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Introductory Paragraph

Soft tissue sarcomas, which encompass approximately 10,700 diagnoses and 3800 deaths 

per year in the US1, exhibit remarkable histologic diversity, with more than 50 recognized 

subtypes2. However, knowledge of their genomic alterations is limited. We describe an 

integrative analysis of DNA sequence, copy number, and mRNA expression in 207 samples 

encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of 

pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic 

liposarcomas), and PIK3CA (18% of myxoid/round-cell liposarcomas). PIK3CA mutations 

in myxoid/round-cell liposarcomas were associated with AKT activation and poor clinical 

outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point 

mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that 

shRNA-based knockdown of several genes amplified in dedifferentiated liposarcoma, 

including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map 

of molecular alterations across diverse sarcoma subtypes and provides potential subtype-

specific targets for therapy.

Current knowledge of the key genomic aberrations in soft tissue sarcoma is limited to the 

most recurrent alterations or translocations. Subtypes with simple, near-diploid karyotypes 

bear few chromosomal rearrangements but have pathognomonic alterations: translocations 

in myxoid/round-cell liposarcoma (MRC) [t(12;16)(q13;p11), t(12;22)(q13;q12)] and 
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synovial sarcomas (SS) [t(X;18)(p11;q11)]; activating mutations in KIT or PDGFRA in 

gastrointestinal stromal tumors (GIST)3,4. The discovery of the latter mutations led to the 

clinical deployment of imatinib for the treatment of GIST5, providing a model for genotype-

directed therapies in molecularly defined sarcoma subtypes. Conversely, sarcomas with 

complex karyotypes, including dedifferentiated and pleomorphic liposarcoma, 

leiomyosarcoma, and myxofibrosarcoma, have no known characteristic mutations or fusion 

genes, although abnormalities are frequently observed in the Rb, p53, and specific growth-

factor signaling pathways6.

Recent large-scale analyses7–10 have established a standard for cancer genome studies, but 

soft tissue sarcomas have not yet been a focus of this type of effort. Given the urgent need 

for new treatments for the ~4000 patients who die each year in the US of soft tissue 

sarcoma1, we sought to identify novel genomic alterations that could serve as therapeutic 

targets. Here, we describe complementary genome and functional genetic analyses of seven 

subtypes of high-grade soft tissue sarcoma (Table 1 and Supplementary Table 1) to discover 

subtype-specific events. Several of our findings, detailed below, could have nearly 

immediate therapeutic implications.

To study the genomic alterations in sarcomas, we initially analyzed 47 tumor/normal DNA 

pairs encompassing six soft tissue sarcoma subtypes by sequencing 722 protein-coding and 

microRNA genes, followed by verifying discovered mutations with mass spectrometry-

based genotyping (see Methods, Supplementary Figure 1A, and Supplementary Table 2). 

The results revealed 28 somatic non-synonymous coding point mutations and 9 somatic 

insertions/deletions (indels) involving 21 genes in total (Table 2 and Supplementary Figure 

1B). No mutations were detected in microRNAs genes. We extended the analysis to an 

additional 160 tumors, where we genotyped each of the mutations found above and re-

sequenced exons of NF1 and ERBB4 in pleomorphic liposarcoma and myxofibrosarcoma, 

PIK3CA and KIT in myxoid/round cell liposarcoma, and CDH1 in dedifferentiated 

liposarcoma; this revealed nine additional mutations (Table 2 and Supplementary Table 3).

KIT was frequently mutated in GISTs and unexpectedly, in one myxoid/round cell 

liposarcoma sample (Supplementary Note). The next most frequently mutated genes 

observed within specific sarcoma subtypes were PIK3CA, in 18% of myxoid/round cell 

liposarcomas, TP53 in 17% of pleomorphic liposarcomas (interestingly, the only subtype in 

which mutations of this gene were found), and NF1 in 10.5% of myxofibrosarcomas and 8% 

of pleomorphic liposarcomas (Table 2 and Figure 1). Additional genes, including protein 

and lipid kinases, as well as known or candidate tumor suppressor genes, were found 

mutated in just one sample for each sarcoma subtype (Table 2, Figure 1, and Supplementary 

Note). Further studies will be needed to establish the functional impact of these mutations in 

sarcoma.

Below, we focus on three major specific genomic findings with therapeutic implications: 

point mutation and deletion of NF1 in a subset of soft tissue sarcomas, point mutation of 

PIK3CA in myxoid/round cell liposarcoma, and the complex pattern of amplification of 

chromosome 12q in dedifferentiated liposarcoma.
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Integrated analysis of DNA copy number, expression, and mutation data uncovered diverse 

alterations of the Neurofibromatosis type 1 gene (NF1) in several sarcoma subtypes. While 

germline and somatic inactivation of NF1 is associated with malignant peripheral nerve 

sheath tumors11 and GISTs in Neurofibromatosis type 1 patients12, no somatic NF1 

alterations have been reported in other sarcomas. We detected six point mutations and 

twelve genomic deletions encompassing the NF1 locus, occurring in both myxofibrosarcoma 

and pleomorphic liposarcoma (Table 2 and Figure 1, 2A–B; copy number analysis discussed 

further below). Two of the mutations, R304* and Q369*, were previously reported as 

germline mutations in patients with Neurofibromatosis type 113,14, while the other four 

mutations (three missense and one nonsense) have not been previously reported. In some 

tumors, biallelic inactivation was evident, with heterozygous point mutations accompanied 

by deletion of the wild-type allele and correspondingly reduced gene expression compared 

to normal adipose tissue15 in most cases (Figure 2B). Together, these data indicate a diverse 

pattern of NF1 aberrations in myxofibrosarcomas and pleomorphic liposarcomas. These 

results complement recent reports of NF1 alterations in lung cancers and glioblastomas7,8.

PIK3CA, encoding the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), had one of 

the highest somatic mutation frequencies among the genes in this analysis (Table 2). 

Nucleotide substitutions in PIK3CA were initially detected in 4 of 21 myxoid/round-cell 

liposarcomas (MRCs). We measured the frequency of point mutations in PIK3CA in this 

subtype by genotyping an independent cohort of 50 MRCs16 for 13 common sites of 

PIK3CA mutation, including those discovered in our initial sequencing; mutations were 

detected in 9 additional patients (in total, 13 of 71). The mutations were clustered in two 

domains, the helical domain (E542K and E545K) and the kinase domain (H1047L and 

H1047R) (Table 2); both these domains are also mutated in epithelial tumors17.

MRC patients whose tumors harbored mutations in PIK3CA had a shorter duration of 

disease–specific survival than did those with wildtype PIK3CA (p=0.036, log-rank test). 

Similar to observations in breast cancers18, patients with helical-domain PIK3CA mutations 

had worse outcomes than those with kinase-domain mutations (Figure 3A). However, this 

difference was not statistically significant given the small number of cases in our study.

As both helical- and kinase-domain PIK3CA mutants are believed to activate Akt, although 

through different mechanisms19–21, we assessed Akt activation in MRC tumors harboring 

wildtype and mutated PIK3CA. Of note, only E545K helical-domain mutations were 

associated with increased Akt phosphorylation relative to wildtype, both at serine-473 and 

threonine-308 (TORC2 and PDK1 phosphorylation sites, respectively), and with increased 

phosphorylation of Akt substrates PRAS40 and S6 kinase (Figure 3B). Surprisingly, tumors 

with H1047R kinase-domain mutations did not have similar increases in Akt 

phosphorylation or activation (Figure 3B). However, H1047R-mutant tumors exhibited 

variably higher levels of PTEN, a negative regulator of PI3K activity, which may partly 

explain lower Akt activity. In addition, we detected a single MRC tumor with homozygous 

PTEN deletion and high Akt phosphorylation levels (data not shown). Further studies are 

needed to determine the relationship between activated PI3K signaling (resulting from 

PIK3CA mutations) and the pathognomonic t(12;16)(q13;p11) translocation in this subtype.
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In addition to sequencing, we characterized the spectrum of genomic aberrations in soft 

tissue sarcoma with 250K single nucleotide polymorphism (SNP) arrays for somatic copy 

number alterations (SCNAs: n=207; Figure 1 and Supplementary Figure 2A) and loss-of-

heterozygosity (LOH) (n=200; Supplementary Figure 2B) and with oligonucleotide gene 

expression arrays (n=149) (see Methods). The patterns of statistically significant 

SCNAs22,23 (Figure 1) revealed substantial differences between subtypes with simple and 

complex karyotypes (Figure 1). Myxoid/round-cell liposarcoma, synovial sarcoma, and 

GIST had relatively normal karyotypes compared to dedifferentiated and pleomorphic 

liposarcoma, leiomyosarcoma, and myxofibrosarcoma. In addition, only the four complex 

subtypes harbored significant copy-neutral LOH (Supplementary Figure 2B and 

Supplementary Table 4). These types exhibit varied levels of complexity: both 

dedifferentiated liposarcoma and leiomyosarcoma are less complex than pleomorphic 

liposarcoma and myxofibrosarcoma (Figure 1). The latter two subtypes were strikingly 

similar (Figure 1 and Supplementary Figure 2A), indicating they might appropriately be 

considered a single entity in a molecular classification, as previously suggested24.

Our copy number profiling revealed both focal and broad regions of recurrent amplification 

(Supplementary Table 5). The alteration with the highest prevalence in any subtype was 

chromosome 12q amplification in dedifferentiated liposarcoma (~90%; Figure 1 and Figure 

4A). As amplification is a common mechanism of oncogenic activation, we designed an 

RNA interference (RNAi) screen to help identify genes in amplified regions that are 

necessary for cancer cell proliferation in this subtype. We performed knockdown with short 

hairpin RNAs (shRNA) on 385 genes (Supplementary Table 2) in three dedifferentiated 

liposarcoma cell lines (LPS141, DDLS8817, and FU-DDLS-1) with copy number profiles 

similar to those observed in primary tumors of this subtype. A total of 2,007 shRNA 

lentiviruses, a median of five per gene, were tested for their effects on cell proliferation after 

5 days (see Methods).

Using a statistical method, RSA (see Methods, Supplementary Note, and ref. 25), we 

identified 99 genes whose knockdown significantly decreased cell growth in at least one cell 

line (nominal p<0.05; Supplementary Table 6). For 91 of the 99 genes, two or more 

independent shRNAs had anti-proliferative activity, reducing the likelihood that our results 

are due to off-target effects. To determine whether the effect of gene knockdown on cell 

proliferation was specific for dedifferentiated liposarcoma, we compared our results to a 

pooled shRNA screen of ~9500 genes in 12 cancer cell lines of different types26 which 

included 58 of the 99 genes whose knock-down reduced proliferation. Only one of the 58 

genes, PSMB4, was identified as a common essential gene, for which depletion reduced cell 

proliferation in ≥8 of 12 cancer cell lines in the prior study26.

27 of the 99 genes whose knockdown reduced proliferation were amplified in at least one of 

the three dedifferentiated liposarcoma cell lines used in our study (Supplementary Figure 3). 

Among these 27 genes, the most strongly overexpressed in dedifferentiated liposarcoma 

compared to normal fat15 was CDK4, a cell-cycle regulator and a known oncogene27. We 

confirmed that sustained knockdown of CDK4 (>10 days) inhibited proliferation when we 

assayed two of the three cell lines we screened (see Methods, Figure 4B). Furthermore, 

pharmacological inhibition of CDK4 in dedifferentiated liposarcoma cells with PD0332991, 
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a selective CDK4/CDK6 inhibitor currently in clinical trials28, induced G1 arrest in the 

same two cell lines (Figure 4C).

For MDM2, another oncogene found in focal 12q amplifications, knockdown did not 

significantly impair proliferation in our arrayed screen in any of the three cell lines tested. 

Nevertheless, proliferation was impaired by subsequent knockdown lasting more than a 

week when we assayed two of those three cell lines (Figure 4D). Interestingly, another gene 

whose knockdown reduced proliferation of cells in which it was amplified was YEATS4 

(GAS41), encoding a putative transcription factor that represses the p53 tumor suppressor 

network during normal cell proliferation29. YEATS4, frequently co-amplified with MDM2 

(Figure 4A), was transcriptionally upregulated both in tumors relative to normal adipose 

tissue and in tumors with amplification compared to those copy-neutral for the locus 

(Supplementary Figure 3). Repeat shRNA experiments confirmed the effect of YEATS4 

knockdown seen in the arrayed screen (Figure 4E), consistent with the hypothesis that 

YEATS4 and MDM2 amplification may cooperatively repress the p53 network in 

dedifferentiated liposarcoma, as recently suggested30. This finding may have consequences 

for Nutlin-based antagonism of the p53-MDM2 interaction15,31 in dedifferentiated 

liposarcomas. Our findings lend additional support for YEATS4 serving as a likely key 

amplified gene in cancer, as recently suggested through a weight-of-evidence classification 

scheme proposed for identifying such amplified cancer genes32.

This dataset provides the most comprehensive database of sarcoma genome alterations to 

date, revealing genes and signaling pathways not previously associated with this group of 

diseases. The study results are available as a community resource that might further the 

biological understanding of sarcomas and, eventually, shed light on additional strategies to 

improve patient care. Some of our findings already have potential therapeutic implications. 

For instance, the PIK3CA mutations found in MRC constitute the first report of such 

mutations in a mesenchymal cancer. These mutations identify a subset of tumors that might 

respond to treatment with PI3K inhibitors currently in clinical trials33. Our results also 

provide further rationale for use of CDK4 inhibitors in dedifferentiated liposarcoma and 

suggest the use of mTOR inhibitors in NF1-deficient sarcomas, since loss of NF1 function 

appears to cause mTOR pathway activation34. Finally, these data lend support for the 

clinical evaluation of agents targeting the p53/MDM2 interaction in dedifferentiated 

liposarcoma.

This work argues for the therapeutic importance of genomic alterations in sarcoma and 

encourages us to pursue next-generation sequencing strategies that will continue to define 

the landscape of genomic aberrations in these deadly diseases.

Methods

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/naturegenetics/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nucleotide and copy number alterations in soft-tissue sarcoma subtypes

The statistical significance of genomic aberrations for each subtype is shown. RAE q-values 

[left axis; for visualization, q-values ≤ 0.05 are considered significant, corresponding false 

discovery rate (FDR) ≤ 5%] and scores (right axis) for gains and amplifications (red) and 

losses and deletions (blue) are plotted across the genome (chromosomes indicated at 

bottom). Genes harboring somatic nucleotide alterations in this study are indicated in each 

subtype in which they were discovered (Table 2).
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Figure 2. NF1 alterations in karyotypically complex sarcomas

A. Somatic mutations in the NF1 protein in myxofibrosarcoma and pleomorphic 

liposarcoma (black triangles) and the position of the RasGAP and Cral domains (dark and 

light green respectively) are juxtaposed to known mutations in malignant peripheral nerve 

sheath tumors (MPNSTs; open triangles). B. Transcript expression according to copy 

number and sequence status in myxofibrosarcoma and pleomorphic liposarcoma compared 

to normal adipose tissue samples (black/red and green respectively, log2 expression from 
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Affymetrix array profiling data; p-value=1.94×10−5, ANOVA; mutated tumors are 

indicated). One of the two R304* mutant tumors lacked expression data.
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Figure 3. Different effect of helical and kinase domain PIK3CA mutations on PI3K pathway 
activation and survival in myxoid/round-cell liposarcoma

A. Survival for patients with tumors that harbor helical-domain mutations (red) versus 

kinase-domain mutations (grey), and wildtype PIK3CA (blue). The analysis includes the 65 

patients for whom outcome information was available. Patients with mutations in either the 

helical or the kinase domain had a shorter disease–specific survival compared to those with 

wildtype PIK3CA (p-value = 0.0363, log-rank test). The difference in disease-specific 

survival between patients with helical-domain mutant tumors and those with wildtype 

PIK3CA tumors was significant (p-value=0.013, log-rank test). B. Western blots of myxoid/

round-cell liposarcoma tumor lysates comparing the phosphorylation levels of Akt, 

PRAS40, and S6 kinase, as well as their protein levels, in patients with wild-type PIK3CA or 

with mutations in PIK3CA helical or kinase domains.
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Figure 4. Genes whose knockdown is anti-proliferative in dedifferentiated liposarcoma and the 
consequences of CDK4, MDM2 and YEATS4 knockdown in dedifferentiated liposarcoma

(A) Integrated profile of statistically significant genomic gains/amplifications as assessed by 

both RAE and GISTIC (combined as described in Methods; FDR, false-discovery rate) is 

followed by a heatmap of copy number segmentation on 12q13.2-q32.1 in 50 patient 

samples of dedifferentiated liposarcomas (red is amplification, blue is deletion, each row 

indicates one tumor sample). Below is the position of genes from our screen encoded by this 

region of 12q whose knockdown is anti-proliferative in dedifferentiated liposarcoma. Bold 
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gene symbols indicate those whose amplification produced over-expression of its transcript 

or those over-expressed in tumor relative to normal adipose tissue. Genes in green are 

highlighted in panels B–C and E. Alternative genomic regions encoding genes not on 12q 

whose knockdown is anti-proliferative are also included. (B) Effect of three validated 

shRNAs targeting CDK4 on the proliferation of two cell lines, LPS141 and DDLS8817, at 

various time points (x-axis) with negative controls (pLKO empty vector and GFP473). 

Below are western blots showing the effect of shRNAs on levels of CDK4 protein (as 

indicated). (C) G1 arrest induced in LPS141 and DDLS8817 cell lines by treatment with the 

CDK4/CDK6 inhibitor PD0332991. MDA-MB-435 (Rb-positive) and H2009 (Rb-negative) 

were included as sensitive and insensitive controls. Error bars are s.d. of replicate 

measurements. (D–E) As in panel (B), effect on proliferation of three shRNAs targeting 

MDM2 (panel D) and YEATS4 (panel E) (negative controls: pLKO empty vector and 

scrambled shRNA) where each targeting shRNA resulted in reduced protein levels (at 

bottom). Error bars are propagated error from the ratio of mean and s.d. of measurements/

replicates to time 0.

Barretina et al. Page 15

Nat Genet. Author manuscript; available in PMC 2011 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Barretina et al. Page 16

Table 1

Summary of clinical and pathologic information for 207 soft-tissue sarcoma patients

Characteristic Value

No. of patients 207

Age [mean±SD (range)] 56±16 (7–84)

Gender (%) †

  Female 102 (50.2)

  Male 101 (49.8)

Tumor size §

  0–5 cm 35 (17.4)

  5–10 cm 65 (32.3)

  10–15 cm 43 (21.4)

  >15 cm 58 (28.9)

Primary site (%) †

  Retro-intrabdominal 60 (29.6)

  Visceral

    Gastrointestinal 23 (11.3)

    Genitourinary 4 (2)

    Gynecological 1 (0.5)

  Thoracic 12 (5.9)

  Extremity 93 (45.8)

  Trunk 8 (3.9)

  Head and Neck 2 (1)

Stage at time of sample procurment ‡

  Primary 139 (68.8)

  Local recurrence 29 (14.4)

  Distant recurrence 34 (16.8)

Histology

  Dedifferentiated liposarcoma 50 (24.2)

  Myxoid/round cell liposarcoma 21 (10.1)

  Pleomorphic liposarcoma 24 (11.6)

  Leiomyosarcoma 27 (13)

  Gastrointestinal stromal tumor

    Epithelioid 4 (1.9)

    Spindle 11 (5.3)

    Mixed or unspecified 7 (3.4)

  Myxofibrosarcoma

    Myxofibrosarcoma 35 (16.9)

    Pleomorphic MFH 3 (1.5)

  Synovial sarcoma ‖

    Monophasic 19 (9.2)
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Characteristic Value

    Biphasic 4 (1.9)

Median follow-up (months) 35.65

Time to distant recurrence (months) 15.7

Co-morbidities 57 (27.5)

‖
One synovial sarcoma not specified

Data available for §201, †203, and ‡202 patients respectively
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