2 > to a. kSAT instance I. That is, we perform the reduction for <
C\,C2,T>i > and < C2,Ci,X>2 > separately, to produce fcSAT instances lx and Z2 re-
spectively, where the variables in X\ and I2 are distinct; then, the conjunction of Ix and

X2 yields a &SAT instance that is satisfiable iff C\ = C2.

Theorem 2.4 Algorithm 2.3 is correct.

Corollary 1. The 2-containment (or 2-equivalence) problem is in V.

Corollary 2. The 2-containment (or 2-equivalence) problem is in NLOGSPACE (and hence
NC) for Datalog queries.

Proof. By Lemmas 2.3 and 2.4. Corollary 1 follows because 2SAT is in V. Corollary 2
follows because 2SAT is complete for NLOGSPACE, and NLOGSPACE is in MC ([9]). D

Related work Sagiv and Yannakakis ([29]) propose an algorithm to decide containment
among function-free conjunctive queries C\ and C2 in which each atom in C2 has only
two destinations consistent with the head mapping; the primary differences between their
algorithm and Algorithm 2.3 are that their algorithm is based on function-free queries,
and performs pruning only in terms of atoms whose destinations are inconsistent with
the head mapping. Related work on polynomial-time algorithms includes the minimization
algorithms of Aho et al. ([3,4]) and Johnson and Klug ([19]). The most general result among
these three papers is that of Johnson and Klug, who consider "fanout-free" conjunctive
queries; they test for equivalence between two queries by minimizing each query, and then
determining whether the minimal queries are isomorphic. The conjunctive query

d-.piX) :- a(A',C),6(5,C),6(C,C),c(JB,Z?),c(C,Z?),c(C,C).

is not fanout-free. However, C\ is equivalent to the conjunctive query

C2:p(X) :- a(X,U),b(U,U),c(U,U).

as may be verified through two uses of Algorithm 2.4.

A'^-completeness

We now show that the ^'-containment problem is AfV-complete for k > 3, for a restricted
class of conjunctive queries. We will begin by defining the concept of a valid labelling for a
A;SAT instance, and showing that a A;SAT instance is satisfiable iff it has a valid labelling.
We will then reduce the problem of finding a valid labelling for a given fcSAT instance to
that of solving a ^-containment instance.

2.2. THE K-CONTAINMENT PROBLEM 57

3SAT instance: cx = {xx + x2 + x3} c2 = {.TI + x4 + x5}

Satisfying truth assignment: xx = true,x4 = false, x2,x3,x^ arbitrary.

Valid labelling: «TU,D12,D13> < D2\, T22, D2Z >>

Figure 2.4: Valid labelling.

Valid labelling Let J be a A;SAT instance consisting of the p clauses ci,..., cv over the q
variables x\,.. .,xq. Without loss of generality, we assume that 1 contains no tautological
clauses (clauses that contain a pair of complementary literals); such clauses do not affect
the satisfiability of 2, and may be removed in polynomial time. We also assume that no
literal appears more than once in any clause; literal repetitions may similarly be removed in
polynomial time 2. For all /, let the ith clause have n; < k literals. We will use the notation
lij to denote the j'th literal in clause c,-.

Let {Tij I 1 < i < p, 1 < j < k} U {Dij \ 1 < i < p, 1 < j < nj be a set of 2km distinct
constants. A labelling A of I is an p-vector of tuples < .4[il],...,.4[v'n,-] >, where A[ij] is
either Tij or Dij for each i and j. Intuitively, the assignment of Tij to A[ij] represents a
satisfying truth assignment under which the literal /,,- is "true"; similarly, Dij denotes a
''don't care" for the value of/,j.

A labelling of I is valid if

1. For each ?', there is exactly one j such that A[ij] is T^; that is. exactly one literal in
each clause is "true"; and

2. For any A[ij] and 4[mi], i. ^ in, if /;, and /,„/ are complementary literals, then either
A[ij] = Dij or A[ml] = Dmi (or both): that is. no pair of complementary literals in
different clauses are both true.

Example 2.11

Consider the 3SAT instance I consisting of the two clauses c\ = {x\ + x2 + 0:3} and
C2 = {xi+x4 + x5}. The sequence << Tn,Dv2- Dl3 >< D2\,T22,D2z >> is a valid labelling
for /; that is, we set the first literal in clause c\ and the second literal in clause c2 to "true",
and set all other literals to "don't care" (see Figure 2.4). D

"That is, I is an instance of at-most-fcSAT

58 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

It turns out that the existence of a valid labelling is necessary and sufficient for the
existence of a satisfying truth-assignment.

Theorem 2.5 A kSAT instance is satisfiable iff it has a valid labelling.
Proof. Consider a fcSAT instance X as above. If I is satisfiable, then it has some satisfying
truth-assignment S. Construct a labelling V as follows: if any literal /,j it true under S,
then A[ij] is T^-; otherwise, it is £),-,-. Since S satisfies each clause in I, at least one A[ij] is
Tij for each ?'. Now, for each i, select any A[ij] that is assigned T,-j, and assign Z)tm to every
other A[/7n]. This procedure cannot create violations of requirement 2 in the definition of
a valid labelling, and the result is a valid labelling for I.

For the converse, assume that V is a valid labelling for I. Construct a truth assignment
for J as follows: for every literal /,-_,- such that A[ij] is T,7, if /,-j is the positive literal xp

then set xp to true under S, and if it is the negative literal xp, then set xv to false; set all
unassigned variables to false. This procedure assigns a unique value to each variable in I,
since a valid labelling never assigns T-values to complementary literals. Since at least one
literal in each clause is true under S, S is a satisfying truth-assignment for I. D

The reduction The idea of a valid labelling permits a reduction from a fcSAT instance
/ to a fc-containment instance as illustrated below.

Example 2.12 Consider the kSAT instance / of Example 2.11, consisting of the two clauses
cx = {a,1! + X2 + X3} and ci = \x\ + x4 + £5}. We construct, conjunctive queries C\ and C'2
as follows.

Let us use the Datalog variable Z,j to represent the jth literal in clause c:. For example,
L\i represents the first literal in clause 1; that is. the (occurrence of) xi in c\. Similarly, L23
represents the literal £5 in clause c^. Further, the Datalog variables T,j and Dij respectively
represent a choice of "true" or "don't care" for the jth literal in clause c,.

The head of each of C\ and Ci will be the O-ary predicate h (see Figure 2.5).
Tp represent the clause C\, we construct the atom Ci(Lu, L12, £13) in the body of C?,

and the three possible destinations ci(Tu,Du,Diz), ci(Du.Ti2, £13), Ci(Tn, ^12, D13).
Note that any containment mapping from C2 into C\ enforces the fact that exactly one
literal in clause c\ is "true", as required by part (1) of the definition of a valid labelling
(see Figure 2.5). We similarly construct an occurrence of a predicate C2 in C'2 and three
occurrences of this predicate in C\ to represent the clause c;.

Finally, we must impose requirement (2) in the definition of a valid labelling: that is,
that no two complementary occurrences of any literal are both assigned "true". In our
example, there is only one such violation: the first literal in c\ and the first literal in c_> are
complementary. Hence, we construct a new "enforcer" predicate en2\- and add the atom
eU2i(^n, £21) to the body of C2 and the three atoms en2i(7n, D21), eiml-Diii^i) and
ei 121 (Dii--D21) t0 the body of C\. The completed instance is shown in Figure 2.5.

Note that in general, the number of predicate repetitions added in the first stage is the
maximum cardinality of any clause in the fcSAT instance (i.e. A'), and the number added in
the second stage is always 3. □

2.2. THE K-CONTAINMENT PROBLEM 59

55.4 T instance: C\ = {X\ + .T-2 + ^3} C2 = {ä-1 + -T.1 + .T5}

Satisfying truth assignment: X\ = true^x^ = false, X2,x$, 3:5 arbitrary.

Va/zrf labelling: «Tu,Dn,Dx3> < D2UT22.D23 »

Ci : h :-

C2 : A :-

-SC1(JDn,ri2,£)13),

--, Ci(I>ii,Di2,ri3),

 Ci(Z,ii,ii2,il3),

->C2(T2i.£)22,-C)23)1

-» C2(Z>21,722, A23)i

_^C2(I>21, D22,T23),

— C2{L2\, L22, L23),

-*eu2i{Tn,D2i),
-+eu2\{D\\,T2\),
^eU2i{Du,D2i).

— tii2i(^n- ^-ill-

Figure 2.5: Illustrating the construction.

60 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

We formalise the procedure as follows.
Let I be a kSAT instance, for k > 3. We construct conjunctive queries C\ and C>

such that no predicate appears more than k times in either query, such that no variable
is repeated in any conjunct, and such that C\ C C'2 iff 1 has a valid labelling. Further,
the construction will yield queries C\ and C'2 such that C'2 C C\\ hence. C\ = C'2 iff 1- is
satisfiable. The time expended in the reduction is polynomial in the size of C\ and CY

Algorithm 2.4
INPUT: A kSAT instance I
OUTPUT: Conjunctive queries C\ and C2 as above, such that C\ C C'2 (C\ = C>)

iff 1 is satisfiable

(1) C\ and C'2 each has the rule head h (with no arguments). That is, the relation for h is
one of true and false. 3

(2) for 1 < * < p

(3) Consider the ith clause c,- = {/;i + ... + /,„,}

(4) Create new nondistinguished variables I;i,.. .. L,n, and the predicate symbol c;

(5) Add to the body of C'2 the atom c!(Zll,.... Lin%)

(6) add ii{ c;-atoms to the body of C\, where the jth argument of the jth such atom
is Tj and the rth argument is £),,. for all r ^ j

(7) for 1 < i < j < p

(8) for 1 < / < m, 1 < m < iij

(9) if /,/ and l]m are complementary literals

(10) create a new predicate constant enjm

(11) add eujm(Lii,Ljm) to the body of C'2

(12) add eiijm{Tu,Djm), e;ijm{Dn.Tjm) and eujm(Du. Djm) to C\

D

The algorithm is clearly polynomial. Define conjuncts that are added to the bodies of
C'i and C-2 in Steps 5 and 6 to be Class 1 conjuncts. and those that are added at Steps 11
and 1*2 to be Class ;2 conjuncts. C2 contains no repetitions of any predicate. C\ contains at
most k repetitions of Class 1 predicates, and three repetitions of Class 2 predicates. Note
that all conjuncts are rectified (that is. have no repeated arguments), and have arity at
most k.

3For a reader who is offended by a 0-ary predicate, identiral lonhs may be obtained by making h(.\)
the head of each rule, and adding the atom o(A') to each rule body.

2.3. APPLICATIONS ül

Lemma 2.4 There is a containment mapping / : C2 -- C\ iff 1 has a valid labelling.
Proof. Assume / is a containment mapping from C2 into C\. Construct a labelling for I In-
setting A[ij] to be f(Lij) for all i and j. The possible destinations for Class 1 atoms require
that condition 1 in the definition of a valid labelling is satisfied; similarly, the possible
destinations for Class 2 atoms enforce condition 2, and the labelling thus constructed is
valid.

Assume V is a valid labelling for I. Construct a function / on the variables of C2 In-
setting f{L{j) to the value of A[ij] for all i and j, and extend / to atoms (see Section
2.2.1). Since f(h) = h, the head mapping exists. By condition 1 in the definition of a valid
labelling, and by construction, each Class 1 atom in C2 has exactly one possible destination
in C\ under /. The possible destinations for Class 2 atoms, along with condition 2 in the
definition of a valid labelling, ensure the functionality of /. D

Lemma 2.5 C2 C Ci .
Proof. The function defined by /(£>,;) = f(Tij) = L,j is a containment mapping from C\
into C2. a

Theorem 2.6 Algorithm 2.4 is correct.
Corollary. 3-containment (3-equivalence) is .VT^-complete.
Proof. By Algorithm 2.3, Theorem 2.4 and Theorem 2.5. we conclude that 3-containment
is polynomially equivalent to 3-containment. and is hence A'T-complete. □

Related results Chandra and Merlin ([10]) have shown that testing conjunctive query
containment is A/T-complete even for function-free qeries, although their result ass nines
up to six repetitions of each predicate in the bodies of the queries. Sagiv and Yannakakis
([29]) have shown that the problem is .V'P-complete even if no predicate appears more than
three times in the body of either query; however, their reduction assumes the repetition (
variables in the arguments of some conjuncts.

is

2.3 Applications

Let us turn to the complexity of the optimization problems that we discussed in Chapter I.
It turns out that the results of the previous section allow us to show that restricted version-,
of the one-boundedness, sequencability and basis-linearizability problems are Ar'P-hard, and
that the algorithms of Section 1.5.3 are polynomial.

2.3.1 Approach and notation

The AfP-hardness results of this section are based on the following idea. Given any 3SAT
instance, the techniques of the preceding section permit us to construct conjunctive que rw-

Cx: h :- Bx.

C2 : h :- /?.,.

62 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

such that C\ C C2 iff the 3SAT instance is satisfiable. That is, Bx and B2 are the bodies of
the conjunctive queries generated by Algorithm 2.5. Let us abuse notation by saying that
Bx C B2 whenever there is a conjunct mapping M : B2 =>• Bx; that is, a consistent choice
of destinations (in Bx) for the atoms in B2. Now, the conjunctive query Cx is contained
in the conjunctive query C2 iff there is a conjunct mapping from B2 into Bx. since /?. (the
head of C\ and C2) is a 0-ary predicate. Hence, the original 3SAT instance is satisfiable iff
Bx C B2. Note also that by construction, there is a conjunct mapping Bx =>■ B2\ that is,

that B2 C Bx.

Example 2.13 Consider the conjunctive queries Cx and C2 of Example 2.12. The conjunc-

tions Bx and B2 are as follows.

Bx : c1(ru,JDi2,JDi3),ci(i?ii,T12,I'i3),c1(I'ii,I'i2,ri3),
c2{T2X, D22, £23), c2(D21: T22, D23), c2(D21, D22, T23),
en2i(Tn,D2i), en2i(Du,T2x), exl2x{Dn, D2X).

B2 : cx(Ln,Lx2,LX3),c2(L2X,L22,L23),eii2i(Lii,L2i). □

Now, the A/T-hardness results of the following subsections are obtained by embedding
the conjunctions Bx and B2 (perhaps with added arguments) into the bodies of recursive
rules, such that the resulting rules have desired properties iff Bx C B2. Let us adopt the
convention that for any variable A", X\BX denotes the conjunction Bx in which each conjunct
is given the additional first argument A".

Example 2.14 Consider the conjunction B2 of Example 2.13. The rule

p(X):-p(U),X\U\B2.

stands for the rule

p(X) :- p{U),cx(X,U,Ln,Li2,L13),c2(X,U,L2x,L22,L23).en2i(X,U,Lxx,L2x). □

Finally, let us adopt the convention that' in "unwinding" a recursion, every noudistin-
guished variable in a rule is renamed by "priming" at each stage of the expansion: that is,
a nondistinguished variable U in the body of a rule is renamed

(written t/W) for some i. For a linear recursion, the version of a nondistinguished variable

U at depth i + 1 is the variable U^.

Example 2.15 Consider the linear rule of Example 2.14. Figure 2.6 exhibits our notation
on expansions of p(X) using this rule. O

Let us return to the conjunctions Bx and B2 as described at the beginning of this section.

Let B(l) denote the conjunction Bj (that is, one of Bx and Bo) in which every variable is

primed i times. It is clear that if B[
I)
 C B2' for any / and A:, then Bx C B2.

2.3. APPLICATIONS 63

p(U), ci(X, U,LU,LU, L13), c2(X, U, L2UL22, L23),eU2i{X, U,Lu,L2l}

p(U'), Cl(U, U', L'u, L'12, L[3), c2(U, U', L'2l,L'22, L'23), eu2l(U, U\ L'n, L'2l)

p(U"),Cl(U', U",L'{„L»2,L'{3),c2(U', U",L'^L'{2,L&),en2l(U>, U", I»x, L'2\)

Figure 2.6: Priming.

2.3.2 One-boundedness

Consider the safe, (not necessarily function-free) recursive rule

rx : p(X) :- p{Ul),...p(Un),a1(Wi),. ..ak(Wk)-

where X is a vector of distinct variables. Recall that the sirup rA is said to be 1-bounded if
every top-down expansion of p(X) using rx is contained in a top-down expansion of depth
at most 1. Recall also our convention that the top-down expansion representing the rule

e : p(X) :- p(X).

has depth 0. If rj is 1-bounded, then the program consisting of n and any basis rule of the
form

r2 : p(X) :- b(X).

may be reduced to a nonrecursive program, in which ri is replaced by the rule

r[: p(X) :- b(Ü1),...b(Ün)ta1(Wi),...ak(Wk).

Kanellakis ([20]) has shown that deciding 1-boundedness is ./V^-hard for linear sirups defin-
ing a. predicate of arity four; however, the reduction involves an unbounded number of
repetitions of EDB predicates in the body of the sirup. We present the following result.

Theorem 2.7 Let 7-x be a linear, Datalog, head-rectified sirup defining a binary predicate,
such that no EDB predicate appears more than four times in its body, or has arity greater
than five. Testing 1-boundedness is yVP-hard for such rules.

64 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

e p(X,Y)

P(X,Y)

p(AM

p(X,U),e(X,Y),e(V,Y)J(X,U)J(V,U),X\R\BuV\S\B2

r2 P(X,Y)

p(X, U),e(X, Y),e(V, Y), /(A, U), f{V, U),X\R\BU V\S\B2

p(X. U'), e(A, U).e(V, U), /(A, U% f(V>, £/'), X\R'\B[,V'\S'\B2

Figure 2.7: The expansions of Theorem 2.7

Proof. Given a 3SAT instance I, construct the conjunctive queries C\ : h :— B\. and
C2 : h :— B2. as in Algorithm 2.4 . We construct a program V that is 1-bounded iff there
is a conjunct mapping M : B2 => B\. Recall that by construction, B\ =» B2. V is the sirup

r : p(X,Y) :- p(X,U),e(X,Y),e(V,Y),f(X,U)J(V.U).X\R\BuV\S\B2.

where X,Y,U,V,R and S are distinct variables not appearing in B\ or B2, and where p.e
and / are distinct predicate symbols not appearing in B\ or B2.

Consider the top-down expansions r2, € and r (see Figure 2.5).
V is 1-bounded iff r2 C e or r2 C r. In either case, the head mapping induces the

assignment set {A' := A', 1' := 1'}. The nondistinguislwd variable V appears in the p-atom
generated by T

2
, so that the only choice of destination lor the body of e violates the head

mapping, and thus r2 <£_ e.

2.3. APPLICATIONS 65

Thus, if V is 1-bounded, then r2 C ?"• The destination for the atom p(A", U) in r requires
that U := U'. Then, the possible destinations for the atom f(V, U) require that V" := X or
V := V, and the possible destinations for e(V, Y) require that V := A" or V := V. Thus,
the conjunct, mapping M : r =>• r2 must assign V := X, and we may conclude that there is
a conjunct mapping V\S\B2 => X\R\BX or V\S\B2 => X\R'\B[, as desired.

For the converse, assume C\ C C-2; then B2 => B\. We may select the destination
of A'|i2|f?i to be A'|Ä|J3i, and select the destination of every other atom in 7-i as in the
previous paragraph, to obtain a conjunct mapping from r into r2. By Theorem 1.7, V is
one-bounded. D

On the other hand, we may use Algorithm 2.3 to decide 1-boundedness in polynomial
time, for linear sirups in which no predicate is repeated in the body of the recursive rule
(i.e., n = 1 and the 0, are distinct in ?'i). The reason is that testing 1-boundedness reduces
to two 2-containment tests.

Algorithm 2.5

INPUT: A sirup 7^ as described above, with n = 1 and with no predicate repetitions among
the a,-.
OUTPUT: "yes" if the sirup is 1-bounded, "no" otherwise.

1. Construct the empty rule e : p{X) :- p(A)., and the top-down expansion /V'I-

2. Use Algorithm 2.3 to determine whether TV^ Cf or rirx C 7"i. If either containment
holds, return "yes"; otherwise, return "no".

Theorem 2.8 Algorithm 2.5 is correct.
Proof. Necessity follows by the definition of 1-boundedness, and sufficiency by Theorem
1.7. D

Theorem 2.9 Algorithm 2.5 runs in polynomial time for arbitrary sirups, and in
NLOGSPACE (and hence in ArC) for Datalog queries.
Proof. Step (1) may be performed in polynomial time for arbitrary sirups, and in I,OGSP.-\('
for Datalog queries. The proof follows by Theorem 2.4 and the fact that NLOGSPACT. i-
in .VC ([9]). D

Finally, we show that Algorithm 1.1 (see Section 1.5.3) runs in polynomial time.

Theorem 2.10 Algorithm 1.1 runs in polynomial time.
Proof. Each containment in the algorithm is ,m instance of the 2-containment problem, r

66 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

2.3.3 Rule sequencability

Consider the safe, Datalog, linear rules

?i :p(X) :- p(Üo),a1{Üi),...ak(Ük)-

r2 : p(X) :- p(tfb),M^i),...6,(1^).

where X is a vector of distinct variables. Define e to be the following rule.

f:p(A):-p(A).

Recall that 7'! is sequencable under r2 if (?'i + 7-2)* C ^2ri • ^-u^e sequencability is not known
to be decidable. However, the problem is at least as hard as any problem in AfV, as the
following theorem shows.

Theorem 2.11 Let 7^ and r2 be rules as above, with the additional restrictions that no
predicate appears more than three times in the body of ri or more than once in the body of
/'2, and that all predicates have arity at most four. Detecting rule sequencability is .VP-hard
for rules of this form.
Proof. Consider an arbitrary 3SAT instance I, and apply Algorithm 2.5 to obtain conjunc-
tive queries C\ :h:—B\ and C2 : h :— B2- We construct rules r\ and 7'2 such that C\ C C2

iff 7'i is sequenceable under r2. By the discussion of the beginning of this section, we know
that E>i =?> B2, and that C\ C C'2 iff B2 =>• B\. The rules rx and r2 are

n : p{ A', Y, Z. W) :- p(V, X, Z, W), Xfa.
r2 : p(A', Y, Z, W) :- p(X, Y, W, Z),X\B2.

where X,Y,Z and W are new, distinct variables and g is a new predicate symbol.
Note that the p-atom in the expansions r\ and r\ is p(X,Y,W,Z), so r\ and r\ are

contained in e and each rule is 1-bounded.
Assume ?'i is sequencable under 7-2. Then rir2 is contained in some expansion in r^'i-

By the 1-boundedness of 7'i and 7-2, 7-J7-2 must be contained in one of e, 7^, r2 and r2r\ (see
Figure 2.8). In each case, the head mapping induces the assignment set {X :— X.Y :=
Y.Z := Z.W := W}. However, in the first three containments, the destination for the
p-atom generated by the expansion is inconsistent with the head mapping, and we may
conclude that r^ C 7*27"i.

Consider any conjunct mapping M : 7-27'i => 'V2 (see Figure 2.8). As we observed, the
head mapping yields the assignment {A' := A"}. Now. by definition (see the introduction
to this section), the first argument of every atom in the conjunctions A'|i?2 and X\B[is A",
and therefore both these conjunctions must map to the conjunction X\B\ in 7v2. Hence,
the conjunct mapping M must map A'|i?2 and A'|-ß', into X\B\. so B2 => B\, as required.

For the converse, assume that B2 =>■ B\. Then the mapping M indicated in Figure 2.8
proves that 7-!?'2 C r2r\, which in turn suffices to prove sequencability by Theorem 1.9. □

In view of the lack of a known algorithm to detect sequencability. a variety of conditions
have been proposed that are sufficient (but not necessary) to detect sequencability in pairs

2.3. APPLICATIONS

e: p(X,Y,Z,W)

I
p(XtY,Z,W)

n: p(X,Y,Z,W)

p{Y,X,Z,W),X]B1

r2: p{X,Y,Z,W)

p(X,Y,W,Z),X\B2

rir2: p(X,Y,Z,W)

p(Y,X,Z,W),X\B1

p(Y,X,W,Z),Y\B2

r2/'i : p(A",y, Z,W

p(X,Y,W\Z),X\B2^

^ p(Y,X,W,Z\X\B[;
/ /

Figure 2.8: The construction of Theorem 2.11.

68 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

of linear rules. The most popular condition is that of commutativity, 7'i?'2 C 7'2r1. The more
general condition 7,1r2" C r2r\ was proposed independently by Ramakrishnan et al. ([25])
and Ioannidis ([17]); the former shows that the condition is verifiable in polynomial space.
The following theorem considers the complexity of such conditions.

Theorem 2.12 Let rx and r2 be rules obeying the conditions of Theorem 2.11. Then testing
each of the following conditions, each sufficient to prove the sequencability of ?! under r2.
is A/77-hard.

(a) 7"! C 7'2

(b) 7-i = 7-2

(c) ri C ?"2

(d) rxr2 C r2ri

(e) ui-2 = r2ri

(f) 7-J7-2 C r2r\.

Proof. Let X be a 3SAT instance, and let B\ and B2 be the conjunctions resulting from
the application of Algorithm 2.5. We provide reductions such that conditions (a) - (f) are
satisfied iff there is a conjunct mapping M : B2 => B\.

To prove (a), (b) and (c), we construct the rules

7-i:p(x,r):-p(r,x),£?i.
r2:p(X,Y):-p(Y.X),B2.

The observation that each rule is 1-bounded, and that Bi => B2 by construction, suffices
to complete the proof.

The construction of Theorem 2.11 vields yVT'-hardness reductions for conditions (d) -
(f). a

Conditions (a), (b), (d) and (e) are each in ,\fV; conditions (c) and (f) may be tested
in polynomial space by the chase algorithm of Ramakrishnan et al. ([25]).

Theorem 2.10 implies that the conditions (a) through (f) can probably not be tested
in polynomial time. However, conditions (a), (b), (d) and (e) reduce to the testing of
containments among pairs of conjunctive queries, and Theorem 2.4 may apply to these
conditions over various classes of rules that arise in practice. For example, if 7-j and r2 each
have no repetitions of predicates in their respective bodies, then this algorithm provides a
polynomial-time test of conditions (a).(b),(d) and (e). Ioannidis ([16]) has also proposed
an algorithm to test commutativity (condition (e)) in this restricted case.

2.3.4 Basis-linearizability

Consider the safe, simple recursive rule

n: P(X)-- pUW,....p[ÜnUl(VVl),....ek(Wk).

2.3. APPLICATIONS 69

where n > 1 and X is a vector of distinct variables. Recall that rl is basis-linearizable if.
for every basis rule

r2 : p(X) :- b(X).

we may replace rj with the rule

r{: K-Y):- &(&), • • • ,&(tfn-i),p(tfnW^i),.. .,ek(Wk).

to obtain an equivalent program. The linear rule r[is obtained from the nonlinear rule r{

by replacing all but the last occurrence of p with a corresponding occurrence of the basis
predicate b. Recall that basis-linearizability indicates that right-linearity is the normal
form for the conjunctive queries generates by the program. That is, the sirup 7'i is basis-
linearizable iff every top-down expansion of p(X) using 7^ is contained in a right-linear
expansion.

Linearizability of this sort was investigated by Zhang et al. ([40] 4), who claim a
polynomial-time decision procedure for bilinear, function-free rules with one nonrecursive
subgoal (i.e., n = 2 and k = 1), although (as we will show in the next chapter) their proof
is flawed. In Chapter 3, we will extend their result to include all bilinear recursions, as long
as no nonrecursive predicate appears more than once in the body of the rule. We will also
show that the algorithm runs in polynomial time.

Basis-linearizability is not known to be decidable in the case in which predicates are
allowed to appear repetitively among the subgoals. Ramakrishnan et al. ([25]) show that
detecting basis-linearizability in bilinear recursions is A'TMiard; their reduction involves a
recursive predicate of arity 6, and places no bound on the number of predicate repetitions
in the body of the rule. We tighten that result in the following theorem.

Theorem 2.13 Let ri be a bilinear rule as above, with the restrictions that p has arity 2,
all other predicates have arity at most 5, and no predicate appears more than four times in
the body of r^ Then, deciding basis-linearizability is A/TMiard for rules of this form.
Proof. Let I be a 3SAT instance to which Algorithm 2.5 has been applied to produce
conjunctions Bi and B2. We construct a rule rx that is basis-linearizable iff there is a
conjunct mapping M : B2 =$> Bi. Note that Bi => B2 by construction. The rule is

rx :p(X,Y) :- p(X,U),p(T^'),e(XX),e(V.Y). f(X, U)J(V,U),X\R\BUV\S\B2.

where X, Y, U, T, V, R and S are new and distinct variables.
If the rule T\ is basis-linearizable, then the tree T\ in Figure 2.9 is contained in a

right-linear tree (a top-down expansion in which only p(T.Y) is expanded through n). By
convention, the empty rule

e:p(X,Y):~p(X,Y).

is a right-linear tree of depth 0.

■"This paper has recently been published in TO l)> >[\\]). but I lie proof has been omitted.

70 CHAPTER 2. THE COMPLEXITY OF CONJUNCTIVE QUERY CONTAINMENT

TL: p(X,Y

p(X,U)p(T,Y)e(X,Y)e(V,Y)f(X,U)f(V,U) X\R\B, V\S\B2

p(X,U')p(V, U)e(X,U)e(V, U)f(X, U')f(V, U') X\R'\B'i V'\S'\B'2

T2: p(X,Y)

p(X,U)p(T,Y)e(X,Y)e(V,Y)f(X,U)f(V,U) X\R\Bi V\S\B2

Figure 2.9: The construction for Theorem 2.13

Since p(X,Y) is not a leaf in 7\, every destination for p(A',lr) among the leaves of Ti
is inconsistent with the head mapping, and we may conclude that Tt <£ e; that is, Ti is
contained in a right-linear tree T2 in which the head is expanded using rule ?'i.

Now, the head mapping from T2 into 7\ induces the assignments {A" := X,Y := Y}.
Hence, the atom p(A, U) must have destination p(A, U'). and every conjunct mapping from
T2 into Ti must induce the assignment U := U'. The only destinations for e{V,Y) consistent
with these assignments force V := A' or V := V. and the only such destinations for the
atom f(V,U) force the assignments V := V or V := X. Hence, every conjunct mapping
M : T2 => Ti must induce the assignment V := X. forcing the mapping V\S\B2^> X\R\Bi

or V'|5|ß2 => X\R'\B[; in either case, we may conclude B2=> Bx.
For sufficiency, assume that B2 => Bx. Then, the conjunct mappings in the previous

paragraph, along with the partial mappings p(T,Y) — p(T.Y) and X\R\Bi -*• X\R\Bi,

suffice to prove basis-linearizability by Theorem 1.18. □

Finally, we justify our claim that Algorithm 1.2 (in Section 1.5.3) runs in polynomial

tune.

Theorem 2.14 Algorithm 1.2 runs in polynomial time.
Proof. Each containment test in the algorithm is an instance of the 2-containment problem.
D

Chapter 3

A decision procedure for
basis-linearizability

3.1 Introduction

Consider the safe and function-free ("Datalog") logic program V with a single doubly-
recursive ("bilinear") rule of the form

ri : p(Jfi,...,.Y)n) :- P(i)(Y),p{2)(Z),e1{Ü1),...,eN(ÜN).

and a single basis rule of the form

r2 : p(A'i,...,Ar
m) :- 6(A*i,..., A"m).

where we have subscripted the recursive occurrences of p for ease of reference. We will refer
to atoms in the body of the recursive rule by their principal functors, using the subscripts

to disambiguate the recursive atoms; that is, the term uP(i)" W*U be use(^ to refer to P(i)i^')

(the first recursive p-atom in the body of ri), and the term "e;" to refer to the atom «,((',).
We assume that the rules j'i and r2 satisfy the following requirements.

1. The variables appearing in the head are distinct. Recall that these variables variables
are termed distinguished, and that all other variables are termed nondistingvislird.

2. The rules are range-restricted or safe; that is, every distinguished variable appears in
the rule body.

3. The base predicate b and the subgoals e, are EDB predicates, and these predicates
are distinct. Recall from Chapter 1 that EDB relations are stored by extension in 1 li<-
database, and that the predicate p is termed intensional or IDB.

Recall that V is termed linearizable by basis iff right-linearity is a normal form I'm-
the proof trees (or conjunctive queries) generated by the program. That is. V is basis
linearizable iff V is equivalent to the following linear program Q.

71

72 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

n : p(Xl:...,Xm) :- b(Y),p{2)(Z),e1(Ü1),...,eN(ÜN).
r2 : p(A'i,...,A'm) :- 6(Aa,..., A'm).

Q is obtained from V by replacing the first recursive occurrence of p in the body of rx (that

is, the atom 7>(i)(l')) with the base atom b(Y).

Example 3.1 We repeat here the program of Example 1.1, computing the transitive closure

of 6.

n: p(XA'):-p(X,U),p(U,Y).
r2: p(X,Y):-b(X,Y).

p(X,U), the first recursive atom in r1? is referred to as ;)(1), and p(U,Y) as p(2). Recall
that we proved this program to be basis-linearizable in Section 1.5.2; that is, the program
is equivalent to the following linear logic program.

rj: p(X,Y):-b(X,U),p(U,Y).
r2: p(X,Y):-h(X,Y).

The gains of performing the transformation are obtained from the use of query evaluators
specific to linear recursions. O

In this chapter, we present a decision procedure for the recognition of basis-linearizability
in bilinear recursions of the form of V. The running time of the algorithm is polynomial 1

in the size of the program V.

3.1.1 Related results

Consider the program V of the preceding section. As we showed in Chapter 2, if repetitions
are allowed in the EDB subgoals of the recursive rule in this program, then the detection
of basis-linearizability is A/^-hard; in fact, the decidability of basis-linearizability for such
programs is open. In this chapter, we show that if no such repetitions are allowed, then
basis-linearizability may be detected in polynomial time; hence, in some sense, our result
represents a boundary between tractability and intractability. Finally, as we will show in the
next chapter, if we consider programs with a single bilinear rule, an unbounded number of
linear rules and 5 basis rules, then the detection of basis-linearizability becomes undecidable.

This chapter is an extension of the work of Zhang. Yu and Troy ([40] 2 who proposed the
problem of basis-linearizability in the restricted case N < 1; that is, in the case in which the
recursive rule has at most one EDB subgoal. They claim a polynomial time algorithm for
this case: however, the proof of correctness of their algorithm is flawed, and we will touch
upon this flaw in Section 3.5.3. Their algorithm also ignores so-called deletion-linearizable
recursions, on the grounds that such programs may be linearized in a different way (see

Section 3.4).

1 In fact. it can be performed in linear time.
-'This result has recently been published in TODS ([41]). but. the proof has been omitted.

3.2. THE ALGORITHM

The algorithm of [40] does not extend in an obvious way to the programs that we
consider (in which N is unbounded). That is, the representation of ej,...,e,v as their
"join" (a single atom), followed by an application of the algorithm of [40], is insufficient to
detect basis-linearizability. The following example illustrates this point.

Example 3.2 Consider the program

rx : p(X,Y) :- p(X,U),p(U,Y),c(U),d(Y).
r2: p{X,Y):-b(X,Y).

where b.c and d are distinct EDB predicates. This program is basis-linearizable, as the
algorithm of Section 3.2 shows. Assume that we represent the EDB predicates c and d by
their Cartesian product, in some new EDB predicate e. Then, we obtain the program

rx : p(X,Y) :- p(X,U),p(U,Y),e(U,Y).
7-2 : p(X,Y):-b(X,Y).

which is not basis-linearizable, as the algorithm of Section 3.2 also shows. □

The proof of [40] also does not extend directly to the proof of correctness of our al-
gorithm. Both their proof and ours rely heavily on the idea of safety; that is, on the
requirement that every distinguished variable appears in the rule body. In the case N = 1.
every distinguished variable A', must appear among the arguments of pjj), p^2) or the single
EDB subgoal ex by the assumption of safety; however, if N is unbounded, then A", may
appear as the only argument to some "new"' EDB predicate ey

3.2 The algorithm

In this section, we present an algorithm that decides whether the program V is basis-
linearizable, and show that the algorithm is polynomial in the size of V.

Let us say that a nondistinguished variable that appears only in the arguments of the
atom / in r\ is said to be local to t; all other arguments are termed nonlocal.

Recall that we will refer to atoms in the body of the rules in V by their principal functors,
using subscripts to disambiguate the recursive />atoms.

Definition 3.1 We say that p^j is an adjunct to p(2) in V if there is a partial mapping
P(i) -* P(2) tnat induces an assignment set that is the identity on nonlocal variables in /;(1).
That is, p(!) is obtainable from p(2) by replacing 0 or more occurrences of each variable in
P(2) with anew, local variable. If P(i) is an adjunct, then V is said to be deletion-lhuarizabh.
D

The intuitive importance of adjuncts is that they may be deleted from the recursive rule
to produce an equivalent, linear program, as we will show in Section 3.4.

Definition 3.2 Define rx -p(i) to be the rule ;•[in which p^j has been deleted, and let
V - p(1) be the resulting program. If p(1) is an adjunct to p(2), then every distinguished

74 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

variable appearing among the arguments of p(1) also appears in p(2), so we conclude that
this deletion preserves safety. □

For any atom t in the rule r1? or in any top-down expansion, let us use the notation t[i]
to refer to the /th argument of t. We will always reserve the keyword A\ to refer to the /th
distinguished variable in the head of the recursive rule.

Definition 3.3 The home position of any distinguished variable X{ is the ?th position in

any p-atom. □

Definition 3.4 pm is said to be a trivial adjunct to p(2) if P(i) is an adjunct, p(1) contains
no nonlocal nondistinguished variables and, whenever the distinguished variable A", appears
in p(1), then P(2)[i] is A, (that is, A\ appears in its home position in p(2)). □

Example 3.3 Consider the program V defined as below.

T-! : p(X,Y,W,Z) :- p{U,X.A,B),p(X,X,A,W),e(Y,W,Z).
r2: p(A,Y,W',Z):- b(X.Y,W,Z).

The nondistinguished variables U and A are local to p(1) (that is, to the atom p(U, X, A.B)).
The atom p(1) is an adjunct to the atom p(2) (that is, the atom p(X,X,A,\V)); in fact,
p(1) is a trivial adjunct since A appears in its home position in p(2). The rule n - p(1) is

presented below.

r, - p(1) : p(X.y, W,Z) :- p(A, A, A, W),e(Y,Z).

Note that this rule is safe. □

Recall from Chapter 1 that top-down expansions generated by V are written in a way
that preserves the left-to-right order of the subgoals in every rule, and that an expansion
or proof tree is termed right-linear if only the rightmost p-atom in the recursive rule is ever
recursively expanded. Finally, recall that a top-down expansion generated by V is termed
open if only the recursive rule is used in constructing the expansion.

Example 3.4 The expansions TUT2,T3 and T., of Figure 3.1 are all open. 7\ is the
minimal violation of right-linearity in V. and the expansions T2,T3 and T4 are the right-
linear expansions of depth 0, 1 and 2 respectively. □

We will use the terms free and expansion interchangeably. As we mentioned in Chapter
1, these expansions may all be constructed in time that is polynomial in the size of V.

Now, let / be a containment mapping (equivalently. \[a conjunct mapping) from T2,
T3 or T4 into Tx. Recall from Section 1.5.2 that the m.ipp'mg / (or M) is termed acceptable

if, under the mapping, the p(2)-child of the root of /, i- the destination of no p^y leaf.

3.2. THE ALGORITHM
(0

p{X\,...,Xn)

p(Xx..\.,Xm)

To

P

P(i) P(2) ei ... e;Y

P(i) P(2) ci ... eN

P{\) P{2) <?i ■■■ eN

T*

P

P(l) iP(2) <?1 ... CJV

P(i) ^(2) <?i ... eN

T4

Figure 3.1: Expansions used in the algorithm.

76 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

p(A\y)

Pd)(xtu) P(2)(UX)

K
V{1)(X,U') pm{U',U) \

P(AM')

PW{X,U)

/ P(i)(U'U') P[2)(U',Y)

K
\

\ / /

Ti T4

Figure 3.2: Acceptable mapping

Example 3.5 Consider the transitive-closure program of Example 3.1. The containment
mapping / defined by f(X) = X, f(Y) = Y. f(U) = W, /(V) = U is an acceptable mapping

from T4 into Ta, as indicated in Figure 3.2. D

We now state the main results of this chapter.

Theorem 3.1 V is basis-linearizable iff at least one of the following is true.

(1) p(1) is a trivial adjunct to p(2) in ^1

(2) p{l) is an adjunct, and V - p(1) is 1-bounded; or

(3) There is an acceptable mapping from one of To. T3 and T4 into T\.

D

The proof of this theorem is an extensive combinatorial analysis, and will occupy the
remainder of this chapter. Before we begin this proof, let us observe that the algorithm
implied by Theorem 3.1 is polynomial in the size of V.

Theorem 3.2 The procedure of Theorem 1 is in NLOGSPACE.
Corollary 1. The procedure of Theorem 1 is in A'C
Corollary 2. The procedure of Theorem 1 is polynomial.
Proof. Determining whether p(1) is an adjunct, or a trivial adjunct, is easily determined in
LOGSPACE, so Condition (1) is in LOGSPACE. V - /;,,, is a linear simp with no repeated

3.3. PROOF OUTLINE

EDB subgoals; by Theorem 2.9, Condition (2) is in NLOGSPACE. By a case analysis on
the destinations of the /^jj-atom in T3 and T4, Condition (3) may be tested through nine
2-containment tests, each of which may be accomplished in NLOGSPACE by Theorem
2.4. Hence, the algorithm is in NLOGSPACE. Corollary 2 follows by [9], and Corollary 3
immediately follows. □

3.3 Proof Outline

In Section 3.4, we will investigate the behaviour of programs in which p^ is an adjunct to
P(2), and show that in this case, the recursive atom p^ is redundant in the recursive rule
T\. Section 3.5 contains the proof of Theorem 3.1.

3.4 Adjuncts

Let us assume that P(j) is an adjunct to p(2) in V. It turns out that, in this case, the atom
p(1) is redundant in the recursive rule T^; hence, we call such programs deletion-linearizable.
We will prove this fact, in the remainder of this subsection. As before, by the form of the
basis rule, we will restrict our attention to proof trees (ground or otherwise) in which the
basis rule is never used. That is, we adopt the convention that p itself is both an EDB and
an IDB relation. In this subsection, we will consider ground ox instantiated expansions: that
is, trees in which all variables have been replaced by constants.

An important property of adjuncts is treated in the following lemma.

Lemma 3.1 If 7J(i) is an adjunct to p(2), then any p-fact that unifies with p(2) also unifies
with /?(!), and the unifications agree on the values of all nonlocal variables in pm.

Proof. Let / represent the assignment set induced by the partial mapping p(1)(Y) — p(2)(%)•

and assume that p(fii,...,am) unifies with P(2)(Z) under the substitution r. The function
r(/) is then a substitution under which p^j unifies with ;>(«!,...,am). Since / is the
identity on nonlocal variables, r and r(f) agree on these variables. D

Definition 3.5 Let T be a proof tree (or expansion) generated by V. The right strut of T
is the proof tree (or expansion) obtained from T by discarding all p(1)- atoms. D

Lemma 3.2 If p^) is an adjunct, then for any tree T generated by V from any database
D, the right strut of T is a proof tree generated by V - p^) from D and yielding the same
fact as T.
Corollary. V C V - p(1).
Proof. Straightforward induction on the depth of the right strut of T. O

Example 3.6 Consider the program V of Example 3.3, in which p(1) is an adjunct to p(2).
The right strut of the expansion of Figure 3.3 (a) is shown in Figure 3.3 (b). D

CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

p(u,x) p(x,x) e{y)

p{v,x) p(x,x) e(x)

p(*,y)

p(x,x) e(y)

p(x,x) e(x)

(a) (b)

Figure 3.3: Right strut

Lemma 3.3 Consider any database D, and assume that p(1) is an adjunct. For n > 1, if S
is a proof tree of depth n generated by V - p(1) from D, then there is a complete tree R of
depth n that is generated by V from D such that S is the right strut of R.

Corollary 1. V - p(\) C V.
Corollary 2. V = P-p(1).
Proof. The proof is a straightforward induction on n, using Lemma 3.1. For the basis
(n = 1), let 5 be the proof tree

p{ a)

P(2){b) ^(cV) ... e,/v(c*v)

By Lemma. 3.1, V generates the proof tree R defined as

p(a)

P(i)ib) P(2)(b) ei(ci) ■•• CN(CN)

For the induction, assume the truth of the hypothesis for 1 < i < n. Let S be a tree of
depth n as in Figure 3.4, in which the top level of the expansion is the ground query

p(a) :- P(2)(6),<?i(ci),..., e,v(c)v)-

and where P(2)(£) is generated from V - p(1) by a tree / of depth n - 1. By hypothesis, V

generates a complete tree J of depth 7?. - 1 from the leaves of /, establishing the fact p(b),
for which 7" is a right strut. By Lemma 3.1, V generates a complete proof tree of depth 7/
establishing the fact p(a), such that the first level of the proof tree is the query

p{a) :- p(i)(6),p(2)(6),fi(ti)..... eN{c.v).

and where the subtrees establishing p(1) and p(2) arc- both .7 (see Figure 3.4).
The proof of Corollary 1 is immediate. Corollary 2 is proved using Lemma 3.2. □

3.4. ADJUNCTS

eN{cN)

(a)

p(a)

P(i)(b) P(2)(b) ei{ci] ■ ■ CN{CN)

(b)

Figure 3.-1: The induction

80 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

Figure 3.5: Right-linear expansion

3.5 Proof

This section will be devoted to the proof of Theorem 3.1.
Recall that an expansion is termed open if the basis rule is never used in constructing the

expansion, and closed iff there are no p-leaves in it; that is, the basis rule is used to "close
off" all intensional atoms in the latter case. Recall also that an expansion or proof tree is
termed right-linear if only the p(2)-atom m the recursive rule is ever recursively expanded
(see Figure 3.6.)

By definition, V is basis-linearizable iff every non-right-linear closed expansion is con-
tained in some closed right-linear expansion (see Section 1.4.3). However, the form of the
basis rule permits us to deal exclusively with open expansions; that is, the application of
the basis rule to an open expansion amounts to the "renaming" of every p-leaf in the open
expansion to the EDB predicate 6, and every closed expansion is obtainable in this manner.
Thus, V is basis-linearizable iff every open expansion is contained in a right-linear, open ex-
pansion. We may now think of the basis-linearizability of the sirup rx as the right-linearity
of the proof trees generated by rx from every database, for every set of initialisation rules.
The proof of correctness of Theorem 3.1 will be based exclusively on open expansions.

The outline of the proof is as follows.

3.5.1 Proof outline

1. In Section 3.5.2, we will show that the conditions of Theorem 3.1 are sufficient to show-
that each non-right-linear expansion is contained in a right-linear expansion; that is.
that these conditions suffice to prove basis-linentizability in V.

2. Section 3.5.3 is the heart of this chapter. In this section, we prove that the conditions

3.5. PROOF Si

As ^\\
p p es p p es

p p es
\
\

\

Ti T5

Figure 3.6: Necessity: Tx C T5

of Theorem 3.1 are necessary for V to be basis-linearizable. The proof of necessity
proceeds as follows, under the assumption of basis-linearizability in V. Note that, in
this case, the minimal violation of right-linearity (expansion 7\ in Figure 3.6) must
be contained in some right-linear expansion (T5 in Figure 3.6).

(a) If P(i) is an adjunct to p(2), then p(1j is trivial or V - p(1) is one-bounded.

(1)) Assume that the minimal violation of right-linearity (expansion T\ in Figure 3.7)
is contained in a right-linear expansion of depth at most 1 (one of T2 and T3

in Figure 3.7); then, the containment is provable by an acceptable containment
mapping.

(c) Assume that 7\ is contained in a right-linear expansion of depth at least 2 (see
Figure 3.8). Then one of the following must hold.

• p(i) is an adjunct to p(2).

• T\ is contained in a right-linear expansion of depth at most 1.

• T\ is contained in the right-linear of depth 2, and the containment is provable
by an acceptable mapping. In fact, the mapping must have the form shown
in Figure 3.9.

3.5.2 Sufficiency

In this section, we prove that the conditions of Theorem 3.1 are each sufficient to prov
basis-linearizability in V. The sufficiency of Condition 3 follows by Theorem 1.8. Consul**
Conditions 1 and 2.

Recall our convention that t[i] refers to the ith argument of the atom /, and that /;(l) i

82 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

Ti

p(A*i,...,A'm)

p{Xi,...,Xm)

P{\) P(2) ei •■• eA"

T3

Figure 3.7: Assume T\ C T2 or 7\ C T3

/> p es

p p es

T,

7; p es

/^
/j p es

\
\

\

\

Figure 3.8: Assume 1\ C 7V

3.5. PROOF 83

\

l>(2) C\ ■■■ ?N P(l) P(2) el • • • e;V

^ /
/

/
P(l) P(2) el ••• eN ^/ 7^(1) P(2) ei ... (?A-

V

Figure 3.9: Show T\ C T4.

T4

said to be a. trivial adjunct to p(2) if V(\) is an adjunct, p^j contains no nonlocal nondistin-
guished variables and, whenever the distinguished variable A", appears in p^j, then P(2)[i]
is A', (that is, A', appears in its "home" position in P(2))- Throughout this chapter, A"; will
always be used to refer to the ith distinguished variable in the head of the recursive rule.

Consider any tree T. We assume that every nondistinguished variable U in r\ is renamed
by 'priming' at each successive level of the expansion; that is, the version of U in sibling
atoms in T is renamed to the new variable obtained by superscripting U with a "/" /' times
for some / (written U^). If T is a linear expansion (that is, at most one p-atom is recursively
expanded at any level), then the version of U at depth i in the expansion is [/('-1). Figure
3.6 illustrates this convention.

Let q = ql represent the version of the atom q at depth 1 in a tree T. If 5 is an atom
in T, then p^s represents the atom s in the subtree T of some tree 5" that is rooted at the

atom p^jy By convention, p'^ is the p^-aXom obtained by expanding pj'T^ through the
recursive rule r\.

Example 3.7 Consider the transitive-closure program of Example 3.1. The right-linear
expansion of depth 3 has leaves and arguments as shown in Figure 3.10. □

Trivial adjuncts satisfy the following property.

Lemma 3.4 Assume that p^ is a trivial adjunct to p(2) in V. For all right-linear expansions
T of depth n, for all integers i,j < n, and for all /:

1. If p(i)[/] is the distinguished variable AV then P(2)'P(i)M is also A'*; and

2. Any p-atom that unifies with P(2)'P(i) unifies with P(2)JP(i), and the unifications yield
the same substitutions for all variables t hat are nonlocal to either of these two atoms
in the conjunctive query represented by /'.

84 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

p(X,Y)

p{X,U) p(U,Y)

(pa)) Mi))

p(U,U') P(U',Y)

(P(2)P(1)) (P[2)2)

p(U',U") p(U",}
2„._A <n.^

(P(2)2P(1)) (P(2

Figure 3.10: Naming and renaming conventions

Proof. Assume p(1)[/] is Xk. Since p(1) is a trivial adjunct, p{2)[k] is Xk. A straightforward
induction on r > 1 shows that p(2)r[fc] is A'jt, which immediately implies 1.

To prove 2, we note that the only nonlocal variables that, appear in p(1) are distinguished
variables, which (by 1) appear in the same positions in p^fPo) and P(2)3P{\)- All other
variables in p(1) are local in ru and their primed versions therefore appear in only one atom

in T (that is, U^ appears only in the atom P(2)'P{i))- D

Example 3.8 Consider the rule n in Example 3.3. Figure 3.11 depicts an expansion using
this rule. Note that A" persists in its home position. D

Lemma 3.5 Assume that p(1) is a trivial adjunct to p(2), and let S be a proof tree of depth
A- generated by V - p(1) from a database D. Then V generates a right-linear proof tree R
of depth k from D such that S is its right strut (see Figure 3.12).
Corollary. If p(1) is a trivial adjunct top(2), then V is basis-linearizable.
Proof. S has only one p-leaf, say P(2)fc(f~0- We may eliminate all other p-facts from D
without, altering the fact produced by S. By Lemma 3.3. V generates a complete tree /
with depth A; from D\ hence, in /, the atom P(2)k~xP(\) unifies with the single p-fact in
D. By Lemma 3.4, all the atoms P(2)lP(i) ma.V 1)0 consistently unified with this p-fact to
construct a right-linear proof tree R of depth k that is generated by V from D (see Figure

3.12).
The corollary is proved by observing that, by Lemma 3.2. every proof tree generated by

V from a database D is also generated by V - P(i) from D. D

Lemma 3.6 Assume that p^) is an adjunct, and tint P - p(1) is 1-bounded. Then V is

basis-linearizable.

3.5. PROOF 85

p{1)(U,X,A.B)

P{1)(U',X,A',B')

P{1)(U",X,A",B")

p(X,Y.Z,W)

P(2](A'J,AW)

P(2)(X,X,A',A)

P{2)(X,X,A",A')

e{Y.W,Z)

~e{X,A,W)

~7{X,A',A)

p(1)(t/('+2',A-,A('+2),Jß('+2)) p(2)(A'.A\A(J+2),/l('+1)) e(X,A(t+l),A^)

Figure 3.11: Persistence of A".

\

>(«)

P

p(a) p

\
\

\
p(d) p

p(ä) p(tt)

R

Figure 3.12: Tnvs .S' and R

86 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

P V

p p es p p es

p p es \

\

T,

Figure 3.13: Assume Tx C T5

Proof. Consider any database D, and any proof-tree 5' of depth A' generated by V that
establishes a fact p{a). By Lemma 3.2, there is a proof tree / of depth k generated by
V - P(!) that also establishes this p-fa.ct. If V is 1-bounded, then either p(a) € D or p[a) is
generated by V - p^ using a tree J of depth 1. Applying Lemma. 3.3 completes the proof.
D

3.5.3 Necessity

This section will be devoted to the proof of necessity of the conditions in Theorem 3.1. If V
is basis-linearizable, then every non-right-linear open expansion generated by V is contained
in a right-linear expansion (i.e., that T\ C T5 in Figure 3.13). We will focus our attention
on containment mappings that must exist from right-linear expansions into the minimal
violation of right-linearity (T\ in Figure 3.13).

First, we will prove that if V is basis-linearizable and p^ is an adjunct, then p^^ is a
trivial adjunct or V - p^j is one-bounded.

Next, we will show that if T\ is contained in a right-linear expansion of depth at most
1 under an unacceptable containment mapping (see Figure 3.14), then 7;^) is an adjunct to

V(iy
The remaining subsections concerns mappings that cannot exist from long right-linear

trees into T\. Specifically, we will show that if T\ is contained in a right-linear tree T5 of
depth at least 2 (see Figure 3.15), then one of the following holds.

1. 7J(!) is an adjunct to p^\-

2. T\ is contained in an expansion of depth at most 1.

3.5. PROOF

p p es p p es
/

p p es v

Ti n

Figure 3.14: Unacceptable mapping from T3 into T\.

p p es

p p es

p p es

/^
p p es

\
\
\
\

Ti T,

Figure 3.15: Assume T\ C T5

88 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

Ti T4

Figure 3.16: Conclude T\ C T4

3. T5 has depth 2, and the containment mapping is acceptable. In fact, the mapping is
of the form shown in Figure 3.16.

This procedure completes our proof. While reading these subsections, keep in mind the
fact that if / is a containment mapping from some tree S into some tree T, the notation
/(</) = w implies that q is a leaf in S and w is a leaf in T.

Notation We will use the following notation to describe the arguments of p-atoms in the
rule body. The expression

J k

P{2){ A Xi Xj)

denotes the situation that some variable A appears in position i in p(2), the distinguished
variable Xi appears in position j and the distinguished variable Xj appears in position k.
Unless otherwise stated, A is an arbitrary variable (perhaps A',), and any or all of {i,j.lc}

may be equal.

Necessity of conditions 1 and 2

Assume that V is basis-linearizable. We will prove that, if />(i) is an adjunct to p(2) in V.
then either V — p^j is one-bounded or p^ is trivial. Recall that nondistinguished variables
in 7'! will be consistently renamed in each tree by priming.

Lemma 3.7 If / is a containment mapping from any tree 5 into any tree T, then /(A",]
for every distinguished variable A',-.
Proof. Both trees have the root p(A"i,..., A"m). D

-V,

Assume that p^j is an adjunct to p(2). Consider the expansion TQ of Figure 3.17(b);
since V is assumed to be basis-linearizable, the top-down expansion described by Tt\ in

3.5. PROOF 89

P(2) es

P(2) es

(a) T8

P(i)

P(i) P(2) es p{1)

P(2) es

(b)T6

(c) 7'a

Figure 3.17: 7S C T6 C T9

90 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

Figure 3.17 is contained in some right-linear expansion T9. Assume, now. that V - p^) is
not one-bounded; we will show that p(1) is a trivial adjunct to p(2). By Lemma 3.3, the
right strut Ts of T& is contained in T6, and we may conclude that Ts is contained in T9 (see
Figure 3.17). Thus, T8 C T9, and T9 has height at least two since V - p(1) is assumed not
to be 1-bounded.

Let / be a containment mapping from T9 into Ts. Note that the only p-leaf in Ts is
P(2)P(2)i an(i this leaf must be the destination of every p-leaf in T9.

Lemma 3.8 If p(i)[j] is A,-, then P(2)[i] is A",-.
Pro«?/. By the definition of an adjunct, P(2)[j] is A",-. The picture is

j i J

P(i)(Xi) p(2)(C Xi)

. The mapping /(p(1)) = P(2)P(2) forces /(A,-) = C. Since / preserves distinguished vari-
ables, C = Xt. D

Lemma 3.9 No nonlocal nondistinguished variable appears in p(1).
Proof. Assume that the nonlocal nondistinguished variable A appears in position i in p^y

by the definition of an adjunct, P(2)[«] = A. The picture is

i

P(l)("4) V(2){ A)

Examine the lowest two levels of the tree T9, which we assume has depth n + 1 for some
n > 0. The destination for P(2)(n_1)P(i) forces /(4(n_1)) = A'.

By safety, A"; appears in the rule body. By Lemma 3.8, A', cannot appear in p(1).

Assume that it appears in position k in some eq. Then, the A:th argument of p(2)(n-1)e7

is .4(n_1). However, the fcth argument of eq is A, by assumption, and the fcth argument
of P(2)eq is therefore A (see Figure 3.11 for an illustration). Further, these two atoms

are the only possible destinations for P(2/
n-1)e<j because of our assumption of no repeated

EDB predicates in the recursive rule. Hence, the possible destinations for p(2)("_1)ef, forces

/(.4(n_1)) to be a nonprimed variable, which is a contradiction. Hence, A", must appear in
p(2) only, say in position j ^ i. The picture is

t i j

P(i)(A) P(2)(A A,)

But then, the j'th argument of P(2/
n+1) is /l(n_1). and the j'-th argument of P(2)P(2) is

A ^ A', a contradiction.
D

By Lemmas 3.8 and 3.9, p^j must be a trivial adjunct io p(2).

3.5. PROOF 91

P(2) ei ... eN

p(A"i,...,A'm)

p(A'i,...,A"m)

Tn
P(l) P(2) el ••• eA'

Figure 3.18: Minimal program: Tj C T2 or Ti C T3

Minimal programs

Let us say that V is minimal iff the minimal violation of right-linearity (T\ in Figure 3.18)
is contained in a right-linear expansion of depth at most 1 (that is, in one of the expansions
T2 and T3 in the same figure).

Assume that V is basis-linearizable and minimal. We will show that if p^ is not an
adjunct to p(2). then there is an acceptable containment mapping from Ti or T3 into 1\.
Since any mapping from Ti into Ti is acceptable, we will concern ourselves only with
an unacceptable containment mapping / from T3 into 7\; that is, a mapping in which

/(P(i)) = P(2) (see Figure 3.19).

Lemma 3.10 Assume that a nondistinguished variable .4 appears in an EDB subgoal <7.
and that / is a containment mapping from a right-linear tree T5 of depth at least 1 into V |.
Then f{A) = A or f(A) = A'.
Proof. Assume that A appears in the A:th position in eq. Since T5 has depth at least 1. tin-
atom eq appears as a leaf. Because there are no repetitions of any EDB predicate in ih<-
subgoals of the recursive rule, the only e,,-atoms in T\ are eq and P(ije9; the kth argument
of the former is .4 and the Arth argument of t lie latter is A'.

in Tls

k

,(A

in 7',
PiD1

k

A'
in T\

92 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

Tx T3

Figure 3.19: Unacceptable containment mapping

Considering all possible destinations in Ti for the e?-leaf in T5 suffices to complete the proof.
D

Recall our convention that t[i] refers to the ith argument of the atom /.

Lemma 3.11 Assume that V is minimal, and that / is a containment mapping from T3

into T] under which the destination of p(1) is p(2) (see Figure 3.19). Then p(1) is an adjunct

to p{2).
Proof. Assume that a distinguished variable A',- appears in some position j in p(1}. By
Lemma. 3.7 and the assumed mapping /(p(i'j) = P(2). P(2)[j] is -^«- To complete the proof,
we show that if any nondistinguished nonlocal variable A appears in any position i in p^),
then .4 also occupies position i in p(2). Assume the existence of a nondistinguished variable
.4 in the ?th argument position in p(j), such that .4 appears in p(2), or in some eq.

If .4 appears as an argument to some et/, then by Lemma 3.10, f[A) is .4 or .4'. Since
no primed variable appears in p(2)5 th

e mapping /(p(i)) = V(2) forces p(2)['] = -4.
Assume now that .4 appears in the jth position in the arguments of p(2)- The picture is

P(i)(A B) p(2)(C A)

Now, B cannot be distinguished, otherwise by previous discussion, A would also have to be
distinguished. By the assumed mapping on p^j. we have /(.4) = C. Since the j'th arguments

°f V(\)V(i) anc' V(\)P{2) are ^otn primed variables, we conclude that /(P(2)) = P(2)- Then
f{A) = A and C = A. D

3.5. PROOF 93

Connectivity

It turns out that if V is basis-linearizable and not minimal, then the p-atoms p^) and p(2) m

the body of the recursive rule must be connected. The primary tools used in the remainder
of the proof are connectivity and safety.

Two atoms in the body of the recursive rule r\ are said to be directly connected if they
share a nondistinguished variable; connectivity is defined as the transitive closure of the
direct connectivity relation. Similarly, two nondistinguished variables are connected if they
appear in a pair of connected atoms. The special case of connectivity between the recursive
atoms p(!) and p(2) is formally defined below; the formality is necessary to the results of the
remainder of this chapter.

Definition 3.6 Assume that the nondistinguished variable A appears in the arguments of
/)(!), and that the nondistinguished variable B appears in the arguments of p(2). We say
that .4 and B are directly connected if A = B. The atoms p^) and pj2) are said to be directly
connected if they share a nondistinguished variable .4. We say that 4 and B are indirectly
connected if A ^ B, and if for n > 0, there are nondistinguished variables U\,.. ..Un+i and
distinct EDB subgoals e^ ,..., ekn such that

1. 4= Ui.

2. B = Un+1.

3. For 1 < / < 7», the variables Ui and f',+] appear in the arguments of e/,.,.

The sequence < et,,.. . ,e^n > is termed a connection sequence between A and B, and the
sequence < U\,..., Un+\ > is termed the corresponding variable sequence.

a

As we mentioned earlier, nondistinguished variables in n will be consistently renamed
in each tree by priming. That is, if A is a nondistinguished variable, then its occurrences
in any tree will be A^ where i is an integer indicating superscripts of / Vs. Further,
occurrences of the nondistinguished variables .4 and B in sibling atoms will bear the same
superscript. If the tree is linear, then A'1' is the occurrence of 4 at depth / - 1 in the tree.

Let / be a containment mapping from a right-linear expansion R of depth at least 1
into an expansion S. Recall that if / is a mapping from some tree S into some tree T, the
notation f(q) = w implies that q is a leaf in S and w is a leaf in T.

Lemma 3.12 Assume that the nondistinguished variables V and IF appear in the argu-
ments of some EDB predicate eq. For any /'. assume that / is a containment mapping from
a right-linear tree R of depth at least (i + 1) into an expansion 5, and let V^ and W^ be
the respective occurrences of V and W at depth (■/' + 1) in R. Then, there is some j such
that f{\'W) = VW and f(W^) = W^.
Proof. Assume that V and W appear in the positions k and / in ey, respectively. The
/,'th and /th arguments of the e,-atom at depth (/ + 1) in R are l'(,) and H/(l) respectively.

94 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

Since there are no EDB repetitions in the recursive rule, every e?-atom in S has fcth and
/th arguments V^') and W^ respectively, for some j. □

Lemma 3.13 Assume that R is a right-linear tree of depth m, S is any expansion and /
if a containment mapping from R into 5. Assume that the nondistinguished variable A in
P(i) is connected to the variable B in p(2). Then for 0 < i < m, exactly one of the following
is true.

1. A = B and/(4W) = /(£<*>).

2. A ? B, and there is some j such that /(4<!)) = A^) and f(B^) = B^.

Proof. If A and B are directly connected, then .4 = 5 and (1) above is true. If A and B

are indirectly connected, then A ^ B.

Let
< c/t,,.... e/.-„ >

be a connection sequence between .4 and B, and let

< Uu....Un+y >

be the corresponding variable sequence. Recall that .4 = Ui and B = Un+\. We show that
(2) above is true.

Consider the possible destinations for the atom f^j'ejt, i which contains the variables

AW = U[i] and U(
2
l). By Lemma 3.12, there is some j such that /(.4<'>) = A^ and

f(U^) = U{
2
j). If U2 = B, then the result follows. Otherwise, the variables U^ and U{

3'
]

appear in the leaf p^'e^; the use of Lemma 3.12 and the single-valuedness of / shows that

f(U^) = U3. An inductive repetition suffices to complete the proof. D

Note that the assumption that there are no EDB repetitions in the body of the recursive
rule is essential to the proof of Lemmas 3.12 and 3.13.

In the remainder of this subsection, we will show that if V is basis-linearizable, but p^)
and p(2) are not connected, then V is minimal. Recall that that V is termed minimal if the
small non-right-linear tree T\ is contained in a right-linear tree of height at most one (that
is. in one of T? and T3).

Lemma 3.14 If V is basis-linearizable and not connected, then V is minimal.
Proof. Assume that / is a containment mapping from some right-linear tree T5 of height
n > 1 into T3. We construct a containment mapping g from T3 into T\. We define the
destinations of g as follows: g preserves the destination of 7^(1), and of any eq connected to
P(!j; all other atoms in r\ are mapped to "themselves" under g. More formally, we partition
nondistinguished variables into two classes. A noiuli-.tiiiguished variable is termed tied if it
appears in pnj or in any predicate that is connected \<> />(1). and free otherwise. We define
g as under.

3.5. PROOF 95

Ti{
P P ei ej

>T*

>rs

Figure 3.20: g:Tz — Tx

V if V is distinguished
g(V) = { f(V) if K is tied

V if V" is free

It is easily seen that g is a containment mapping from the depth-1 expansion T3 into 1\
(see Figure 3.20). D

Non-minimal programs

Finally, let us turn our attention to the case in which the minimal violation of right-linearity
(7\ in Figure 3.21) is contained in a right-linear expansion T5 of depth at least 2 (see Figim-
3.21).

Assume that V is basis-linearizable. and that / is a containment mapping from 7-, inin
T\. By a case analysis on the possible destinations for the leaf p(1) (at depth 1) in i li<■
right-linear tree T5, we will show the following.

!■ If /(P(i)) = P(i)P(i) aild V is not minimal, then T5 has depth 2, f(p(2)P(\)) = /'in/'..-,
and f(p{2)P[2)) = P(2)! i-e-! / is an acceptable containment mapping. (Recall thai .m
expression of the form uf(t) = s" means that t is a leaf in the containing tree. an.I •
is a leaf in the contained tree). Figure 3.22 describes this claim.

. 2. If /(?>(i)) = P(i)j>(2) or /(P(i)) = p(2) (*'•<• Figure 3.23). then p(1) is an adjunct to /»,_,
or V is minimal.

96 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

Figure 3.21: Assume 7\ C Is

Let us end this section with some observations on the nature of the containment mapping

/•

Lemma 3.15 If the nondistinguished variable A appears in some eq, then /(.4) = A or

f(A) = A\ and f{A') = A or f(A') = A'.
Proof. Assume the presence of the atom

c,(A)

in i'i. Since T5 is of depth at least 2, the two leaves

t i

e,(A) p(2)e,(A')

must appear in it. Since there are no subgoal repetitions in n, the only e,-atoms in T\ are

of the form
i '

e,(A) p(1)e,(.4')

D

Lemma 3.16 Assume that the following variables appear in the indicated positions in rL:

i i j

P(i)(C) P(2)(A) eq{ X{)

Then f(A) is X{ or C.
j

Proof. Since T5 is of height at least 2, the atom P(2)f., exists in T5. with form c(,(.4).
j j

The only e,-atoms in T\ are of the form eq{ C) and r,,(4). D

3.5. PROOF

V

p p es p p es

p p es p p es
y \

\
\
\

Tx

(a) Assumption.

p p es

p p es X

* ^
\

X

p p es

/ p p es
y / /

y y

s —

T, rs

(b) Conclusion.

Figure 3.22: The case /(p(1)) = p(1)P(1).

98 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

Tj T5

Figure 3.23: The cases f(p{1)) = P(i)P(2) and f{p{l)) = p(2).

The case /(pm) = 7->(i)P(i) Assume that V is basis-linearizable. Then the minimal vi-
olation 7\ of right linearity (see Figure 3.24) is contained in a right-linear expansion T5.
Assume that T5 has depth at least 2, and that / is a containment mapping from T5 into
the minimal violation T\, such such that f{p(\)) = P(i)P(i) (see Figure 3.24(a)). We will
show that V is minimal, or that /(p(2)P(i)) = P(2)> T5 has height 2 and /(P(2)P(2)) = P(2)
(see Figure 3.24(b)).

If 7>(i) and P(2)are not connected, then V is minimal by Lemma 3.14. Assume that p^
and p(2) are connected. The mapping /(p(i)) = P(i)P(i) yields the following results.

Definition 3.7 We say that p^) is invariant if whenever any distingusihed variable A';
appears in it, then. y;(1)[i] is A',. That is, X, (also) appears in its "home" position in p(1).
D

Lemma 3.17 Assume that p^) is invariant. If A,- appears in any position j in pji), then

P(i)P(i)[J] is A\.
Proof. By invariance, P(i)[■/■] = A'i, and our result follows immediately, ü

Lemma 3.18 If /(p(i)) = P(i)P(i), then p(X) is invariant, and f(A) = A' for all nondistin-
guished variables A in p^). Further, any variable B in p(2) that is connected to a variable
.4 in p(!)also satisfies f(B) = B'.
Proof. Assume that A", appears in position j ^ /' in p^y The picture is

> i
p{1)(C Xi)

The jth argument of P(i)P(i) is C. By the assumed mapping /(p(ij) = P(i)P(i), /(A';) = C:
since /(A',) = A',-, our result follows. Otherwise, if A", appears in p^j, then it occupies
position /'. Hence, p^j is invariant.

3.5. PROOF 99

p p es

p p es

/

p p es

I ^^ I p p es
/ \

' \
\

?i T5

(a) Assumption.

P

p p es p p es

p p es N K / p p es
\ /

>s • / /

n

(b) Conclusion.

Figure 3.24: The case /(p(ij) = p(i)P(i).

100 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

If the nondistinguished variable .4 appears in the ith position in p^), then A' appears in
the i'th position in P(i)P(i); hence, f(A) = A'. If a nondistinguished variable B appearing
in p(2) is connected to .4. then f(B) = B' by Lemma 3.13. □

Proving that f(p{2)P(i)) = P(i)P(2)- We now Prove that /(P(2)P(i)) = P(i)P(2)- Recall
that / is a containment mapping from a right-linear expansion T5 of depth at least 2 into
the minimal violation I\, such that /(p(i)) = P(i)P(i)-

Definition 3.8 Define a Class 1 variable to be a distinguished variable Xj that appears
only among the arguments of ?;(2) (that is, Xj does not appear in the arguments of p^ or
any e7). Define a Class 2 variable to be a Class 1 variable Xj that appears in some position
k / j in the arguments of pj2), but d°es not appear in position j (its "home" position).
Define a Class 3 variable to be a Class 2 variable A**, such that the fcth argument of p(2) is
some Class 2 variable Xj. That is, the arguments of p(2) are as follows, where C ^ Xj and

X7 ± Xk.
j k i

P(2)(C Xj xk)

For 1 < / < 3, an argument position / is termed Class i iff p(2j[/] is a Class i variable. D

Lemma 3.19 Let / be a Class 3 position. Then A'; is a Class 3 variable.
Proof. Assume that A'* is a Class 3 variable appearing as the /th argument of p(2). B>:

definition, k ^ /. The picture is as follows, where Xj and A'^ appear only in p(2), j ^ k, k ^ /
and C -£ Xj.

j k l

P(2)(C X3 Xk)

By safety, A"/ appears in p(X), p^2) or some eq. Since Xk does not appear in p^j and
Xk # A";, Xi cannot appear in any eq by Lemma 3.16. Assume, now that A'; appears in
pixy, by invariance, it must occupy position /. Since T$ has depth at least 2, one of the
atoms P(2)P(2) or P(2)P(2)P(i) must appear as a leaf, and the /th argument of each of these
atoms is Xj. Since Xj does not appear in p(X), it cannot appear in either of the leaves
P(i)P(i) or P[i)P(2) m T\\ further, the /th argument of p(2) is Xk, which is distinct from A",
by assumption. Hence, neither of the atoms P(2)P(2) and P(2)P(2)P(i)has a legal destination
in T-\. Hence, by safety, A'; must appear only in p(2> and our result follows. □

Lemma 3.20 For all i, i is a Class 3 position iff A"; is a Class 3 variable.
Proof. The "only if" follows from Lemma 3.19. For the converse, note that by definition, if
there are k Class 3 variables then there are at least k Class 3 positions; our result follows
by Lemma 3.19 and by pigeonholing, recalling the fact that all distinguished variables are
distinct. D

Lemma 3.21 The arguments of p^) and p(2) cannot be of the form

P(i)(A) P(2)(it .v,)

3.5. PROOF 101

where A and B are connected nondistinguished variables and Xj appears only in pi2\.

Proof. Assume the converse. Since B is nondistinguished, j ^ k\ that is, Xj is a Class 2
variable. By Lemma 3.18, f(B) = B'., and p^j is invariant. By safety, Xk must appear in
P(i)» P(2) or some e7.

Since Xj does not appear in p^), Lemma 3.16 prohibits Xk from appearing in any eq. If
Xk appears only in p(2), then it is a Class 3 variable; by Lemma 3.20, k must be a Class 3
position, and Xj a Class 3 variable; but 7>(i)[i] is nondistinguished, a contradiction. Hence,
Xk must appear in the arguments of p^j, and must occupy position k by invariance. The
picture is

p(1)(A Xk) p(2)(B Xj)

Now, one of P(2)P(2) a"d P(2)P(2)P(i) must appear as a leaf in T5, and B appears as the
kth argument of each of these leaves. However, the kt\\ argument of each leaf in T\ is a
nonpriined variable, contradicting the fact that /(£?) = B'. D

Lemma 3.22 Assume that the arguments of p^ and p(2) are as follows

1 i

P(l)(A) P(2){ B 0

where A and B are connected nondistinguished variables. Then P(i)[j] is A'j.
Proo/. By Lemma 3.18 and connectivity, f(B) = B'. By safety, Xj must appear in the
body. However, by Lemma 3.16, it cannot appear in eq. By Lemma 3.21, Xj cannot appear
only in 7^2)- Hence, Xj must appear in 7^), and the result follows by invariance. □

Lemma 3.23 Let / be a containment mapping from a right-linear expansion Ts of depth at
least 2 into the minimal violation 7\, and assume that V is not minimal. Then f(P(2)P(\)) =

P(1)P(2)-

Proof. Since V is not minimal, p^j and p(2) must be connected. By Lemma 3.22. we must
have the following situation, where A and B are connected nondistinguished variables.

»' i J
P(i)(A x:) P(2)(B)

By Lemma 3.18, f(A) = A' and f(B) = B'. Now. the jth argument of p{2)P{i) is B, but
the jth arguments of the leaves P(i)P(i) and p(2) in T\ are not B'; that is, the p-leaves in 7,
are as below.

j J j

P(i)P(i)(xj) P(\)P(2)(B') p(2)(B)

Hence, /(7>(2)P(i)) = P(i)P(2)- a

102 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

T5 has height 2 Recall that a Class 1 variable is a distinguished variable that appears
only in the arguments of p(2)> an£l that any position in pj2) that is occupied by a Class 1
variable is a Class 1 position. It turns out that for all /', A",- is a Class 1 variable iff i is a
Class 1 position.

Lemma 3.24 For all i, if i is a Class 1 position, then A, is a Class 1 variable.
Corollary, i is a Class 1 position iff A',- is a Class 1 variable.
Proof. Assume that i is a Class 1 position; that is, P(2)D] is a variable A* that appears
only in P(2). li k = i then the result follows. Assume k ^ i. By safety, A",- appears in p^),
some eq or p(2). By Lemma 3.16 and since A'* (by assumption) does not appear in p^),
Xi cannot appear in any eq. If A,- appears in p^), then by invariance it occupies position
i. But then, the ith argument of P(2)P(i) ls A't, which by assumption does not appear in
P(!) (and therefore does not appear in P(i)P(2)); hence, /(p(2)P(i)) ^ P(i)P(2)> contradicting
Lemma 3.23. Therefore, A,- must appear only in p(2).

To prove the corollary, we proceed as follows. By definition, if there are k Class 1
variables, then there are at least k Class 1 positions. By the preceding result, the number
of Class 1 variables is no smaller than the number of Class 1 positions; thus, the number of
Class 1 variables is the same as the number of Class 1 positions. The corollary now follows
by the preceding result and pigeonholing. D

Now, we show that if A and B are connected nondistinguished variables, then f(A') — A

and f{B') = B. The idea is that we know that P(2)P(i)['] = -4', and that /(p(2)P(i)) =
P{i)P(2)'i hence, we need only discover the value of p(i)P(2)[*]-

Lemma 3.25 Let / be a containment mapping as before, and assume the following picture

i j

P(i)(A) p(2)(B)

where A and B are connected nondistinguished variables. Then, either A = B and P(i)P(2)[*]
is Xj, or P(i)P(2)[t] is A.
Proof. By Lemma 3.23, we have the picture

: j 3

P(i)(A XJ) P(2)(B)

Now, the jth argument of the atoms P(2)P(2) an(l P(2)P(2)P(i) ls B'■> an(l one °f these atoms
appears as a leaf in T5. The jth arguments of the leaves in 7\ are A";, B' and B, so f{B') is
one of Xj,B' and B. By connectivity (Lemma 3.13). if f{B') = Xj, then A = B and f(A')
is Xj-, if f(B') = B then f(A') = .4; and if f(B') = B' then f(A') = A'.

Consider the case f(B') = B'; then, by connectivity, we must have /(.4') = A'. Now. we
know by Lemma 3.23 that f{p(2)P(i)) = P(i)P(2)> an(l that .4' appears as the it\\ argument
of the former. If P(i)7>(2)['] IS A', then the variable .4 appears in the /th position in p^j and
P(2). The picture is

i 1

P(i)(A) p(2)(A)

3.5. PROOF 103

By safety, A, must appear in the rule body. By Lemma 3.16, if A"; appears in any eq, then
f(A) is one of A",- and A, contradicting Lemma 3.18. By invariance (since A is nondistin-
guished), A, does not appear in p(1). However, A',- cannot appear only in p(2). since it would
be a Class 1 variable and p(2)[i] is not Class 1. Hence, f(B') ^ B' and our result follows.
D

Lemma 3.26 Assume the following arguments for p(j) and p<2\

«' j

P(i)(A) P(2)(A)

where A is a nondistinguished variable. Then P(i)P(2)[i] # Xj.

Proof. Assume the converse. Then by assumption and invariance, the picture is

i j k i j

7>(i)(A Xj Xj) pl2)(Xk A)

where i ^ j, i jL k since A is nondistinguished.

By Lemma 3.18, f(A) = A', and Lemma. 3.23 requires that /(p(2)P(i)) = P(i)P(2); s'nce
the jth argument of p(2)p(1)is A, we conclude that P(i)P(2)[fc] = A' and P(2)[k] = A.

Now, by invariance, A, cannot appear in p(1). If A", appears in any eg, then by Lemma
3.16, we must have f(Xk) = A or f(Xk) = A\, a contradiction since i ^ k. Hence, A",
appears only in p(2), say in position / distinct from /. j and k. We now have the picture

p(1)(A Xj Xj) p(2)(Xk A A A,)

where i ^ j,i ^ k,i # /, j # /. However, by the corollary to Lemma 3.24 and since A,- is
Class 1, P(2)[i] (Xk) must also be Class 1; but P(2)[k] is nondistinguished (and hence not
Class 1), contradicting Lemma 3.24. □

Lemma 3.27 Assume that the p-atoms in V are of the form

< j

P(i)(••*) P(2)(B)

where A and B are connected nondistinguished variables. Then f(A') = A and f(B') = B.
Proof. By Lemmas 3.23, 3.25 and 3.26, and by connectivity. □

Lemma 3.28 T5 has height 2.

Proof. Assume that .4 and B are connected nondistinguished variables appearing in p(1)

and p(2) respectively. The picture is

/>(!)(Ä) p(2)(B)

104 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

By Lemma 3.22, p{1)[j] = Xj. Further, by Lemmas 3.23 and 3.27. pw[i] = A', for some /
such that p(i)[/] = .4. Thus, we have the picture

P(i)(A Xj A) p(2)(X, B)

where A and B are connected, and where Xt ^ Xj. We assume T$ has height at least 3,
and force a contradiction.

Now, /)(2)p(2)P(i)[*'] = A" and P(2)P(2)P(1)[j] = B''. The mapping /(F) = B forces
/(P(2)P(2)P(i)) = P(2). yielding /(A") = X,. By connectivity, .4 = F But then the jth
argument of each of P(2)P(2)P(2) and P(2)P(2)P(2)P(i) is 4", and A'/ does not appear in position
j in any leaf in Ti; that is, T5 cannot have depth 3 or depth greater than 3, a contradiction.
D

Hence, P(2)P(2) is a leaf in T5. Let A and £ be as in the proof of the preceding theorem.
By Lemma 3.27, /(F) = B. Now, F appears in the j'th position in p(2)7>(2) (in T5) and p(2)

(in 7\). Howeever. the jth arguments of p(1)p{1) and p(i)P(2) are Xj and 5' respectively.
Hence, we may conclude that /(p(2)P(2)) = P(2)-

Cyclic programs Before we proceed to the cases /(p(1)) = P(i)P(2) and /(p^j) = p(2),
we will investigate the behaviour of cyclic programs. Recall that a Class 2 variable is
a distinguished variable Xj that appears only among the arguments of p(2), such that
P(2)[J] i1 A'J; that is, Xj appears "out of position." Recall also that a position i is termed
Class 2 iff P(2)[/] is a Class 2 variable. We say that the program V is cyclic if for all ;', if Xj
is a Class 2 variable, then j is a Class 2 position.

Assume that the arguments of the p-atoms in V are as follows, where .4 and B are con-
nected nondistinguished variables (not necessarily distinct). C and D are arbitrary nondis-
tinguished variables and i need not be distinct from j.

P(i)(%A D) P(2)(C B)

We will show that if V is cyclic and basis-linearizable. and has such arguments, then V is
minimal. For this purpose, we will investigate the containment of the complete expansion
of depth 2 (expansion T6 in Figure 3.25) in a right-linear expansion; that is, for the purpose
of this subsection, we will not be considering the minimal violation of right-linearitv.

Consider the complete expansion T6 of depth 2. illustrated in Figure 3.25. We will
assume that each nondistinguished variable V is renamed to V in the children of p(1), and
to V" in the children of p(2), as indicated in the figure.

Assume that V is basis-linearizable. Then, T6 is contained in some right-linear expansion
Th (see Figure 3.25): assume that / is a containment mapping proving the containment.
Since a nondistinguished variable appears in at least one position in each p-leaf in T5, T6 is
clearly not contained in the depth-0 expansion

3.5. PROOF 105

P(i)(A D) P(2)(C 5)

i 3 1 J

P(i)P(i)(^' £>') P(i)P(2)(C" 5') p(2)P(1)(/I" D") p(2)P{2)(C" 5"

T6

P(i)(A i

p(2)P(1)(A' D1) V(2)V(2){ C B') P(2) es

Figure 3.25: Trees iß and I5

106 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

P(A')

p(X)

The following lemma shows that, if V is cyclic, then TQ is not contained in any right-
linear expansion of depth greater than 1.

Lemma 3.29 Assume that the p-atoms in V are as described above, and that V is basis-
linearizable and cyclic. Then the expansion TQ is not contained in a right-linear expansion
of depth greater than 1.
Proof. Assume that / is a containment mapping from some right-linear expansion T5 of
depth at least 2 into T§; we force a contradiction.

The ith argument of the leaf p^ in T5 is A, and the ith arguments of the p-leaves in TQ

are A',C',A" and C"; hence, f(A) is one of these four variables. By connectivity, f(B) is
one of A', C, A", C", B' and B".

By safety, the distinguished variable Xj must appear in the body of the recursive rule.
Assume Xj appears in some eq, in position k say. Since T5 has depth at least 2, the leaf
P(2)eq appears in it, with kth argument B. The only possible destinations for this leaf in
Te are the atoms V(\)eq,P(2)eq and eq; however, the kth. argument of each of these atoms is
a nonprimed variable, a contradiction.

Assume that Xj appears in the arguments of p^, in position k say. The kth arguments of
the leaves/>(!)/>(!) and P(2)P(i) are D and B respectively, both of which are nondistinguished;
hence, we must have /(P(i)) = V(\)V(2) or f{P(i)) = P(2)P{2), and the /cth argument of p[i)p[2)
or P(2)P(2) must be the distinguished variable Xj. Hence, P(2)[&] is some distinguished
variable A";. The picture is

P(l)(A D Xj) P{2)(C B Xi)

Now, since T5 has depth at least 2, the leaf P(2)P(i) must appear in it. The kth argument
of this leaf is B; however, the kth argument of each leaf in Te is a nonprimed variable, and
P{2)P(i) has no legal destination.

Thus, Xj must appear only in />(2), in position k say. Since P(2)[j] is nondistinguished,
k ^ j and Xj is Class 2, which violates the assumed cyclicity of V since P(2)[j] iS nondis-
tinguished and hence is not Class 2.

D

Now, consider the case in which T6 is contained in the right-linear expansion 7^ of depth
1. Let / be a containment mapping from T3 into T6. We say that / is normalised iff t he
following conditions all hold.

1. The destinations of the leaves p(1) and p^2) in T3 have the same parent in T6. That is,
both p-leaves are mapped to the same "side" of the complete tree T6.

2. The destination of each e?-leaf in T3 is either the e,-leaf at depth 1 in T6, or the e,-leaf
in T6 with the same parent as the destinations of the p-leaves in T3.

3.5. PROOF 10<

TrA
T4(

/-f^

free tied

P P ei ej

>r3

^

Figure 3.26: Normalised mapping

The following is the analog of Lemma 3.14 in Section 3.6.3.

Lemma 3.30 Assume that the arguments of the p-atoms in V are as described above, and
that Tg C T3. Then, the containment is provable by a normalised mapping.
Proof. Let / be any mapping proving the containment; we construct a normalised mapping g

from /. If /(p(i)) is one of P(\)V(\) and P(i)p(2), then f(A) is one of A' and C"; by connectivity.
f(B) must be A',C or B'. However, the jth argument of each of P(2)P(i) and P(2)P(2) 1S

a double-primed variable; hence, we must have /(p(2)) = P(i)P(i) or f(p(2)) = P{i)P{2)-
Similarly, if /(p(i)) is one of P(2)P(i) or P(2)P(2)> then /(pp)) must also be one of these
atoms.

Partition the nondistinguished variables in T3 into two classes. Tied variables are vari-
ables that appear in p(X) or p(2)i or m anv eq that is connected to ?;(1) or p(2j; free variables
consist of the remainder. Define the function g as follows.

9{V)={

V if V is distinguished
f(V) if V is tied
V if V is free

That is, g preserves the destinations of/ for all atoms that are connected to p^ or p(2), and
maps all other eq to "themselves" in T6 (see Figure 3.26). g is a normalised containment
mapping from T3 into T6. □

Lemma 3.31 Assume that the arguments of V are as described above, and that / is a
containment mapping from T3 into T6 such that the destination of the leaf /;(1) in Tx is a

108 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

i

l

/
/

y

T3

Figure 3.27: One-boundedness

child of the atom p(1) in T6; that is, /(p(1)) = P(i)P{i) or /(P(i)) = P(i)P(2)- Then V is

minimal.
Proof. Construct a normalised containment mapping g from T3 into T6; </ is a containment
mapping from T3 into the minimal violation Tx of right-linearity, ü

Lemma 3.32 Assume that the arguments of V are as described above, and that / is a
containment mapping from T3 into T6 such that the destination of the leaf p(1) in Tx is

a child of the atom p{2) in T6; that is, f(p(1)) = P{2)P(\) or /(P(i)) = P(2)P(2)- If P is

basis-linearizable, then P is minimal.
Proof. Construct a normalised containment mapping g from T3 into T6; ff is a containment
mapping from T3 into the right-linear tree T4 of depth 2 (see Figure 3.27). Let Q be the set
of right-linear open expansions generated by P; as we mentioned in Chapter 1, Q may be
considered a program. Then, T4 is the minimal violation of one-boundedness in Q\ by (the
discussion following) Theorem 1.7, we may conclude that the set of right-linear expansions

of V is one-bounded.
Now, consider the minimal violation Tx of right-linearity in V. Since we assumed that V

is basis-linearizable, Tx is contained in some right-linear expansion. However, since the set
of right-linear expansions is one-bounded, we conclude that T] is contained in a right-linear
expansion of depth at most 1, and the result follows, a

The following lemma details the property of cyclic programs that will be used in the
following two sections. This lemma is key in the proof that if the minimal violation T\ of
right-linearity is contained in a long right-linear expansion under an unacceptable contain-
ment mapping, then Tx is minimal (that is. Tx is contained in the right-linear expansion of

depth 1).

3.5. PROOF 109

Lemma 3.33 Assume that V is basis-lineavizable, and that the p-atoms in the recursive
rule have the form

P(1)(A b) p(2,(x Y)
where A and B are connected nondistinguished variables, and where A' and Y are distin-
guished. Then V is minimal.
Proof. Consider the complete expansion T6 of depth 2; since V is assumed to be basis-
linearizable, T6 is contained in some right-linear expansion. By discussion, and by Lemma
3.29, T6 must be contained in the right-linear expansion T3 of depth 1. By Lemmas 3.31
and 3.32, V is minimal. □

The result of Zhang, Yu and Troy Zhang et al. ([40]) claim a decision procedure
for basis-linearizability in the restricted case in which the recursive rule has at most 1 EDB
subgoal. As we mentioned in Section 3.1.1, the proof 3 of [40] is flawed. The flaw is.
essentially, the fact that they neglect the case covered by Lemma 3.32. They claim the
following result.

Define the program V to satisfy "Property 0" if

1. There is a partial mapping from p(1) into p(2) that preserves the distinguished variables
in p(1).

2. There are two distinct nondistinguished variables ,4 and C that appear only in p(1)

and p(2), in the following positions:

p(1)(A C) p(2)(C A)

3. V is not minimal.

The result of [40] is the claim that the complete tree T6 of depth 2 is not contained in
any right-linear expansion. The following program satisfies "Property 0," and yet. T,; is
contained in the depth-1, right-linear expansion T3.

n : p(X, Y, W, Z) :- p(U,X, A.C),p(X,X,C. A),e(Y, W. Z).
r2: p(X,Y,W,Z):- b(X,Y.W,Z).

The weaker result of Lemma 3.33 suffices for our purposes.

The case /(P(ij) = P(i)P(2) Let us return to the containment of the minimal violation /1
of right-linearity (see Figure 3.28) in a right-linear expansion T5 of depth at least 2. Let /'
be a containment mapping from T5 into T\ such that /(p(i)) = P(i)P(2) (see Figure 3.2s).
We will show that if V is basis-linearizable. then V is minimal. As before, if p(1) and p(2) ai <■
not connected, then V is minimal by Lemma 3.11. Assume that p^ and pj2) are connected.

3The paper has been published in TODS ([41]) without ;i proof.

110 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

V V

p p es p p es

/^ / /^\
p p es ' p p es

' \
■— \

Tx T5

Figure 3.28: The case f(p(i)) = P(i)P(2)-

Lemma 3.34 For all j, if P(2)[j] IS nondistinguished, then so is p{\)[j}.
Corollary. If />(i)[j] is a distinguished variable, then P(2)[j] ls distinguished.
Proof. The proof follows from the fact that / preserves distinguished variables. If P(2)[j]
is nondistinguished. then P(\)P(2)[j) would also be nondistinguished; hence, by Lemma 3.7
and the assumed mapping /(p(i)) = P(i)P(2)> P{\)[j] must be nondistinguished. □

Lemma 3.35 Assume that the arguments of the p-atoms in V are of the following form.

P(i)(D X3) P{2)(B C)

Then f(B) is X,. DOT C.
Proof. The mapping f(p(\)) = P(i)P(2) yields the fact that P(\yP(2)[k] is Xj. The Hh
arguments of P(i)/->(i) and p(2) are D and C respectively. The A;th argument of 7->(2)7>(i) is B:
our result follows by an examination of all possible destinations for this atom. D

Recall that a Class 2 variable is a distinguished variable Xj that appears only in p^)i
such that />(2)[i] i1 Xj. Recall also that a Class 2 position is an argument position in /^2)
that is occupied by a Class 2 variable.

Lemma 3.36 If k is a Class 2 position, then Xk is a Class 2 variable.
Proof. The picture is as follows, where C ^ Xj, and where Xj appears only in p^2)-

7>(2)(C Xj)

By safety, Xk appears in the rule body. By Lemma 3.Hi. since A", does not appear in p^y
Xk does not appear in any eq. Assume that Xk appears in some position / in p^y Then.

3.5. PROOF 111

Xj appears in position / in P{2)P(\)i and this atom is a leaf in T5. Consider the possible
destinations of this leaf. Now, Xj appears nowhere in p(X), and hence appears nowhere in

P(i)P(i) or P(i)P(2)5 hence, f{p{2)P{i)) = P(2), and p{2)[l] = Xj. The picture is

/ j k 1

P(\)(A**,) p(2){ C Xj Xj)

The assumed mapping /(p(i)) = P(i)P(2) requires that the /th position of P(i)P(2) iS A'/t; that
is, P(i)[j] is Xk. However, in this case, P(2)P(\)[J] is Xj, and the mapping f(pp)P(i)) = P(2)
forces C = Xj, contradicting our assumption that Xj is Class 2.

D

Lemma 3.37 i is a Class 2 position iff A"; is a Class 2 variable.
Proof. By Lemma 3.36 and pigeonholing, as in the proof of Lemma 3.24. O

Lemma 3.38 V is cyclic.
Proof. By Lemmas 3.36 and 3.37. D

Lemma 3.39 Assume the picture

P(i)(A C) 7>(2)(A", A)

where A and C are nondistinguished and Xk 7^ A*,. Then / cannot exist.
Proof. By safety, Xi must appear in the rule body. By Lemma 3.16, it cannot appear in
any eq. Assume it appears in p(j), in position / say. The mapping /(p(i)) = P(i)P(2) requires
that P(i)P(2)['] is A",-; hence, P(2)[*] is some distinguished variable Xm ^ Xk such that P(2)['"]
is X{. Now, the /th argument of the leaf P(2)P(i) m P* iS Xk, but Xk does not appear in
popsition / in any leaf in T\\ that is, the /th arguments of the leaves in T\ are as below.

l 1

P(l)P(l)l A) P(i)P(2)(A,) p(2)(Am)

Hence, Xi appears only in p(2), and is thus Class 2. By Lemma 3.37. k must be a. Class
2 position, a contradiction since .4 is nondistinguished. G

Lemma 3.40 Assume the picture

i J .)

P(i)(A C) p(1){ B)

where .4 and B are connected nondistinguished variables. If V is not minimal, then C ^ B.
A = B and f(A) is Xj or C.
Proof. By Lemma 3.34, C is nondistinguished. If C = B then T7 is minimal by Lemma
3.33. Assume that C ^ B. By safety, Xj appears in p^y p(2)Of some eq.

112 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINEARIZABILITY

If Xj appears in some eq, then our result follows by Lemma 3.16 and connectivity
(Lemma 3.13). Assume that Xj appears in no eq. By Lemma 3.37, Xj cannot appear only
in p(2); hence, Xj appears in p^, in position k say.

The assumption /(P(i)) = P(i)P(2) requires that P(2)[k] be some distinguished variable
A'; different from Xj such that p(1)[/] is Xj. Since A and C are nondistinguished, k ^ i and
k ^ j. The situation is

p(1)(A C A, Xj) p(2)(B Xi)

By Lemma 3.35, f{B) is one of Xj, C and A*/. Since we assumed C ^ A, by connectivity
we must have A = B. We will show that f(A) ^ A"/ to complete the proof.

For the assumed mapping on p(1), P(2)[<] must be A'm for some m (m ^ l,m ^ j) such
that j»(i)[m] is A"/. The new picture is

i k I m i j k

p(1)(A Xj Xj Xl) P(2)(Am A Xl)

An examination of destinations for P(2)P(i) suffices to show that we must have /(P(2)P(i)) -
p(2). This mapping yields f(A') = A; however, in this case, neither p(2)P(2) nor P(2)P(2)P(i)
has a destination among the leaves of T\. D

Lemma 3.41 Assume the picture

p{1)(A C) p{2){ A)

If f(A) = C, then V is minimal.
Proof. Assume f(A) = C. If C = A, then "P is minimal by Lemma 3.33. Assume C # A:
we will show that / cannot exist. The mapping /(p(i)) = P(2), along with Lemma 3.34,
requires that C is nondistinguished. The same mapping and the assumption /(.4) = C
requires that p^)[i) De some distinguished variable A'/.- such that P(i)[k] is C. Since .4 ^ C.

we conclude that A"*, ^ A';. The new picture is

P(i)(A C C) p(2)(A', .4)

Now, the mapping /(p(t)) = P(i)P(2) yields /(C) = 4': hence, p^)[k] = A. By Lemma 3.39.
/ cannot exist. □

Lemma 3.42 Assume that the arguments of p^j and p^,) are as follows, where A and C
are nondistinguished (hence i ^ j).

P(1)(A C Xj) />,..,■ .V, 4)

3.5. PROOF 113

Let Ts be a right-linear tree of depth 7- > 1. Then, the fcth argument of the p(2)-leaf in T5
(i.e. of P{2)T) is some A"/ ^ Xj.
Proof. Consider the set S = {fci,..., kn) of all positions in p(X) that are occupied by A'jt by
assumption, this set has cardinality at least 1. Since p[\)[i] and P(i)[j] are nondistinguished,
kq ■£ i and kq ^ j for all q. The requirement f{P(i)) = P(i)P(2)- along with the fact that /
is the identity on distinguished variables, shows that for each / € 5, P(2)['] is Xm for some
m € 5. A straightforward induction on 1 < q < r shows that for any / € 5, there is an
m € S such that the /th argument of p(2)9 is Ar

m. Our result follows. D

Lemma 3.43 Assume that the arguments of p(j) and p(2) are as follows, where .4 and C
are nondistinguished and C ^ A. Then f(A) ^ Xj.

i 3
P(l)(^) P(2)(#)

Froo/. If /(p(i)) = P(i)P(2) and /(4) = A'j, then we have the following picture where
/c^i,A:/j.

P(i)(A C Xj) p(2)(A'jt .4)

The fcth argument of the leaf P(i)P(i) in Ti is the nondistinguished variable C. Since we
assume /(p(i)) = P(i)P(2)> tne kth argument of P(i)P(2) is Xj. The ith and jth arguments
of the p-leaves in T\ are as follows.

» 3 i 3 i ./'

P(i)P(i)(A' C) P(i)P(2)(A', A') p(2)(At .4)

Let T5 have depth n + 1, for some n > 1. Consider the lowest p-leaves in T5; that
is, the atoms P(2)nP(i) and P(2)n+1- By Lemma 3.42, the /cth argument of P(2)n+1 is some
distinguished variable distinct from Xj, and hence we must have /(P(2)n+1) = P(2)- Now.
the /'th argument of P(2)nP(i) and the jth argument of P(2)"+1 are both An (recall that this

is the variable 4, primed n times). The mapping /(p(2)"+1) = P(2) forces /(4(n)) = .1:
however, 4 does not appear in the ith position of any p-leaf in Tj. and hence P(2)nP(i) ''<ls

no destination in T\. □

Lemma 3.44 V is minimal.
Proof. By Lemmas 3.40, 3.41 and 3.43. D

The case /(p(i)) = P(2) Assume that V is basis-linearizable, and that the minimal v'm
lation T\ of Figure 3.29 is contained in a right-linear tree T5 of depth at least 2. Assunw
further that the containment mapping / from 7>, into 7\ satisfies f{}>(\)) = p(2) (see Figur«'
3.29). We will show that V is minimal or p(() is an adjunct to p(2j. to complete the proul.

Lemma 3.45 For all / and j, if P(i)[j] is the (li>iin»iiishod variable A",, then P(2)[j] is -V..

114 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

p P

^^ />-
p p es . p P es

^^ * ^ / /\\
p p es ^ v. _ ..' p P es

\
\
\
\

Tx Ts

Figure 3.29: The case /(p(i)) = P(2)-

Proof. Since / is a containment mapping from T5 into Tu and since both expansions have
the root p(.Yx,. .., Am), we conclude that /(A",) = A',- for all i. Our result follows because

/(p(1)) = P(2) by assumption. □

Recall that a Class 2 variable is a distinguished variable Xj that appears only in p(2),
such that p(2)[j] 7^ A'j. Recall also that a Class 2 position is a position in p(2) that is

occupied by a Class 2 variable.
/

Lemma 3.46 If k is a Class 2 position, then Afc is a Class 2 variable.
Proo/. Assume the following scenario, where C + A, (so j f It), and where Xj appears

onlv in p(2)-
3 k

P(2)(C Xj)

By safety, A"fc appears in the rule body. By Lemma 3.16. it cannot appear in any e7.
Assume it appears in p(1), in position /; the mapping /(p(i)) = V(2) forces V{2)\1\ = Xk (so

/ ^ jj ^ A;). The picture is

P(l)(A'fc) P(2)(C AJ A*)

Now, A"j appears in the /th position of the leaf p(2)P(i) in Ts- but appears nowhere in the
leaves ;>(1)p(1) or P(i)P(2) in 7i (since Xj does not appear iu p(1)); also, the /th argument of
/;(2) is A\- ^ Xj. SO ?>(2)P(I) has no legal destination in 7\. Thus, Xk appears only in p{2).

D

Lemma 3.47 For all i, i is a Class 2 position iff A, is a Class 2 variable.

Corollary. V is cyclic.

3.5. PROOF 115

Proof. The proof follows by Lemma 3.46 and pigeonholing. D

Lemma 3.48 Assume that A is a nondistinguished variable appearing in p(1). Then /(A) ^

Proof. Assume the converse. By the assumed mapping /(p(i)) = P(2), the picture is the
following.

p(1)(A C) p(2)(Xj A)

We show that T5 cannot have depth 2 or greater, a contradiction since T-0 is assumed to

have depth at least 2.
Since A is nondistinguished, i ^ j. By Lemma 3.45, C must be nondistinguished. By

safety, A"; must appear in the rule body.
If A\- appears in any e9, then by Lemma 3.16, f(Xj) is A or Xi, a contradiction. Assume

that A, appears in p^), in position k say. Then, by Lemma 3.45, P(2)[k] is A",. The picture
is

p(1)(A C Xi) p(2)(Xj A Xi)

Now, since T5 has depth at least 2, the leaf P(2)P(i) appears in it. The fcth argument of this
leaf is Xj. However, Xj does not appear in the kth position in any leaf in T\, a contradiction.

Hence, A", appears only in p(2). However, then Xt is a Class 2 variable, and we conclude
by Lemma 3.47 that P(2)[?] (that is, Xj) is a Class 2 variable. However, this result contradicts
Lemma 3.47 because P(2)[j] is a nondistinguished variable, and is hence not Class 2. D

Lemma 3.49 p^j is an adjunct to p(2) or V is minimal.
Proof. We will show the following.

1. If a distinguished variable Xj appears in the ith position in p(!j, then P(2)[<] is A",-.

2. If a nondistinguished variable A appears in p(j) (in the zth position, say) and in some

e,, then p(2)['] is A.

3. If a nondistinguished variable appears in p^) and p(2), then V is minimal.

Hence, if V is not minimal, then every nonlocal variable appearing in the arguments of p(1)

appears in the same position in p(2); that is. p(i) is an adjunct to p(2).
To prove (1), we observe that by Lemma 3.45, every distinguished variable in p^) appears

in the same position in p(2)-
To prove (2), we proceed as follows. Assume that p^) shares a nondistinguished variable

.4 with an EDB subgoal e,, and that ,4 is the ith argument of p^j. By Lemma 3.15. f(A) i*
A or .4'. However, no primed variable appears in p^). so the mapping /(p(i)) = V(7) forces

P(2)[*"] = A-
Finally, we prove (3). Assume, now. that a nondistinguished variable 4 appears in

position / in p^), and in position j in p(2). We show that V is minimal. By Lemma 3.33. if

116 CHAPTER 3. A DECISION PROCEDURE FOR BASIS-LINE ARIZ ABILITY

is

j then V is minimal. Assume i ^ j, and let the ;'th argument of p(1) be C. The picture

i j i

P(l)(A C) P(2)(A)

By Lemma 3.45, since p(2)[;'] is nondistinguished, C must be nondistinguished. Further, by
Lemma 3.33, if p(2)[?'] is nondistinguished then V is minimal. Assume that p{2)[i] is some
distinguished variable Xk: the mapping /(p(1)) = p(2) forces f(A) = Afc. The picture is

i J « J

P(l)(A C) P(2)(Afc /I)

By safety, Aj appears in the rule body. Assume that Xj appears in some eq; by Lemma
3.17, we must have f(A) = Xj or f(A) = C. Since C is nondistinguished, the former must
hold, so that Xk = Xj, contradicting Lemma 3.48. By Lemma 3.47, Xj cannot appear
only in p(2), since in this case Xj would be Class 2 but p{2)[j} = A is nondistinguished.
Thus, A, must appear in p(1), in position m say. Then, the mapping /(?>(i)) = p(2) forces

P(2)[m] = Xj. The picture is

i j m i J "i
p(1)(A C Xj) p(2)(A'fc -4 Xj)

Now, the leaf P(2)P(i) must appear in T5, and the mth argument of this leaf is A. The
mth arguments of the leaves P(i)P(i) and 7^(i)P(2)in Ti are eacl1 C ¥= xk, so we must have
.fiP(2)P(i)) = P(2)- Thus, P(2)[m] must be A"*, so A*fc = Xj, contradicting Lemma 3.48. □

The proof is now complete.

Chapter 4

Undecidability of the general
problems

4.1 Introduction

Finally, let us turn to the decidability of basis-linearizability and sequencability. In this
chapter, we will show that both these problems are undecidable for a restricted class of
Datalog programs.

4.1.1 Definitions

Consider the following single-IDB, safe, Datalog program V, in which the head of every rule
is rectified (i.e., contains no repetitions of any variable). Recall that a program is single-IDB
iff there is only one intensional predicate in V.

Let V consist of the n recursive rules

ri: p(X0):-p(X11),...p{XUl),Cl.

n: P(-Yo) :-K-*a)» •••?(-*.-*. UV

rn ■ P(Xo) ■- P(A'nl): • • -PiXnkn),Cn-

and the m nonrecursive rules

h : p(X0) :- Vx.

b3 : p(.Yo) :- Vj.

bm ■ p{Xo) ■- Vm.

where the (?,-s and VjS are arbitrary conjuin in MI- of KDB predicates.

I 17

118 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

Figure 4.1: Right-linear query.

Base-case linearizability

Recall from Section 1.4.3 that a conjunctive query generated by V is right-linear if only the
rightmost occurrence of p is ever recursively expanded (see Figure 4.1). Recall also that V
is basis-linearizable iff every conjunctive query generated by V is contained in a right-linear

conjunctive query.

Sequencability

Recall from Section 1.4.4 that a conjunctive query generated by V is termed sequenced if
r, is never used to expand a p-atom introduced by i-j in a top-down expansion generating
this conjunctive query, if i < j (see Figure 4.2). Recall also that V is termed sequencable iff
every conjunctive query generated by V is contained in a sequenced query generated by V.

4.2 Results

We state below the main results of this chapter. In the following statements. V and Q are
safe. Datalog programs defining a single intensional predicate, using head-rectified rules.

Result 4.1 V C Q (V = Q) is undecidable. even if

(a) V and Q are linear, and have no more than five basis rules; or

(b) Each ofV and Q contains only one recursive rule and nine nonrecursive rules.

D

Result 4.2 The base-case linearizability of V is uiuknilablo. even if V contains only one

nonlinear rule and five basis rules. D

4.2. RESULTS 119

V

applications of 7'i

I
V

I
applications of r2

I
I
I

I
I

P

applications of rn

I
V

I
applications of b\,..., 6„

Figure 4.2: Sequenced query.

120 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

Result 4.3 The sequencability of V is undecidable, even if V contains only two recursive
rules and nine basis rules. □

4.2.1 Related results

Shmueli ([33]) and Abiteboul ([1]) present general results that also yield undecidability
results for program equivalence. Shmueli considers programs with a single recursive predi-
cate; however, these programs have several IDB predicates, and include rules whose heads
are not rectified. The assumption of head-rectification is integral to the proof of Theorem
3.1. Abiteboul's result concerns single-IDB programs with a single recursive rule; however,
those programs have rules that are not head-rectified, and contain an unbounded number

of initialisation rules.

4.3 Outline

Our undecidability results involve reductions from undecidable problems for.context-free
grammars. In Section 4.4, we will define certain normal forms for context-free grammars.,
and show that the containment of such normal-form grammars is undecidable. In this
section, we will also show how unsafe Datalog programs may be made safe, allowing the
reductions of the subsequent sections to involve unsafe programs.

In Section 4.5, we will prove Results 4.1(a) and 4.2. Section 4.6 contains the proof of

Results 4.1(b) and 4.3.

4.4 Preliminaries

In this section, we present results that will be of use in the proofs of the next, two sections.

4.4.1 Context-free grammars

The results of the following sections will be based upon reductions from undecidable prob-
lems in language theory. In this subsection, we establish some preliminary results. Our
treatment is concise, and assumes concepts that are explained in [15].

Definition 4.1 For any grammar 6', a production .4 — ß is termed intensional if at least
one nonterminal appears in ß, and extensional otherwise. O

Definition 4.2 A grammar G over the alphabet £ = {«, b) is termed bounded- bas is if G is
e-free and if there are only two extensional productions in G\ which are of the form .Yu — a
and Nb — b where Na i=- Nb, and where neither Ar

n nor Nb appears as the head of any other
production. Hence, we may partition the nonterminals into intensional and extensional
nonterminals, depending on whether they appear on the left-hand side of a intensional or
extensional production. Na is termed the extensional nonterminal representing o, and :V(,
is termed the extensional nonterminal representing l>. D

4.4. PRELIMINARIES 121

Lemma 4.1 Given any linear grammar // over E = {a,b}, we may effectively construct a
linear, bounded-basis grammar G such that L(G) = L{H) - {(.}.
Proof. Construct a linear, e-free grammar i" for L(H) - {e} by determining nullable non-
terminals and following the procedure of Theorem 4.3 in Section 4.4 of [15]. Assume that
S is the start symbol of/. We construct G from /, as follows. Introduce new nonterminals
Na and Nb, and the productions Na -+ a and Nb -*• b. Finally, consider any extensional
production A -* a1. If a is a, replace the production by the unit production .4 — Na; if a
is 6, replace the production by A —*■ Nb- Otherwise, a is of the form ßa or 8b. In the first
case, replace the production by the production A -+ ßNa, and in the second, replace the
production by A —*■ ßNb- O

Definition 4.3 A Modified Chomsky Normal Form (MCNF) grammar G over the terminal
alphabet E = {a, 6} is a grammar with the following properties.

1. G is bounded-basis.

2. Each intensional nonterminal N appears at the head of at most two productions.
Further, if N does appear as the head of two productions, then both productions are
unit productions. That is, intensional productions are of three types.

(a) If N —*■ M and N -* K are productions, then these productions are or-productions.

(b) N —> MK is an and-production.

(c) If N appears only on the left-hand side of the production N — A/, then this
production is a copy production.

O

Lemma 4.2 For every grammar H over S = {a, 6}, there is an MCNF grammar G gener-
ating L(H)- {e}.
Proof. Construct a Chomsky Normal Form grammar for L(H) - e, with start symbol .9.
Introduce the nonterminals Na and Nb, and the productions Na — a and Nb — b. Then,
replace every other production of the form N — c, where c is a terminal, by the production
N -*■ Nc. All productions other than Ar„ — a and Nb — b are now intensional. Replace
every and-production N —* MK by the two productions N —r L and L — A/A", when*
L is a new nonterminal. At this point, the only violations of MCNF are the presence of
nonterminals N such that Ar — R\,..., N — R-k+i, for k > 1. are the productions with .V
on the left-hand side. Introduce new nonterminals A/i,..., M^, then, add the productions
N —' M\ and M* — Rk+i", finally, for 2 < / < /;. replace the production N — R{ with the
two productions A/,_i —*• Ä, and Af^.j —r A/,-. □

Lemma 4.3 Assume E = {a,b). It is undecidable. for an arbitrary context-free grammar
(CFG) G over the alphabet. E, whether E* C i(G). This result is true even if G is linear.

'« is a string of terminals.

122 CHAPTER 4. VN DECIDABILITY OF THE GENERAL PROBLEMS

Proof. Let S = {ßi,. -.,am}; the corresponding problems over this alphabet are known to
undecidable ([15]). The size of the alphabet can be reduced to 2 by padding and encoding.

Lemma 4.4 Let G\ and G2 be bounded-basis grammars over the alphabet £ = {a,b}.
Then G\ C G'2 is undecidable. This result is true even if G'i and G'2 are required to be
linear, or if both grammars are required to be in Modified Chomsky Normal Form.
Proof. Let G\ be the obvious bounded-basis, linear (or MCNF) grammar generating S+.
Testing whether € £ L{G2) is decidable, and our result follows by Lemmas 4.1 and 4.3 (4.2
and 4.3 if G'2 is MCNF). □

Lemma 4.5 Let G be a linear, bounded-basis grammar over £ = {a,b}. Then, S+L(G) C

SX(G') is undecidable.
Proof S+ C L(G) iff

1. 1. S C L(G) and

2. 2. S+L(G) C 2L{G).

Since 1 is decidable, our result then follows by Lemma 4.4.
D

4.4.2 Datalog programs

The following lemma will be of use in the following sections.

Lemma 4.6 Let C and D be the conjunctive queries

C : p(X) :- C.
D: p{X):-VJ[Z).

where C and V are conjunctions of EDB predicates. Z is a distinguished variable (i.e. Z

appears in X) and f(Z) does not appear in C. Then C <£ D.
Proof Every containment mapping g : D -*• C must satisfy g(Z) = Z, since g(p{X)) must
be p(X). However, then g(f(Z)) does not appear in the body of C. D

Safety-

Recall that a rule is termed safe if every variable appearing in the rule head (a distinguished

variable) appears in the rule body, and a program is toinied safe if every rule in the program
is safe. The constructions of the following sections will deal with programs that are unsafe.
However, these programs may be made safe without altering the results of these sections.
as follows.

Let
r : p(X) :- C.

4.5. LINEAR LOGIC PROGRAMS 123

be a (not necessarily safe) conjunctive query (or rule), and let e be a predicate not appearing
in r. Then the notation safe(r,e) represents the query obtained from r by adding conjunets
e{A) to the body of r for every variable .4 that appears in r. Similarly, the notation saft[V. c)
represents the replacement of every rule 7' in the program V with the rule safe(r,e) for some
predicate e that appears nowhere in V.

Example 4.1 If r is the rule

r: p(X,Y):-b(X,U).

then safe(r,e) is the rule

p(X,Y) :- b(X,U),e(X),e(Y),e(U). □

Lemma 4.7 For any conjunctive queries r and s and any predicate e that appears nowhere
in r or 5, there is a containment mapping / : s ->• r iff there is a containment mapping
g : safe(s,e) —> safe(r,e).
Proof. The containment mapping g : safe(s,e) -*• safe(r,e) is a containment mapping from
5 into r. For the converse, assume that / is a containment mapping from s into r. Consider
any atom e(A) in safe(s,e): by construction, .4 appears in s, and therefore /(4) appears
in r. Also by construction, e(f(A)) appears in .s«/e(r,e), and / is therefore a containment
mapping from safe{s,e) into safe(r.e). D

Lemma 4.8 Let V be a program, and let e be a predicate not appearing in V. Then. V gen-
erates the top-down expansion r iff safe{V,e) generates the top-down expansion $afe{r.t).

Corollary. Let V and Q be programs, and assume that e does not appear in V or Q. Thou.

V C Q iff safe{V,e) C safe(Q,e).
Proof. Straightforward induction on the number of rule applications in V. The corollai\
follows by Lemma 4.7 and the theorem of Sagiv and Yannakakis (Theorem 1.2). □

For the remainder of this chapter, we will consider unsafe programs with the IIIKI<U

standing that these programs will be made safe as in the above lemma2.

4.5 Linear Logic Programs

u ■ ■ In this section, we prove Result 4.1(a) and Result 4.2. The basic idea is the simulation
bounded-basis grammars using single-IDR programs with head-rectified rules and a boun<l<<i
number of basis rules.

2The predicate e essentially represents the DOM <■ Uiion ([!<>])

124 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

4.5.1 The construction

Let G be an e-free grammar over S = {cii,...,ak} with nonterminals {Ari,..., Ar
m}. We

will construct a program V, denning the IDB predicate p, to simulate G'. The EDB for V
will consist of binary predicates {fli,.. .,at} and a unary predicate /.

Let A", Y, IF and Z be new variable names; the head of each rule in V is

p{X,Y,W,Z,Nu...,Nm)

Note that each rule head is rectified (i.e. contains no repeated variables). Let << Ar; >>
denote an m-vector in which the ith component is W, and all other components are Z.

Further, let us use the notation

p(< A,B >« Ni >>)

to represent the p-atom
p(A,B,W,Z,«Ni >>)

Example 4.2 Let G be a linear grammar over S = {a, 6} with start symbol S and the
productions

S - aS 5 -bB B -± b.

G clearly generates a*bb. The head of each rule in V is the atom p(X. Y. W. Z, S.B), and
p(< IK Y >« B > >) denotes the atom p{U, Y, W, Z, Z, W). D

Definition 4.4 We define a transformation from symbols in G (terminal or nonterminal)
to atomic formulae, as follows. Let U and V be distinct variables. For any terminal a,, the
{U, V}-atom corresponding to a,- is the atom a,([/', V). The {U, F}-atom corresponding to a
nonterminal A', is the atom p(< U,V ><< N{ >>). This transformation may be extended
to strings, as follows. Let s = Si... sn be & nonempty string of terminals and nonterminals
in G. Assume that L'i,...,Un+i are distinct variables. We define the {U\,..., Un+i}-cluiin
corresponding to s to be the conjunction c — Ci,..., cn where for all i, c, is the {£*,-, U,+i }-

atom corresponding to -s,. □

Example 4.3 Let G be the grammar of Example 4.2. The {A", 6'}-atom corresponding to
the terminal b is 6(A", [/), and the {A. [/, y}-chain corresponding to the string bB is the
conjunction b(X,U),p{< U,Y >« B >>), or b(X,U).p(U,Y,\\'\Z,Z.W). D

Definition 4.5 Let .s = si .. .sn be a (possibly empty) string of terminals and nonterminals,
let C and T be conjunctions of atomic formulae, and let C be the conjunctive query (or rule)

C : p{H) :- V.C.

Let D and E be variables appearing in C. T is termed a chain from D to E. embedded in

C and representing s iff one of the following is true.

4.5. LINEAR LOGIC PROGRAMS 125

1. s — e, T is the empty conjunction true and D = E.

2. s = S\ (a terminal or nonterminal), D and E are distinct and T is the {D.E} atom
corresponding to $\.

' 3. 5 = -si .. .sn with n > 1, -D and £ are distinct and T is the {£>, U\,..., {<r„_i, £}-chain
corresponding to 5 for some distinct variables Ui,.. -,Un-\ distinct from D and E,
and not appearing in H or among the arguments of the conjuncts in C.

If s is a nonempty string of terminals and D and E appear in H, then T is a binary

chain ([33]). D

Example 4.4 Consider the conjunctive query

Cx : p(X,Y,W,Z) :- a(X,Ux),b[Ui,lh),a{U2,Y)J{W)J{Z).

The conjunction a{X, Vi),b(Uu U2),a(U2,Y) is a binary chain from A" to 1' representing
the terminal string aba and embedded in C\. O

Binary chains may be used to simulate strings in a language, as follows.

Lemma 4.9 Consider the conjunctive queries

d : p{H) :- Ti.Ci.
C2 : p(H) :- T2,C2.

where ri.T2,Ci and C2 are conjunctions of EDB predicate occurrences. Let A' and Y be
distinguished variables (i.e. they appear in H). Let Ti be a binary chain from A* to Y,
embedded in C\ and representing the terminal string t = t\...ti, and let T2 be a binary
chain from A* to Y, embedded in C2 and representing the terminal string s = s\?„.
Assume that there is a containment mapping y from

P(H) :- C2.

into

P(H) :- Cx.

Then, there is a containment mapping /) : C2 — C\ iff n - I and the strings t\ .. .</ and
s\ .. .sn are identical.
Proof. Assume that Ti and T2 are as below.

r, : t1(X,Ui),...,ti(Ui-i,Y).
T2: siiX.W) MVn-xM-

126 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

Assume that the strings are identical. Let h be the identity mapping on distinguished
variables (the variables in H), and define /;(V,) = £/; for all i. The function / defined by

ft A\ — / 'K^) if 'l 's defined on A
1 ä(A) ^ 0 IS defined on A

is a containment mapping from C2 into C\.
For the converse, assume that h is a containment mapping from C2 into C\. Then

h(X) = X and /i(Y) = y, since A" and Y are distinguished.
If n = 0, then 1^ = Si(A', F). Since /?. is the identity of distinguished variables, and since

•?i does not appear in C\ by assumption, we may conclude that T2 = /i(si(A, y)) = Si(X, 1).
Consider any n > 0. If / = 0 (that is,]?i = h(X, Y)), then /i(si(A", Vi)) must be

2i(A",y), and h(Vi) = Y, a contradiction since y does not appear as the first argument
of any atom in Ti (so ^(Vi, V2) has no destination in Ti). If / > 0, then the only atom
in I\ whose first argument is A" is ti(X,U\). Thus, h($i(X,Vi)) = ti(X,U\), yielding
s-i — <i and h(Vi) = U\. An inductive repetition on / may be used to show that / = n, and
s1...sn = t1...tn. D

Example 4.5 Let the conjunctive queries C\ and C2 be as follows.

d : p(X,Y,W,Z) :- a(.Y, tfa), Wi, f/2),«(t'2,y). f(W), f(Z).
C2 : p(X,Y,W,Z) :- a(X^\),b(VuV2),a(V2,Y)J(W).f(Z).

Then, the mapping h defined by /i(A) = X.h{Y) = Y,h(W) = W,h{Z) = ZJi{\\) =

U\, h{V2) = U2 is a containment mapping from C2 into C\. However, there is no containment
mapping from C3 or C\ into C\, where C3 and C4 are defined as follows.

C3 : KA,y,T^,Z) :- 6(A, V\),6(V\, V2),a(V2, K)J(W), f(Z).
C4: p(X,Y,W,Z) :- r,.(A, F0,a(li,y),/(H'-)./(Z). D

The transformation from G to "P is effected by the following algorithm.

Algorithm 4.1

INPUT: an e-free grammar G with nonterminals X\...., Nm.
OUTPUT: a single-IDB program V to simulate G3.

1. The head of every rule is p(X, Y, W, Z, A'j Nm).

2. Consider every production

d{ : Nj -+ ß

in G', where 6 is of length n. Let {(^,..., ['„_]} be a set of new and distinct variables,
and let 7 be the {A", U\,.... Un-i, V"}-chain representing ß. We construct the rule

Ti : p(X, y W, Z, A'j,..., A'ni) :- 7. /(X,), /(11").

"'The manner of the simulation will be discussed later.

4.5. LINEAR LOGIC PROGRAMS 127

S p(X,Y,W,Z,Nu...,Nm)

S *
Nt p(A,B,W,Z,«Ni»)

N
akNj ak(A,U),p(U,B,W,Z:« N, >>)J(W),f(W)

Figure 4.3: Simulating a derivation.

3. Add a single basis rule

6: p(X,Y.W,Z,Nl,...,Nm):- f(Z).

D

If G is linear, then V is linear. Further, if G has k extensional productions, then V has
k + 1 initialisation rules.

Example 4.6 Consider the linear grammar G of Example 4.2. Our construction produces
the following rules.

p(X,Y.W,Z,S,B)
p(X.Y,W,Z,S,B)
p(X,Y.\V.Z,S.B)

- a(X, U),p{U, Y, W, Z. W, Z), f(S), f(W).
- 6(A, V),p(V, Y, W, Z, Z, W), f(S)J(W).
-b(X,Y),f(B),f(W). D

The importance of the variables W and Z is that they are persistent; that is. they appear
in their "home" positions in every p-atom resulting from a top-down expansion in V.

Lemma 4.10 Let V be a single-IDB program defining the predicate p, and let Xt be the
ith variable in the head of every rule. Assume that the ith argument of every ;;-atom in the
body of every rule is A',-. Then the ith argument of every p-leaf in any top-down expansion
of /; using the rules in V is AV
Proof. By induction on the number n of rule applications in the expansion. □

The intention of our construction is that the rules of V mimic derivations in G. to
produce binary chains to represent every string in L(G). The idea is illustrated in Figure -1.3.
In the figure, the variable A may be a new nondistinguished variable, or the distinguished
variable A'. Similarly, B may be a. nondistinguished variable, or the distinguished variable
Y. U is a new nondistinguished variable.

Example 4.7 Figure 4.4 shows how a binary chain representing the string bb is generated
by the program of Example 4.4. ü

However, these rules also may be used to mimic "illegal" derivations in the grammar.
That is. the production iV,- —*• a^Nj cannot !><• used to expand the nonterminal .V;. if

128 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

p(X,Y,W,Z,S,B)

b(X,V) p(V,Y,W,Z,Z,W) f(S) f(W)

b{V,Y) f{W) f(W)

Figure 4.4: Generating a string.

p(X,Y,W,Z,S,A)

a(X,U) p(U,Y,W,Z.W,Z) f(S) f(W

b(U,Y) f(Z) f(W)

Figure 4.5: Illegal expansion.

Xi ^ Ni. However, the rule in V that corresponds to the production A',- —■• a^Nj can, in
fact, be used to expand a p-atom resulting from the application of the rule for Nm —- a0Ni.
We detect such illegal top-down expansions through the use of the conjuncts /(A";) in the
rules of V. A conjunctive query resulting from an illegal expansion as described above will
contain the atom /(Z), and is hence contained in the basis rule 6. Figure 4.5 illustrates
the attempt of V in Example 4.6 to expand the rule representing the production 5 — aS

through the rule representing the production B —> b.

More formally, we say that a conjunctive query (or top-down expansion) generated by
V is illegalli its body contains the conjunct f(Z). Further, let us define legal(V) to be the
union of all the conjunctive queries generated by V that are not illegal.

Lemma 4.11 Let C be an illegal conjunctive query generated by V. Then C C b, where b
is the nonrecursive rule added in step 3 of the algorithm.

Proof. Both conjunctive queries have the root p(X. Y, M". Z. A"i,..., Ar
m). and the identity

mapping on variables in the root is a containment mapping from b into C. □

The simulation of G by V is formalised in the next three lemmas.

Lemma 4.12 Let S be the legal top-down expansion

S: p(X.Y\\\Z,N^...,Nm):- Ä, p«Ua,Vl><< A r./(.v,)./(ir

4.5. LINEAR LOGIC PROGRAMS 129

where Ua and Vi are distinct, A is a chain from A" to Ua representing some string a in 5.
T is a chain from V\ to Y representing some string 7 in S, and the conjunction

(A,p{<Ua,\\ ><< Nj >>),r)

is a chain from A' to Y representing aNj"/ in S.
Construct the top-down expansion T by expanding the indicated p-atom through some

rule rk constructed by Algorithm 4.1 from the production dk ■ Nm —► ß. Then

1. If Nm # Nj, T is illegal; and

2. If Nm = Nj, then T is of the form

r: p(X,Y,W,Z,Nu...,Nm) :- &, f(NA, f(W).

where A is a chain from A' to Y, representing a/?7 and embedded in T.

Proof. By the construction of the rule r^ by Algorithm 4.1, r^. is of the form

rfc : p(X,Y,W,Z,Nu...,Nm) :- B. f(Nm), f(W).

where B is a {A', R\,..., Än, y}-chain corresponding to ß and the R[are distinct variables
not appearing in the rule head.

If Nm ^ Nj, then (since the Ar
m-argument of p{< Ua, \'\ ><< Nj >>) is Z), the body

of T contains the conjunct f(Z), and T is therefore illegal. However, if Ar
m = Nj, then by

the persistence of W, the only /-atoms added are copies of f(W). Assume that the Ri are
renamed to new variables Di in the expansion; then the children of the indicated />-atom in
S forms a chain from Ua to V], representing ß in T. Setting A = (A,B,T) completes I he
proof, ü

Lemma 4.13 If ß is a sentential form derived from the nonterminal A'; by G'. then

T : p(X, Y, W, Z,Nu ...,Nm) :-B,f(N,). f(W).

is a top-down expansion in le(jal{V). where B is a chain from A" to Y representing 3 and
embedded in T.

Corollary. Assume a,-j a;2 ... a,-,. € yield{Nt). Then legal(V) generates the conjunctive query

C: p{X,Y,W,Z,Nll...,Nm):-B,f(Ni)J(\V).

where B is a binary chain representing «,-, ...«,,..
Proof. Assume VV,- 5- ß. We prove our result by induction on n. If n = 1, then A', — i is .1
production and our result follows by construction. Assume the truth of the hypothesis I'm

i < n, where n > 1. Assume that Ar; => 6: then /1 is of the form 0^7, where N{ n^-' n:V,- .
and where d^ : Nj — ß is a production. By our inductive hypothesis, V generates a lo»;d
top-down expansion

130 CHAPTER 4. VN DECIDABILITY OF THE GENERAL PROBLEMS

S: v{X,Y,W,Z,Nx,...,Nm) :- A, p(< Ua,\\ >« N, »), T,f(Ni),f{W).

where(.4,7j(6ra,V'i) << Nj >>), T) is a chain from A" to Y, embedded in 5 and representing
aNj-y, A is a chain from X to Ua representing a in 5, and V is a chain from \\ to Y
representing 7 in S. We construct T by expanding the indicated p-atom through the rule
rk corresponding to the production dk, and our result follows by Lemma 4.12. □

Lemma 4.14 Let T be a top-down expansion in legalfP). Then T is of the form

T: p(X,Y,W,Z,N1,...,Nn) :- BJ(Ni)J(W).

where B is a chain from A to Y, embedded in T and representing a sentential form ß <E

yield(Ni) for some N{.
Corollary. Let C be a conjunctive query in legal(V). Then C is of the form

p(A, Y, W, Z,NU..., Nm) :- B, /(TV,), f(W).

where B is a binary chain representing some string a,-, .. .cnk G yield(Ni).
Proof. Let T be a top-down expansion in which n rules are applied. We prove our result
by induction on n.

If n = 1, then the rule applied is of the form

rk : p(X. Y, W, Z, A'i,..., Nm) '- B, /(iVt), f(W).

where B is a chain representing some string ß and

dk : iV,- -)3

is a production in G.
Assume the truth of the hypothesis for i < n, where n > 1. Let the following be a legal

top-down expansion generated by n rule applications.

T: p{X.Y,W,Z,Nu...,Nm):-A.

T must be generated by the expansion of some p-atom in some legal top-down expansion S
(generated by n - 1 rule applications) through some rule rk. By our inductive hypothesis,

S is of the form

5 : p(X,Y,W.Z,Nu...,Nm) :- .4, p(< Ua,\\ >« Nj >>), T,f(N,)J{W).

where A',- =>■ aA'j7, and where the conjunction

(.4,p(tfa,Vi)«Aj»),r)

is a chain from X to Y, embedded in S and representing aNjf (so that A is a chain from
X to f/0 representing a in S and T is a chain from \\ to Y representing 7 in 5). Consider

4.5. LINEAR LOGIC PROGRAMS 131

the rule TU that is used to expand the indicated p-atom in S to obtain T. By construction,
the rule r^ is of the form

rk : p(X, Y, W, Z, Nu ...,Nm):- B, f(Nm), f(W)..

such that
dk: Nm^ß
is a production in G. By Lemma 4.12 and the assumed legality of T, we must have Nm = Ny
hence iVt- => aßf and our result follows by Lemma 4.12. □

4.5.2 Using the construction

Let G\ be an e-free grammar over S = {aj,.. .,cik}, with start symbol iVx and intensional
nonterminals N\,..., Nm. Let G2 be an e-free grammar over S, with start symbol Mi and
nonterminals Mi,..., Mi. Without loss of generality, we assume that the nonterminals of
G\ and G2 are distinct.

Let 5 be a new nonterminal. Construct an e-free grammar G3 (with start symbol 5)
as the union of all the productions in G'i and G2, and add the two productions si and ,?2

described below.

5i : S - JVa

52 : 5 -*■ Mi

I(G3) is clearly L{GX) U I(G2).
Let G4 be the e-free grammar obtained from G'3 by deleting the production sx. L{G*)

is clearly the same as L(G2); we have merely introduced a unit production to change the
start symbol. Note that for any JV,- or Mi, the yield of this nonterminal is the same for G3
and G4; that is, the only nonterminal for which the yields may differ in G'3 and G<\ is the
start symbol 5.

Apply Algorithm 4.1 to G3 and G4 to create programs V and Q respectively, ensuring
that the rule head in each case is p(X, Y, W, Z,S,Ni,..., Nk, Mi,..., Mi): that is, the non-
terminals of G3 and G4 appear in the same positions in the heads of all rules in V and Q.
Hence, every rule in Q also appears in V, and we may conclude that Q CV.

Lemma 4.15 V C Q iff L{G\) C L{G2).
Corollary. V = Q iff L(Gi) C L(G2).
Proof.

By the construction of G3 and G4, the strings generated by any nonterminal A' ^ S aif-
the same for G3 and G4.

Assume that L(Gi) C L(G2)- Then L(G'3) C L(Ci4) by the construction of G'3 and
G'4, and any string generated by any nonterminal in G3 is also generated by the same
nonterminal in G4. Consider any conjunctive query C generated by V; if C is illegal, then
C is contained in the basis rule b of Q. If C is legal, then by Lemma 4.14, assumption.
Lemma 4.13 and Lemma 4.9, C is contained in some legal conjunctive query V generated
by Q.

132 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

For the converse, assume that V C Q. Then every legal conjunctive query C-p generated
by V is contained in some legal conjunctive query CQ generated by Q, and Lemmas 4.13,
4.14 and 4.9 suffice to complete the proof. D

Theorem 4.1 Let V and Q be safe, linear, single-IDB programs with head-rectified rules

and five basis rules. Then V C Q (V = Q) is undecidable.
Proof. Let G\ and G2 be linear bounded-basis grammars over the alphabet E = {a^a2}
and apply the construction of the preceding lemma; our result follows by Lemmas 4.15
and 4.4. Safety is imposed as in Section 4.4. Note that, if G: and G2 are bounded-basis,
then Lemma 4.15 holds even if G'i and G2 have the same extensional nonterminals, and the

number of basis rules can therefore be reduced to three. O

Now, let G\ be the following linear grammar over S = {(ii,a2).

di : iVi -> aiNi

d2 : Ni -► a2Ni

d3 : i\\ — ai

f/4 : A'i —^ a2

G\ generates {ax + a2}
+. Let G2 be a linear, bounded-basis grammar over S, with nonter-

minals Mi,..., Mi and start symbol Mj. We assume without loss of generality that Nx is
distinct from each A/;. Construct the grammar G3 with new start symbol S by taking the
union of the productions in G\ and G2, and adding the production

s : S-* NiMi.

G3 generates S+I(G2). Apply Algorithm 4.1 to G'3 to produce the program V. Note that
V has five basis rules and only one nonlinear rule (corresponding to the production s).

Consider the legal conjunctive queries in V. Since 5 appears on the left-hand side of
only the production .? and does not appear on the right-hand side of any production, the
nonlinear rule rs representing the production * is used only in the simulation of strings in
yield(S), and the rule can only be used at the root of a top-down expansion involved in

such a. simulation.

Theorem 4.2 Let V be a safe, head-rectified, single-IDB program with five basis rules and
one nonlinear rule. The base-case linearizability of V is undecidable.
Proof. Let G'3 be the grammar of the preceding discussion, and let V be the result of applying
Algorithm 4.1 to G3. Any illegal conjunctive query generated by V is contained in the basis
rule b. Every legal conjunctive query represent in» :\ string in yield(Ni) or yield(Mi) is
linear, and hence right-linear. The legal conjunctive (pieries representing strings in ijield(S)

simulate S+Z(G2), and the right-linear subset of tin--.- i|iu>rics simulates DL(G'2); our result
follows by Lemma 4.5. Safety is imposed as in Socii.ni I.I. D

4.6. SINGLE-RECURSIVE-RULE PROGRAMS 133

4.6 Single-recursive-rule programs

In this section, we present a construction whereby an arbitrary Modified Chomsky Normal
Form (MCNF) grammar may be simulated using a head-rectified, single-IDB program with
a single recursive rule and a bounded number of basis rules. The construction may be used
to show that sequencability is undecidable, even for programs with only two recursive rules.
In addition, the construction can be used to prove the undecidability of equivalence (or
containment) of programs with a single recursive rule.

4.6.1 The construction

Let H be an MCNF grammar over £ = {ai,a2}, with nonterminals Ni,...,Nm, start
symbol JV3 and extensional productions N\ -*■ a\ and N2 -* a2. We construct a program
V. with one nonrecursive rule, to simulate H.

The program V defines the IDB predicate p, and the head of each rule is

p(R,X, y, W,Z,G,A,B,Ni,...,Nm)

As before, << iV, >> denotes an ;n-vector in which the v'th component is W, and in which
all other components are Z. The expression

p(< K,L>< M >< R,T >« N{ »)

will be used to represent the ;>atom

p(Z,K,L,W,Z,M,R,T,<< Ni >>)

. That is, the first argument is always Z, and the 4th and 5th are always W and Z
respectively (so that W and Z appear in their "home" positions). The EDB predicates in
V are 0.1.(12, f,g and h.

The variables in the head of each rule have the following purposes:

1. R is a switch that is relevant only to the proof that sequencability is undecidable
The Ä-position in the arguments of each 7>atom in the body of the recursive rule will
be occupied by the variable Z, described below.

2. A" and Y are the end-points of binary chains representing strings in L(H), as in ill«-
preceding section.

3. W and Z are guard variables, as in the preceding section. They are used to w«<n|
out illegal conjunctive queries generated by the programs (i.e.. queries representinu
impossible derivations in the grammar).

4. G is a guard position. Intuitively, a /.»-atom may be legally expanded through t li<-
recursive rule if its G'-th argument is It', but not if its G'-th argument is Z.

5. A and B are used to allow a choice in expanding one of two or-productions. in .1
manner to be described.

134 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

6. Ni,....Nm represent the corresponding nonterminals in the grammar.

The rules of V are constructed as follows.

Algorithm 4.2
INPUT: an MCNF grammar G with nonterminals Nu..., Nm, where Nx is the extensional
nonterminal representing a^ and N2 is the extensional nonterminal representing a2.
OUTPUT: a head-rectified, single-IDB program V with one recursive rule r and 9 basis

rules i\ .../g.

1. The head of each rule is p(Ä, A', F, W, Z, G, .4,5, Nu ..., Nm).

2. V has the following 9 basis rules:

p(R,X.Y,W,Z,G,A,B,NU...,Nm) :-

h

h

U

'5

h

k

id

a(X,Y)J(Ni),f(G).

b(X,Y)J(N2)J(G).

f(Z).

g(G).

g(W).

f(U),g(U).

h(A,B)J(G).

h{U,V),h(V,W).

h(U,U)-

3. The body of the recursive rule r for V has the atoms f{W),f(G), g{Z), g{N\), g(N2)
and h(E,F), where E and F are nondistinguished variables that appear nowhere else
in the program). The body of r also has p-atoms for each intensional production in

the grammar, as follows:

(a) Let J -* K be a copy production, and let Vj be a new nondistinguished variable.
Then, the recursive rule contains the atom

p{< X,Y ><./>< UJ.UJ >« K »)

This atom (and any version of it in a top-down expansion) is called a copy-atom

representing K in the production.

(b) Let J -* K and J — L be a pair of or-productions, and let TJ,UJ and Vj be
new nondistinguished variables. Then, the body of r-p contains the atoms

p(< A",!' >< ./ >< Tj.l'j ><< K >>)
p(< X.Y >< J >< I'j.Yi ><< I >>)

4.6. SINGLE-RECURSIVE-RULE PROGRAMS 135

The first of these is the or-atom representing K in the first production, and
the second is the or-atom representing L in the second production. Versions of
these two atoms in a top-down expansion such that both atoms have the same
parent are called sibling or-atoms. The idea is that we need never recursively
expand both these p-atoms, since either one (but not both) may be expanded
using initialisation rule ij.

(c) Let J —* KL be an and-production, and let Tj, Uj and Vj be new nondistin-
guished variables, r-p has the two p-atoms

p(< X,Tj >< J >< Uj, Uj >« K >>)
p{< Tj,Y >< J X VJ,VJ >« L »)

The first of these atoms is called the and-atom representing K in the production,
and the second is called the and-atom representing L in the production. Versions
of these atoms that have the same parent are called sibling and-atoms. The idea
is that both atoms are (recursively) expanded, to create chains from A" to Tj,
and from Tj to 1'.

Example 4.8 The following MCNF grammar G over S = {c, d) generates S+.

S-*TT T - S T - H H -*C H - D
C -*c D-rd

The corresponding program is

r : p(R, A, 7, W, Z, G, A, B, C, D, S,T,H):-
p(Z,X,V,W,Z,S,h,h.Z,Z,ZAV,Z),

P(Z, V, Y, W, Z, 5, J2, hX Z, Z, W, Z),
p(Z, A, Y, W, Z, T, 73, U • Z, Z, W, Z.Z),
p(Z, A, y, W, Z, T, I4, h, Z, Z. Z, Z, IF),
P(Z, x, y, w, z, H, i6. h. w, z. z, z. z),
p{Z, A, 1'. W, Z, //. I7, IS, Z. W, Z, Z. Z).
f(W),f(G),g{Z),g(C).g(D).h(E.F).

p(Z, A, y, W,Z,G,A,B, S, T.C.D):-

h c(X,Y)J(C)J(G).
h d(X,Y),f(D)J(G).
h f(Z).
U 9(G).
h g(W).

k f(U),g(U).
«7 h(A,B)J(G).
's h(U,V).h{V,W).

136 CHAPTER 4. VN DECIDABILITY OF THE GENERAL PROBLEMS

i9: h(U,U).

In the recursive rule, the first two 7;-atoms represent the and-production 5 — TT: hence,
these atoms are and-atoms. The next two ;>atoms represent the 01-productions T — .5'
and T -*• 77, and are therefore or-atoms. Similarly, the 5th and 6th p-atoms are or-atoms
representing the or-productions H -^ C and H -* D. The initialisation rules ix and i-2

represent the extensional productions C —► c and D -+ d respectively. □

Intuition

The intention is that the program V simulate the strings in the grammar G. by generating
binary chains to represent the strings in 1(6'). The basic ideas are as follows.

Illegal expansions As in the previous section, we detect illegal top-down expansions
through the existence of the atom f(Z) in the expansion. The idea is as follows. Con-
sider any top-down expansion using only the recursive rule; as in the previous section, the
variables W and Z are persistent in the p-atoms of the expansion. At each stage of the
expansion, p-atoms in the body of the recursive rule are "activated" by placing W in the
guard (6th) position of the atom, or "deactivated" by placing Z in this position. If the
guard position of a p-atom is Z, then the application of the recursive rule will introduce
the atom f(Z), and the expansion is illegal; hence, such atoms must be terminated by a
basis rule in all legal expansions. The activation of atoms in the body of the recursive rule
enforces the fact that legal expansions correspond to derivations in the grammar.

Example 4.9 Consider the grammar and program of Example 4.8. Assume that at some
stage, the atom corresponding to the production T — H has been activated: that is, the

atom is of the form
p(Z, .4, B. W, Z, W, /„, h, Z, Z, Z, Z, W)

Applying the recursive rule to this atom yields atoms of the form

p(Z, A, V, W, Z, Z. /1, /1, Z. Z. Z, Z. Z),
p{Z, V, B, W, Z, Z, 72, 72, Z. Z, Z, Z, Z),
p(Z, A, B, W. Z. Z, 73,14, Z. Z, Z. Z,Z),
p(Z, A, B, W, Z, Z, /4. h. Z. Z, Z. Z.Z),

p(Z, A, B, W, Z, W, I6. IT. W. Z, Z. Z. Z),
p(Z, A, B, W, Z. W, 77, /$. Z. W, Z. Z. Z),
f{W)J{W),g{Z),a(C),a{D).h(E,F).

Note that the first four atoms are deactivated (with Z in position 6). and the last two
atoms are activated (with W in position 6). Note also that the atoms that are activated
are precisely the atoms representing productions whose head is 7/, as required by the fact
that the atoms corresponding to the production T — H has been expanded. Finally, note
that the 5th atom (the first to be activated) represents the production H -^ C. and the
arguments representing the nonterminals in this alom is << C >>. Similarly, note that the

4.6. SINGLE-RECURSIVE-RULE PROGRAMS 137

6th atom (the second to be activated) represents the production H — D, and the arguments
representing the nonterminals in this atom is << D >>. D

Or-productions Another wrinkle is the fact that if an or-production is used in a deriva-
tion in the grammar, then there are two activated atoms in the simulating expansion. The
idea, here, is that either one of these atoms may be terminated by the initialisation i-, but
not both (otherwise the result is contained in the initialisation rule is).

Example 4.10 Consider the expansion of Example 4.9, in which the or-atoms corresponding
to the or-productions H -»• C and H — D have been activated. Either one of these atoms
may be terminated by rule i7. However, if both are terminated in this way, then the result
contains the atoms h(Ie,I7),h(I7,Is),, and the result is contained in i8. D

The simulation

We say that a conjunctive query (or top-down expansion) generated by the program is illegal
if it is contained in one of the initialisation rules ^ .. . i9, and legal otherwise. No interesting
top-down expansions are contained in i\ or »2, as the following lemma shows.

Lemma 4.16 Let T be a top-down expansion in which the recursive rule r is used. Then
T £ ix and T £ i2.

Proof. The root of T is expanded using ?\ since ;■ is the only recursive rule in the program.
T, i'i and i2 have the same root (the rule head that is common to all rules), and any
containment mapping c from i\ or i2 into T must satisfy c{N]) = A'i and c(N2) = N2.
Now, /(A'i) appears in the body of it and /(AY) appears in the body of i2. However,
neither Ni nor N2 appears in the body of r. and hence neither /(Ari) nor f{N2) appears in
T. Thus, there is no containment mapping c from it or i2 into T. □

The following lemmas show us that most of the initialisation rules may never be used
in any interesting top-down expansion.

Lemma 4.17 Let T be a top-down expansion in which one of the basis rules /3. /r,. /«. /'$
and ig is used. Then T is illegal.
Corollary. Only the rules r,iui2 and i- are used in any legal top-down expansion.
Proof. The head of T is the rule head that is common to all rules. By Lemma 4.10. H' and
Z appear in their "home" positions in every /j-atom in T. Hence, if i3 is used in T. then /
is contained in ij. G

Lemma 4.18 Assume that T is a legal top-down expansion that includes a />atom in which
the 6th argument (the "home" position for (!) is H*. Then one of ?',v:,.-/2 and i- must he
used to expand such a p-atom.

Proof. By Lemma 4.17, one of r,iui2.i\ .m.l i- must be used to expand this /.»-atom.
However, if /4 is used, then y{W) appears in i 'i- l>ody of T. and T is contained in ■/'.,. □

138 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

Lemma 4.19 Assume that T is a legal top-down expansion that includes a p-atom in which
the 6th argument (the "home" position for G) is Z. Then only i4 is used to expand any

such atoms.
Proof. By Lemma 4.17, rules »3,*5,»6,*8 and t9 may not be used in the expansion. If one of
r, ii, i2 and i7 is used, then f(Z) appears in the body of T. and T C *3- D

Lemma 4.20 In any legal top-down expansion T, no copy-atom or and-atom is expanded

using initialisation rule i-j.
Proof. Assume the converse; then the body of T contains the atom h\G, G) for some variable

G', and T therefore is contained in initialisation rule i9. O

Lemma 4.21 In any legal top-down expansion T, no two sibling or-atoms are expanded

using rule i~.
Proof. Otherwise, T is contained in initialisation rule i8. O

Lemma 4.22 Let T be a legal top-down expansion in which s and / are two sibling or-atoms
(or sibling and-atoms). If s is expanded through the initialisation rule t4, then so is t.
Proof. Since $ and t are siblings, both have the same 6th argument (the argument in the
home position for G), say S. If s is expanded through i4, then g(S) appears in the body
of T. Since T is assumed to be legal, Lemma 4.17 requires that one of the rules •/■,»!, i2. 'i
and i7 is used to expand t\ however, if any rule but i4 is used, then f(S) is a conjunct in
the body of C and T is contained in rule i6 (and is therefore illegal), ü

Lemma 4.23 In any top-down expansion T, i7 may only be used to expand one of two
sibling or-atoms, and the sibling or-atom is expanded using one of rjx and i2.

Proof. By Lemmas 4.21 and 4.22. a

Lemma 4.24 Let T be a legal top-down expansion in which some atom

p(< IUI2 >< h >< U,h >« Wfc >>)

(with arbitrary Ij) is expanded through the recursive rule r. Then JV\. ^ N\ and Afc # A2-
Proof. Assume the converse; then, the body of the recursive rule has the atom (j{W), and

T is contained in 15. □

Lemma 4.25 Let T be a legal top-down expansion in which some atom

p(< h,h >< h >< I4J* ><< A\. >>)

(with arbitrary Ij) is expanded through the initials,ition rule ?',-. where j € {1.2}. Then

Nk = Nj.
Proof. Assume the converse. Then f(Z) appears in ih- l.-idy of 7 . and T C (3- D

4.6. SINGLE-RECURSIVE-RULE PROGRAMS L39

Lemma 4.26 Let T be a conjunctive query generated by V in which the recursive rule r
is used at least twice. Then every p-atom at depth n > 1 in T has as 6th argument (the
argument in the "home" position of G) either W or Z.

Proof. By Lemma. 4.10, W and Z appear in their home positions in every p-atom in T. By
construction, every variable in the home position for any Ar, in any p-atom in T is W or Z,
and the "guard" position is therefore occupied by W or Z in any child of such an atom. D

Let us say that a conjunctive query is restricted if whenever one of two sibling or-atoms
is expanded through r, ix or i2, then its sibling atom is expanded through i7.

Lemma 4.27 Every legal conjunctive query C is contained in a conjunctive query D that
is both legal and restricted.
Proof. Let us assume that one of the sibling or-atoms

p(< U,V><S >< IUI2 >« Ni >>)

and
p(< U,V >< S >< 72,/3 ><< Ar, >>)

is expanded through r,^ or i2 in the top-down expansion T establishing the conjunctive
query C. Since C is legal, the root of T is expanded using rule r, and C therefore contains
an atom of the form h(E,F). By Lemma 4.26 and Lemma 4.19 , S is W or G. and by
construction f(S) appears in the body of C. By Lemmas 4.18 and 4.22 , the sibling atom
is expanded through one of r,i'i,i2 and i7. If i7 is not used, then since the distinguished
variables A and B appear nowhere in the bodies of r, z'i or i2, the variables I\,l2 and 73

appear nowhere in the fringe of T (i.e., in the body of C). Thus, we may construct a new
conjunctive query C from C, by expanding the first or-atom through rule i7 to produce
the atoms f(S) and h(Ii,I2) for variables Ix and I2 that appear nowhere else in the new
conjunctive query C'. C is contained in C because f(S) and an atom of the form /».(£. F)
appears in C. An inductive repetition suffices to remove all violations of restrictiveness in
C, while preserving the legality of C. G

For any distinct variables U and V, define a {U, V'}-atom corresponding to an intensional
nonterminal A^, to be any p-atom

p(< U,V >< W >< HJ>« Ni >>)

for any variables H and I, and let chains be defined as in the preceding section. Note that.
depending on the variables H and I in any p-atom, a string of terminals and nonterminal
has many corresponding chains.

Definition 4.6 Define a top-down expansion T to be closcdMT is legal and restricted, and
if the following hold.

1. Any p-atom in which the 6th argument (the argument representing the guard (!) \>
the distinguished variable Z is expanded through /.,; that is, no such p-atom is a h-al'.

140 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

2. Consider any two sibling or-atoms neither of which is expanded using u- Then one

of these atoms is expanded using rule ?'-•

3. No p-atoms at depth 1 in the tree are leaves; that is, every p-child of the root is

expanded through some rule.

By Lemmas 4.19, 4.18, 4.22 and 4.26, every top-down expansion establishing a legal,

restricted conjunctive query is closed. □

The following Lemmas formalise the simulation of the grammar G by the program V.

Lemma 4.28 Let

p(< U,V>< S><Ii,h>« Ni»)

be an atom in a closed top-down expansion R, where S is one of W and G, where U ^ V,
and where h and I2 are arbitrary. If this p-atom is expanded using one application of one
of r,»! and i2 to produce a closed top-down expansion T, then the subtree rooted at this

p-atom contains the following.

1. The atom /(S), and 0 or more occurrences of the atoms f(W) and g(Z).

2. 0 or more occurrences of atoms h(P,Q) for distinct variables P and Q.

3. A chain from U to V representing 7, where A', — 7 is a production.

Proof. By Lemma 4.25, the rule ik (k € {1,2}) may be used only if N, = Nk\ the subtree
then contains the atoms /(S), f(W) and ak(U, V). Recall that the extensional productions

are of the form N\ -* a\ and N2 —*• 02-
Assume that r is used. By Lemma 4.24, JV,- ± Nx and N\ ± N2; that is, iV, is an

intensional nonterminal. Application of r yields the atoms f(S) and f(W), two copies of
fj(Z) (since N{ ^ Ni and Nt ^ N2), and an atom of the sort h{E', F') where E' and F' are
distinct, new variables obtained by renaming E and F in the top-down expansion. Consider
the p-atoms that are generated by this application of r. By construction, the 6th position of
any atom representing a production Nj — ß is Z, if A', ^ A',; hence, by Lemma 4.19, every
such atom must be expanded using rule iA (yielding the atom g{Z)). Also by construction,
the 6th argument of the atom(s) representing any production A''; -*• 7 is W. There are three

cases.

I. j\r _ JV/,. is a copy-production. By construction, the corresponding atom in the

indicated application of r is

p(< U,V >< W >< J1.J1 ><< A'jt >>)

and our result follows.

4.6. SINGLE-RECURSIVE-RULE PROGRAMS 141

2. Ni —► Nk and Ni —>• A'/ are or-productions. By construction, the corresponding atoms
in the indicated application of r are

p(< tf,V >< W >< Ji, J2 ><< JVA. »)
p(< U,V>< W >< J2,J3 ><< Ni »)

for some nondistinguished variables J\, J2 and «73 that appear nowhere else in T (since
these variables are renamed in the expansion). By Lemma 4.18, and since T is assumed
closed, one of these atoms must be expanded through iy to add the atoms f{W) and
h{hJ2) (or h(I2,h)) to T. Our result follows.

3. N{ —> NkNi is an and-production, and the corresponding atoms in the indicated
application of r are

p(< [/,/>< W X Jlt Ji ><< Nk »)
p(< 7,V >< W >< J2,J2 ><< M »)

where / is a renaming of the variable T^v, to a new variable that appears nowhere else
in the expansion. Our result follows.

Lemma 4.29 Let
p(< U,V >< S >< IUI2 >« Ni »)

be an atom in a closed top-down expansion R, where 5 is one of W and 6', where U ^ 1 •
and where h and I2 are arbitrary. If Ni —*■ 7 is a production in the grammar G', then
there is a closed top-down expansion T obtained by expanding this p-atom using exactly
one application of r, jj or i2, but with an arbitrary number of uses of other rules, such that
the subtree rooted at this p-atom contains the following atoms.

1. The atom f(S). and 0 or more occurrences of the atoms f(W) and g{Z).

2. 0 or more occurrences of atoms h{P,Q) for distinct variables P and Q.

3. A chain from U to V representing 7.

Proof. If i = 1 or i = 2, then we may apply ii or i2 to the indicated p-atom to obtain the
result.

Assume that Ni is an intensional nonterminal. Expand the indicated p-atom through
the recursive rule 7\ Then the "non-p" children of the indicated p-atom are f(S). /(U).
<j[Z). and h{E', F') where E' and F' are distinct, new variables obtained by renaming E and
F in the top-down expansion. Consider the /.»-atoms that are generated by this application
of ?•. By construction, the 6th position of any atom representing a production Nj — J is
Z. if Nj ^ A',; hence, every such atom may be expanded using rule J4 (yielding the atom
g(Z), which appears as a child of the root.) Also by construction, the 6th argument of ihn
atom(s) representing any production A", — - is IF. There are three cases.

142 CHAPTER 4. UN DECIDABILITY OF THE GENERAL PROBLEMS

1. vV; —*■ Nk is a copy-production. By construction, the corresponding atom in the
indicated application of r is

p(< U,V >< W X Ji, Ji ><< Nk >>)

and our result follows.

2. N{ —i- Nk and A/,- —*■ A:; are or-productions. By construction, the corresponding atoms
in the indicated application of r are

p(< [/,V><^><Ji,J2><< iVA. >>)
p{< U,V >< W >< J2,J3 >« Nl >>)

for some nondistinguished variables Ji, J2 and J3 that appear nowhere else in T (since
these variables are renamed in the expansion). Without loss of generality, assume that
7 is Nk. Then, the latter atom may be expanded through i7 to add the atoms /(IT')
and h{l2,h) to T. Our result follows.

3. Ni —r NkNi is an and-production. Then, the corresponding atoms in the indicated
application of r are

p(< U,I >< W >< Juh ><< Nk »)
p(< I,V >< W >< J2.J2 ><< Ni »)

where / is a renaming of the variable TV, to a new variable that appears nowhere else
in the expansion. Our result follows.

D

For any nonterminal J in G, recall that yield(J) represent all the strings generated by
./ (i.e., the strings that would be generated if ./ were the start symbol of G).

Lemma 4.30 Let T be a closed top-down expansion generated by V. Then the body of T
consists of the atoms f(W). f(G),g(Z),g(Ni) and g(N-2); atoms of the form h{U, V). where
U and V do not appear in the root; and for 3 < i < m, either g(Nt), or f(N,) and a chain
representing some string S of terminals and nonterminals such that A"; => 6.
Corollary. Let C be a conjunctive query generated by V. established by a closed top-down
expansion T. Then the body of C consists of the atoms f{W), f(G).g(Z),g{N\) and g{N-2):
atoms of the form h(U, V), where U and V do not appear in the root; and for 3 < /' < m.
either g(Ni). or f(N{) and a chain representing some terminal string 6 such that A:; => 6.
Proof. Let T be a closed top-down expansion in G. Since T is assumed closed, the root is
expanded through the recursive rule r. For any intensional nonterminal Ar;, consider all the
atoms representing productions of the form A',- — n. The proof proceeds by induction on
77., the number of applications of r.i\ or 12 to atoms representing productions of which A',
is the head.

If ?i = 1, then by Lemma 4.22, rule 14 is used to expand all such atoms, and the atom
g(G) is introduced.

4.6. SINGLE-RECURSIVE-RULE PROGRAMS 143

If n = 2, then rule r is used and the result follows by Lemma 4.28; note that the 6th
argument (the "home" position for G) in any p-atom at depth 1 is G by construction. The
induction also follows by Lemma 4.28.

To prove the corollary, we observe that in any conjunctive query (with EDB's at the
leaves), if /?.(£/, V) is obtained by the expansion of an or-atom through i7, then the occurrence
of U (or V) in the sibling or-atom disappears when r, ^ or i2 is used to expand the latter,
since the distinguished variables A and B do not appear in the body of these rules. D

The converse is also true.

Lemma 4.31 Assume that A,- => 6, where i > 2. Then, V generates a closed top-down
expansion T, as follows. The body of T consists of the atoms f{W), f(G),g(Z), g(Ni) and
g{N2)\ atoms of the form h(U,V), where U and V do not appear in the root; and either
g(N{), or /(A,) and a chain representing 6.

Corollary. Assume that A', => S, where S is a string of terminals and i > 2. Then, V
generates a closed top-down expansion T generating a conjunctive query C, as follows. The
body of C consists of the atoms f(W),f(G),g{Z), g[Nx) and g(N2); atoms of the form
h(U, V), where U and V appear nowhere else in C\ and either #(A:), or /(A;) and a binary
chain representing 6.

Proof. Assume that A',- =» 6. Our proof proceeds by induction on n, the depth of the
sentential forms derived by A',- in G. The basis (» = 1) follows by Lemma 4.29 (since the
6th position in any child of the root is G'/if r is used to expand the root), and the induction
also follows by Lemma 4.29.

The corollary is proved as in the previous lemma. D

4.6.2 Using the construction

Let Gi be an arbitrary MCNF grammar over the alphabet S = {ai,a2}, with extensional
nonterminals Ai and A2 representing r^ and a2 respectively, start symbol A'j and nonter-
minals A'i,. ..,A'n. Let G2 be an arbitrary MCNF grammar over the same alphabet, with
the same extensional nonterminals representing the same terminals, and with start symbol
Li and nonterminals L\,.. .,Lm. Create a new start symbol 5; construct the new gramin;n
Gz with start symbol S, with productions that are the union of the productions in 6'i and
G2, and with the new productions

si : S —>■ A'i
•?2 : S -*• L\

Let G4 be the grammar obtained from 6'3 by deleting the production si, but with the s;.
start symbol. Clearly, G3 and 6'4 have the same nonterminals, and yield(M) is the sa
in both grammars, for M ? S. Also. L(G,.) = /.(G',)u L(G2) and L{GA) = L{G2)\ lu?nc-.
L(G4) C L(G3), and L(G3) C L(G4) iff L(CX \ Z 1AG2).

Apply Algorithm 4.2 to G'3 and G,, to prn.l.ic.. P and Q respectively, making sure thai
the order of nonterminals is preserved in the i nl.- hrads of P and Q.

mil'

m>'

144 CHAPTER 4. UNDECIDABILITY OF THE GENERAL PROBLEMS

Lemma 4.32 V C Q (V = Q) iff 1(d) C L(G2).
Proof. By Lemmas 4.30, 4.31 and 4.9 , and by construction. D

Theorem 4.3 Let V and Q be safe, single-IDB programs with a single recursive rule
and nine initialisation rules. Then, the containment or equivalence of such programs is

undecidable.
Proof. By Lemmas 4.32 and 4.4. ü

Theorem 4.4 The sequencability of single-IDB programs is undecidable.
Proof. Let V and O be as above. Assume that V has the recursive rule n and the nine
initialization rules ix ...i9, and that Q consists of the recursive rule r2 and the same nine
initialisation rules. Add the atom f(R) to the body of n to obtain the rule r, and let T be
the program consisting of r[,r2, h,..., *9. Now, since the "home" position for R «occupied
by the persistent variable Z in every p-atom in either recursive rule, we may conclude that
the recursive rule r[is used at most once in any top-down expansion that is not contained
in the initialisation rule i3, and that r[is used to expand the root in such a case . Thus
the yield of S in the program represents L{G,) U L(G2), but the yield of S in the sequenced

program represents L(G2), and our result follows as above. D

«The body of the resulting expansion contains the atom /(K). hut this atom is irrelevant to the seqiien-

cabilitv of T.

Chapter 5

Concluding remarks

In this report, we investigate opportunities to optimize recursive Horn-clause programs
through transformations to simpler, more efficiently evaluable programs. We focus our
attention on optimizations that may be described in terms of normal forms for the proof
trees generated by the program in question. We introduce the idea of subtree eliminations
as a way to describe normal forms, and present a uniform approach to the development of
sufficient conditions for the detection of the applicability of a normal form to the program.
We then illustrate this approach on the detection of one-boundedness, basis-linearizability
and sequencability, and show how the sufficient conditions that are generated may be tuned
to the desired complexity. We also investigate the complexity of these three optimization
problems; our investigation yields a characterization of the complexity of conjunctive query
containment, and tight undecidability results for the detection of program equivalence. Our
results are contained in Table 5.1. The programs considered are all Datalog. The expression
< i reps means that each recursive rule in the program has at most i occurrences of any
EDB predicate in the body of each recursive rule.

Whether sequencability is decidable in any interesting case is an open question. However.

Polynomial time A'P-hard Undecidable

One-
boundedness

linear sirup,
< 1 reps

linear sirup,
< 4 reps

never

Basis-
linearizability

bilinear sirup,
< 1 reps

bilinear sirup.
< 4 reps

1 nonlinear rule,
5 basis rules.

Sequencability ???
2 recursive rules

(both linear),
< 3 reps,

1 basis rule

2 recursive rules,
9 basis rules.

Table 5.1: Complexity results.

145

146 CHAPTER o. CONCLUDING REMARKS

current work that the author is undertaking in conjunction with Tomas Feder seems to

indicate a positive answer to that question.

Bibliography

[1] Abiteboul, S. Boundedness is undecidable for Datalog programs with a single
recursive rule. Information Processing Letters 32, 281-287, 1989.

[2] Aho, A. V. and J. D. Ullman. Optimal partial-match retrieval when the fields are
independently specified. ACM Transactions on Database Systems 4:2, 168-179,
1979.

[3] Aho, A. V., Y. Sagiv and J. D. Ullman. Equivalences among relational expres-
sions. SIAM J. Comp. 8, 218-246, 1979.

[4] Aho, A. V., Y. Sagiv and J. D. Ullman. Efficient optimization of a class of
relational expressions. A CM Trans. Database Systems 4, 435-454, 1979.

[5] Bancilhon, F. Naive evaluation of recursively defined relations. In Brodie and My-
lopoulos (eds.), On Knowledge Base Management Systems - Integrating Database
and AI Systems, Springer-Verlag.

[6] Bancilhon, F., D. E. Maier, Y. Sagiv and J. D. Ullman. Magic sets and other
strange ways to implement logic programs. Proc. Fifth ACM Symposium on
Principles of Database Systems, 1-15. 1986.

[7] Bancilhon, F. and R. Ramakrishnan. An amateur's introduction to recursive
query processing strategies. Proc. ACM SIGMOD International Conference on
the Management of Data, 16-52. 1986.

[8] Beeri, C. and R. Ramakrishnan. On the power of magic. Proc. Sixth ACM Sym-
posium on Principles of Database Systems, 269-283, 1987.

[9] Borodin, A. On relating time and space to size and depth. SIAM ./. Com put.
6:4, 733-744, 1977.

[10] Chandra, A.K. and P.M. Merlin. Optimal implementation of conjunctive queries
in relational databases. Proc. Ninth Annual ACM Symposium on the Theory of
Computing, 77-90, 1977.

[11] Codd, E. F. Relational completi-iK-ss of data base sublanguages. In Data Bast
Systems (R. Rustin, ed.) Prentio- Ibill. Englewood Cliffs, New Jersey. 65-9*.
1972.

148 BIBLIOGRAPHY

[12] Gaifman, H., H. Mairson, Y. Sagiv and MY. Vardi. Undecidable optimization
problems for database logic programs. Proc. Second ACM Symposium on Logic

in Computer Science, 106-115, 1987.

[13] Helm, A.R. Detecting and eliminating redundant derivations in logic knowledge
bases. Proc. First International Conference on Deductive and Object-Oriented

Databases, 1989, 247-263.

[14] Henschen, L. and S. Naqvi. On compiling queries in recursive first-order

databases. JACM 31:1, 47-85, 1984.

[15] Hopcroft, J.E. and J. D. Ullman. Introduction to automata theory, languages and

computation, Addison-Wesley, 1979.

[16] Ioannidis, Y. E. Commutativity and its role in the processing of linear recursion.
Tech. Report 804, University of Wisconsin-Madison, 1989.

[17] Ioannidis, Y. E. Towards an algebraic theory of recursion. Tech. Report 801,
University of Wisconsin-Madison, 1989.

[18] Ioannidis, Y.E. and E. Wong. Transforming nonlinear recursion to linear recur-
sion. Proc. Second International Conference on Expert Database Systems. 187-

207, 1988.

[19] Johnson, D. S. and A. Klug. Optimizing conjunctive queries that contain untyped
variables. SLAM J. Comp. 12, 616-640, 1983.

[20] Kanellakis, P.C. Logic programming and parallel complexity. In J.Minker (ed.)
Foundations of Deductive Databases and Logic Programming, Morgan Kauf-

mann, Los Altos, 1988.

[21] Morris, K., J. F. Naughton, Y. Saraiya, J. D. Ullman and A. Van Gelder. YAWN!
(yet another window on NAIL!). Data Engineering 10:4, 28-43. 1987.

[22] Morris, K.. J. D. Ullman and A. Van Gelder. Design overview of the NAIL!
system. Proc. Third International Conf. on Logic Progmmmin\g, 554-068, 1986.

[23] Naqvi, S. A. and S. Tsur. A Logic Language for Data and Knowledge Bases.

Computer Science Press, Rockville, Md., 1988.

[24] Naughton, J. F. Compiling separable recursions. ACM SIC MOD Intl. Conf. on

the Management of Data, 312-319, 1988.

[25] Ramakrishnan, R., Y. Sagiv, J.D. Ullman and M.Y. Vardi. Proof-tree trans-
formation theorems and their applications. Proc. Eighth ACM Symposium on

Principles of Database Systems. 172-181. I'i^>.

BIBLIOGRAPHY 149

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Sacca, D. and C. Zaniolo. On the implementation of a simple class of logic queries
for databases. Proc. Fifth ACM Symposium on Principles of Database System«
16-23, 1986. '"'

Sacca, D. and C. Zaniolo. Magic counting methods. Proc. ACM SIGMOD Inter-
national Conference on the Management of Data, 49-59, 1987.

Sagiv, Y. Optimizing Datalog programs. Proc. Sixth ACM Symposium on Prin-
ciples of Database Systems, 349-362, 1987.

Sagiv, Y. and M. Yannakakis. Equivalence among relational expressions with the
union and difference operators. J. ACM 27, 633-655, 1981.

Saraiya, Y. Linearizing nonlinear recursions in polynomial time. Proc. Eighth
ACM Symposium on Principles of Database Systems, 182-189, 1989.

Saraiya, Y. Polynomial-time program transformations in deductive databases.
Proc. Ninth ACM Symposium on Principles of Database Systems, 1990.

Saraiya, Y. Hard problems for simple logic programs. Proc. ACM SIGMOD
International Conference on Management of Data, 64-73, 1990.

Shmueli, 0. Decidability and expressiveness aspects of logic queries. Proc. Sixth
ACM Symposium on Principles of Database Systems, 237-249, 1987.

Ullman, J. D. Implementation of logical query languages for databases. ACM
Transactions on Database Systems 10, 289-321, 1985.

Ullman, J. D. Principles of Database and Knoxuledge-base Systems, Vol. I. Com-
puter Science Press, Rockville, Md., 1988.

Ullman, J. D. Principles of Database and Knowledge-base Systems, Vol. II. Com-
puter Science Press, Rockville, Md., 1989.

Ullman, J. D. and A. van Gelder. Parallel complexity of logical query programs.
Proc. IEEE Symposium on Foundations of Computer Science, 1986.

[41]

van Emden, M. H. and R. A. Kowalski. The semantics of predicate logic as a
programming language. ./. ACM 23, 733-742. 1986.

Vieille, L. Recursive axioms in deductive databases: the Query-Subquery ap-
proach. Expert Database Systems, 179-193, 1986.

Zhang, W., C.T. Yu and D. Troy. .4 necessary and sufficient condition to lin-
earize doubly recursive programs in logic databases. Manuscript, Dept. of EECS.
University of fllinois at Chicago, 1988.

Zhang, W., C.T. Yu and D. Troy. Necessary and sufficient conditions to linearly
doubly recursive programs in logic databases. ACM Transactions on DaUdm,,
Systems 15:5, 459-482, 1990.

