
Subtypes vs. Where Clauses:
Constraining Parametric Polymorphism

Mark Day

Lotus Development Corporation
1 Rogers Street

Cambridge, MA 02142
Mark Day@crd.lotus.com

Robert Gruber Barbara Liskov Andrew C. Myers

Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139
gruber,liskov,andru @lcs.mit.edu

Abstract

All object-oriented languages provide support for subtype
polymorphism, which allows the writing of generic code
that works for families of related types. There is also a
need, however, to write code that is generic across types
that have no real family relationship. To satisfy this need
a programming language must provide a mechanism for
parametric polymorphism, allowing for types as parameters
to routines and types. We show that to support modular
programming and separate compilation there must be a
mechanism for constraining the actual parameters of the
routine or type. We describe a simple and powerful constraint
mechanism and compare it with constraint mechanisms in
other languages in terms of both ease of use and semantic
expressiveness. We also discuss the interaction between
subtype and parametric polymorphism: we discuss the
subtype relations that can exist between instantiations of
parameterized types, and which of those relations are useful
and can be implemented efficiently. We illustrate our points
using examples in Theta, a new object-oriented language, and
we describe the time- and space-efficient implementation of
parametric polymorphism used in Theta.

Web URL: http://www.pmg.lcs.mit.edu/. This research
was supported in part by the Advanced Research Projects Agency
of the Department of Defense, monitored by the Office of Naval
Research under contract N00014-91-J-4136, and in part by the
National Science Foundation under Grant CCR-8822158.

Copyright c 1995 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that new copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

1 Introduction

Good software engineering practice encourages the
writing of generic code, which captures a common
behavior and is usable in multiple contexts. The
writing of generic code is partially supported by subtype
polymorphism. With subtype polymorphism, one can
define a family of related types: a supertype defines
the behavior common to all its subtypes, which extend
or specialize that behavior. Programs are then generic
with respect to the defined family, since code written in
terms of an object of type T is also usable for an object
whose type S is a subtype of T.

However, there is also a need for code that is generic
across types that have no real family relationship.
For example, aggregates like lists and hash tables are
typically useful for a wide variety of contained types,
none of which is necessarily a subtype of any other. In
such cases, the construction of generic code depends on
parametric polymorphism. Parametric polymorphism
allows the programmer to write code whose typing is
incomplete in a specific way: it has one or more type
parameters. This code is effectively a template that
expresses a generic behavior, abstracted over the types
with which that behavior can be used.

All object-oriented languages have well-developed
mechanisms for subtype polymorphism, but in most
of them the support for parametric polymorphism is
either absent or too weak. The paper discusses how to
provide both kinds of polymorphism in a strongly-typed
language with compile-time type checking and separate
compilation. Its main contribution is to bring together
in one place a discussion of all of the relevant design
issues. The paper makes the following points:

1. It shows that support for abstraction and separate
compilation requires a compile-time enforceable

mechanism for constraining the instantiations of a
parameterized abstraction.

2. It describes a constraint mechanism, where clauses,
that is both simple and powerful, and contrasts
where clauses with other constraint mechanisms in
terms of both ease of use and semantic power.

3. It discusses the distinction between derived subtyp-
ing and declared subtyping, and explains the advan-
tages of declared subtyping.

4. It discusses how to combine subtype and parametric
polymorphism. It explains what subtype relation-
ships can hold between parameterized types, and
discusses how these relationships interact with im-
plementation concerns.

The discussion is illustrated with examples from a
new object-oriented language called Theta. We use the
Theta design as an example of a coherent set of de-
sign decisions that provide effective support for both
subtype and parametric polymorphism. We present
Theta’s encapsulation mechanism and discuss the re-
lationship of encapsulation to polymorphism. We also
describe our time- and space-efficient implementation
of parametric polymorphism. The paper considers only
a portion of Theta. A complete description can be found
in [LCD 94].

The remainder of the paper is organized as follows.
We begin by discussing types and subtype polymor-
phism in a strongly-typed programming language. Sec-
tion 3 discusses parametric polymorphism and mecha-
nisms for constraining type parameters, while Section 4
discusses subtype relations among instantiations of pa-
rameterized types. Section 5 describes modules and
encapsulation in Theta, and Section 6 describes our
implementation of parametric polymorphism. We con-
clude with a discussion of what we have accomplished.

2 Types and Subtypes

The goal of subtype polymorphism is to support code
that is generic with respect to a family of related types.
Code written in terms of some type T actually works for
all subtypes of T. The supertype defines the behavior
common to all its subtypes, which then extend or
specialize that behavior. For example, if stack were
a subtype of bag, all code that worked for bags would
also work for stacks.

A strongly-typed object-oriented language requires
explicit definitions of type interfaces so that the
compiler can insure that all calls of methods are
legal. The compiler also needs to know the type
hierarchy: which types are subtypes of which other
types. In Theta this information is provided in type
specifications. A type specification lists the methods
of a type’s objects and their signatures; it may also
declare one or more supertypes. Specifications only
describe interface information and do not contain any
code that implements the type being defined. We chose
this approach because it mirrors the distinction between
a type’s behavior and implementations of that behavior:
the specification serves as a contract that its users rely
on and its implementors must support. Substitution
of one correct implementation for another does not
compromise the correctness of using code, and, in fact,
Theta allows multiple implementations of the same type
to be used within a single program.

Figure 1 gives examples of Theta type specifications.
Both string set and string bag are collections of strings;
however, if a string is added to a string bag several
times it appears in the bag multiple times (and the
elements iterator will yield it many times) whereas
it would appear in the set just once. (An iterator
is a special kind of routine that yields a sequence of
results one at a time [LSAS77].) The specification
for string int map indicates that it is a subtype of
string set (using the symbol); this makes sense
because string int map stores a single mapping for
each string, and defines the elements iterator to yield
the strings that are mapped. The specification of
string int map renames some string set methods: insert
is renamed insert default, and elements is renamed
keys. Renaming allows a subtype to establish an
arbitrary correspondence between its method names and
those of its supertypes; it is especially useful when
there are multiple supertypes because it allows the
subtype specification to resolve name conflicts, e.g.,
if two supertypes use the same name for methods with
different behavior.

The Theta compiler checks each subtype declaration
for legality. A subtype has all the methods of its
supertypes; any method specifications not explicitly
in the subtype specification are obtained from its
supertype(s), applying renamings appropriately. (We
believe it is good practice to include declarations of

2

string set = type
insert (x: string)

% Adds x to self if it is not already there.
remove (x: string) signals (not found)

% Removes x from self if it is a member;
% otherwise, signals not found.

elements () yields (string)
% Yields every element of self, each exactly once,
% in arbitrary order.

end string set

string bag = type
insert (x: string)

% Adds x to self; if x was already in self, it now
% has one additional entry in self

remove (x: string) signals (not found)
% Removes one occurrence of x from self if it is a member;
% otherwise, signals not found.

elements () yields (string)
% Yields every occurrence of every element of self,
% each exactly once, in arbitrary order.

end string set

string int map = type string set
insert default for insert, keys for elements

insert (key: string, value: int)
% Adds a mapping from key to value,
% replacing the previous mapping, if any.

insert default (key: string)
% Adds a mapping from key to a default value,
% replacing the previous mapping, if any.

keys () yields (string)
% Yields every key in the map, each exactly once,
% in arbitrary order.

fetch (key: string) returns (int) signals (not found)
% Returns the value that key is mapped to. If it is
% not mapped to anything, signals not found.

end string int map

Figure 1: Some Theta Type Specifications

inherited methods if the behavior has changed — this is
why we include specifications of the insert default and
keys methods in the specification of string int map.)
Thus for each method of supertype T, there is
a corresponding method in . The subtype

declaration is legal iff the signature of each conforms
to that of the corresponding . The signature of
conforms to that of iff:

Contravariance of arguments: has the same
number of arguments as , and the type of each
argument of is a supertype of the type of the
corresponding argument of .

Covariance of results: has the same number of
results as and the type of each result is a subtype
of the type of the corresponding result of .

Covariance of exceptions: The exceptions of
are a subset of those of , and the results for each
exception must be covariant.

This is the usual definition of conformance [SCW85,
BHJ 87, Car84] extended to support exceptions. As
discussed by others, e.g., [BHJ 87], the first two
rules are the weakest rules that ensure that static type
checking guarantees no run-time type errors. The
rule for exceptions ensures that a subtype method
signals only exceptions defined for the supertype
method. Therefore, a caller using the supertype
interface receives only exceptions that are declared in
that interface.

All relations among user-defined types are declared
explicitly in Theta. Each type specification defines a
unique type that is not equal to the type introduced
by any other Theta specification. Thus string set
and string bag are not the same type. Similarly, one
type is a subtype of another only if its specification
declares this and the declaration is legal. In some
object-oriented languages, e.g., Emerald [BHJ 87],
PolyTOIL [BSvG95], and School [RIR93], type
relations are derived: two specifications define the
same type if they are identical except for the names
of the types they are defining, and a type is a subtype
of another type if it provides the necessary methods
and their signatures conform. Declared type relations
provide a finer granularity of type checking than is
possible when type relations are derived; also, they
allow renaming of methods to resolve conflicts among
supertype methods, and can lead to more efficient
language implementations [Mye95].

For example, string set objects behave differently
from string bag objects even though they have the same
methods. In Theta these two types are distinct, and

3

create sorted string set () returns (string bag)
% Returns a new, empty set with a sorted
% implementation.

create string set () returns (string set)
% Returns a new, empty set.

create hashed string map (default: int, size hint: int)
returns (string int map)

% Creates a new, empty string int map whose
% default value is default. Uses a hash table
% implementation. The argument size hint hints at the
% number of mappings ultimately in the map.

Figure 2: Specifications of Creators

neither is a subtype of the other, whereas in languages
with derived type relations, they would be viewed as
the same type, and each would be a subtype of the
other. Similarly, string int map is not a subtype of
string bag since a string bag keeps track of duplicates
whereas string int map does not. (See [LW94] for
further discussion of when subtyping makes sense
behaviorally.)

Type specifications in Theta define only the methods
of the type’s objects but do not define ways to create
objects “from scratch.” Such “creators” are specified
separately and are typically stand-alone routines (i.e.,
not methods). Some example creator specifications are
given in Figure 2. There are two reasons for separating
types from creators:

1. Different implementations of a type may need
different creators, e.g., create hashed string map
takes a hash-table-specific argument.

2. Subtypes sometimes need different creators from
their supertypes.

Type and routine specifications are implemented in
modules; some examples are given in Section 5.

3 Parametric Polymorphism

Sometimes it is useful to write generic code that is
polymorphic with respect to types that are not in the
same family. For example, searching an array for a
match with a given element is useful over a wide range

of element types. However, it doesn’t make sense
for all element types because there has to be a way
of testing for a match (such as calling a method that
determines equality). As another example, we might
want to sum the elements of any collection type (e.g.,
int set, int bag, int stack) that allowed us to access all its
elements by means of an elements method. In general,
only types that satisfy certain “constraints” are allowed,
where the constraints rule out types whose objects
don’t have certain methods (i.e., we need “constrained
genericity” [Mey86]).

One might try to capture constraints using the subtype
relation. Consider a type comparable that is intended
to describe all types that have a method that determines
whether one object is greater than another:

comparable = type
gt(x: comparable) returns (bool)

% returns true if x self else returns false
end comparable

Seemingly, such a type could be used to express the
signature of a sort routine:

sort(a: array[comparable])

We would then like to call the routine with, say, an
array[int]; the code would call the gt method for array
elements.

This approach does not work, for two reasons. First,
array[int] is not a subtype of array[comparable] even
if int comparable; we discuss this issue further in
Section 4. Second, there are essentially no useful
subtypes of comparable, because the contravariance
of arguments in the method conformance rules has
undesirable consequences [BHJ 87, RIR93]. A
subtype of comparable must have a gt method, and
(because of contravariance), the argument of this
method must have type comparable, or a supertype
of comparable! Thus, for int to be a subtype of
comparable, the signature of the int gt method must
be:

gt (x: comparable) returns (bool)

In general, an int and a comparable cannot be compared.
An implementation of this gt method for type int would
first attempt to cast the argument down to an int, and if
this succeeded it would do the comparison. The cast
is possible in Theta using the typecase statement; it

4

set = type[T] where T has equal(T) returns (bool)
insert(x: T)
remove(x: T) signals (not found)
elements() yields (T)
equal(s: set[T]) returns (bool)

end set

sort [T] (a: array[T]) where T has gt (T) returns (bool)
% sorts a into increasing order based
% on the gt method of its elements

Figure 3: Parameterized Specifications

requires a run-time check. Clearly we do not want
to follow this path, as it effectively eliminates an
important part of compile-time type-checking for gt.
Furthermore, forcing all implementations of subtypes
of comparable to handle arbitrary comparable objects
is both a nuisance and costly at run-time.

It is worth noting that Meyer [Mey86] concluded that
the above problem with comparable did not arise, but
he was using an unsound definition of conformance that
allowed covariant argument types [Coo89].

3.1 Expressing Constraints

The Theta mechanism for supporting genericity is
constrained parametric polymorphism, which was
first introduced in CLU [LSAS77]. With this
mechanism, types are explicitly provided as parameters
to polymorphic types and routines. A parameterized
definition defines a set of types or routines; the set
contains an element for each legal substitution of actual
types for the type parameters. To select a type (or
routine) from the set, we instantiate the definition,
providing an actual type for each of its parameters.
For example, Figure 3 contains some parameterized
specifications; examples of legal instantiations are the
types set[int], and set[set[int]] and the routine sort[char].
In the case of a routine, instantiation typically happens
in conjunction with a call, e.g., sort[char](ca), but it
is possible to separate these activities: e.g, to do an
instantiation to obtain a routine that is stored in a data
structure and called later.

Having explicit type parameters isn’t the whole story,
because we still need a way of expressing constraints
on allowable parameters. This is the purpose of the

where clause. Originally defined in CLU [LSAS77],
the where clause has been adapted in Theta (and also
in School [RIR93]) to an object-oriented language
with subtyping. A where clause lists the names and
signatures of required methods for the parameters. For
example, the where clause in the specification of set
indicates that any legal parameter must have an equal
method.

Where clauses allow the compiler to type check in-
stantiations and implementations independently; thus
this approach supports separate compilation. Intu-
itively, an instantiation is legal if the actual type has the
methods listed in the where clause; an implementation
is legal if, for objects of a parameter type, it only uses
the methods listed in the where clause. If no required
methods are listed for a parameter, no methods can be
invoked on objects of that type. Unconstrained param-
eters are useful for simple collection types or lookup
tables where the elements are only stored and retrieved.
For example, the built-in parameterized type array[T]
does not require any methods for T elements. (Theta
allows methods to have where clauses of their own that
impose additional constraints on the parameters of their
type. For example, the array copy method requires that
T have a copy method.)

Now we define our legality checks in more detail.
To check the legality of an instantiation, the actual
types are substituted for their associated parameters in
the signatures given in the where clause. Then, for
each method name in the where clause for a parameter,
the actual type associated with that parameter must
have a method of that name with a signature that
conforms to the signature in the substituted where
clause. For example, sort can be instantiated with any
type foo having a gt method whose signature conforms
to proc (foo) returns (bool); thus, sort[int] is allowed
but sort[set[int]] is not (since set[int] does not have a
gt method). The result of the instantiation is a type
or routine signature obtained by substituting the actual
types for the parameters and removing the where clause.
Thus, sort[char] has the signature proc (array[char]).

To check the legality of parameterized definitions
the compiler proceeds in the normal way, except that
it assumes the existence of a type for each parameter,
with methods as specified in the where clause. These
parameter types have no subtypes and no supertypes
(except for type any, which is the supertype of all types

5

in Theta). For example, suppose the following code
were within an implementation of sort:

sort [T] (a: array[T]) where T has gt (T) returns (bool)
...
x, y: T
if x y ... % legal – T has gt
x := x.incr() % not legal – T does not have incr
z: array[T] % legal
s: set[T] % not legal – T does not have equal

The if statement is legal because T objects have a gt
method (is a special form for calling this method),
and the type of y is a subtype of gt’s argument type; the
call x.incr is not legal because T objects do not have an
incr method. The instantiation array[T] is legal because
array does not require any T methods; the instantiation
set[T] is not legal because it requires an equal method
for its parameter, and T doesn’t have this method.

Where clauses can introduce dependencies between
type parameters. For example, we could define
a member routine that works on arbitrary indexed
collections:

member[E, C](a: C, x: E) returns (bool)
where E has equal(E) returns (bool),

C has elements() yields (E)

(Elements is an iterator; recall that an iterator returns a
sequence of results one at a time.) Here the constraint
for type C, a collection type, depends on type E, the type
of the elements stored in C. An instantiation on multiple
parameters is legal when the methods of all the actual
types conform to the where clause declarations with
all substitutions having been performed on each where
clause. Thus the instantiation member[int,set[int]] is
legal but member[char,set[int]] is not.

3.2 Discussion

Some languages with parametric polymorphism do
not have a mechanism for stating constraints on type
parameters, e.g., C++ templates [ES90] and Modula-3
generics [Nel91]. To check that an actual instantiation
of a parameterized routine or type is correct, the
compiler rewrites the body of the routine or type,
replacing the type parameter with the actual type,
and then checks the result. This approach violates
abstraction and modularity, since there is no way
to isolate constraints so that users can depend on

(1) Theta (where clauses):

member[E, C](a: C, x: E) returns (bool)
where E has equal(E) returns (bool),

C has elements() yields (E)

(2) Rapide (parameterized subtype constraints):

type HasEql(type T) is
interface
equal: function(x: T) return Boolean;
end interface

type HasElts(type T) is
interface
elements: iterator() yield T;
end interface

member: function(type E : HasEql(E),
type C : HasElts(E),
a: C, x: E) return Boolean;

(3) Emerald (type matching clauses):

% Emerald has no stand-alone routines, thus we define
% an object type with a polymorphic member method:

const MemberObjType typeobject
function member [E: type, C: type, a: C, x: E]

[Boolean]
suchthat E typeobject EqAble

function equal [EqAble] [Boolean]
end EqAble

suchthat C typeobject HasElts
iterator elements[] [E]

end HasElts
end MemberObjType

Figure 4: Three Ways to Specify the member Routine

them independently of particular implementations.
Changing an implementation can break code that uses
the abstraction being implemented. In addition, the
approach does not support separate compilation, since
the body of the instantiated type or routine must be
available to the compiler.

6

Some languages use type definitions rather than
where clauses to express type constraints. Two variants
of this approach are shown in Figure 4. This figure
shows the different ways of specifying the member
routine discussed earlier; it repeats the where clause
example, followed by examples in the languages
Rapide [KLMM94] and Emerald [BHJ 87]. (Rapide
and Emerald do not have iterators, so we had to invent
some syntax.)

To constrain a type in Rapide one defines an auxiliary
parameterized type to capture the desired constraint (the
desired set of methods). In this case, the parameterized
type HasEql(type T) captures the need to constrain a
type to have an equal method that takes a T argument
and returns a boolean, while HasElts(type T) captures
the need to constrain a type to have an elements iterator
that yields T objects. These auxiliary types are used in
the specification of member: parameter E is required to
be a subtype of HasEql(E) (written E : HasEql(E)), i.e.,
E must have an equal method that takes an E. Similarly,
parameter C is required to be a subtype of HasElts(E).

Emerald expresses constraints by introducing a new
relation between types called matching. E.g., the
clause suchthat E typeobject EqAble ... end EqAble
states that parameter E must match the type defined in
this clause. Matching does the following: it uses the
actual parameter to instantiate the type being matched
against (e.g., EqAble), using the type name in that
definition as a parameter, and then checks whether the
actual parameter is a derived subtype of the result. For
example, if y has the type MemberObjType, then to
check the call y.member[Integer,], Emerald would
substitute Integer for EqAble within the definition
of EqAble, to obtain a type with a single method
function equal [Integer] [Boolean], and would then
check whether Integer was a subtype of this type.
(The mechanism in PolyTOIL [BSvG95] is similar
to Emerald’s but the details of the matching rule are
different.)

Emerald does not allow independent type definitions
to be introduced to express constraints [BH95]; a new
type must be defined in each matching clause. Thus,
Emerald matching clauses are similar to where clauses,
since the required methods are all written out explicitly.
While Rapide and PolyTOIL allow independent type
definitions to be used to express constraints, such types
will probably never be used as normal types (e.g., there

will never be objects with actual type HasEql(Integer)).
So far we have been concerned with the ease of

expressing constraints. Another issue is semantic
expressiveness. A common way to formalize type
systems for object-oriented languages is to use F-
bounded quantification [CCH 89]. The languages we
examined are either equivalent to or more powerful than
F-bounded quantification. The issue is whether one can
express mutual dependencies between type parameters.
For example, the type of the member routine can be
expressed as an F-bounded polymorphic type:

E equal: E bool .
C elements: void yields E .
C,E bool

However, a routine with mutual dependencies, e.g.,
where a constraint on type parameter E mentions type
parameter C and vice versa, does not have an F-bounded
type, assuming the usual case where the construct
only mentions one type at a time. For example, F-
bounded quantification cannot describe the constraints
in the following routine, which is used to find paths in
many different kinds of graphs:

findpath[N, E] (s, d: N) returns (array[N])
signals (no path)

where N has edges () yields (E),
equal (N) returns (bool),

E has source () returns (N),
dest () returns (N)

Languages whose type systems are based on F-bounded
quantification (such as Rapide) cannot express the type
of findpath, while other languages, such as Theta,
School, and Emerald, can. (An extension of F-bounded
quantification to support mutual dependencies, e.g., by
allowing multiple parameters to the construct, would
thus have some practical value.)

4 Combining the Two Polymorphisms

A language with mechanisms for both parametric and
subtype polymorphism must define how they interact.
In particular, it must define the subtype relations that
hold for instantiations of parameterized types. For
languages such as Theta that require declared subtype
relations, this translates into the question of what
relationships can be declared.

7

map = type[K, V] set[K]
insert default for insert, keys for elements

where K has equal(K) returns (bool)
insert (key: K, value: V)

% Adds a mapping from key to value,
% replacing the previous mapping, if any.

insert default (key: K)
% Adds a mapping from key to a default value,
% replacing the previous mapping, if any.

keys () yields (K)
% Yields all the keys in the map, each exactly once,
% in arbitrary order

fetch (key: K) returns (V) signals (not found)
% Returns the value that key is mapped to. If it is
% not mapped to anything, signals not found.

end map

Figure 5: A Parameterized Subtype Example

One relationship that is clearly needed is the
following: Suppose P1 and P2 are both parameterized
types, with a single type parameter, and suppose P2
acts like a subtype of P1, i.e., it has the necessary
methods with compatible signatures and behavior. Thus
we need:

P2[T] P1[T] for all T

This kind of subtype relation can be declared in
Theta, as shown in Figure 5. Map actually has more
parameters than set, though typically parameterized
types in a subtype relation have the same number of
parameters. Map is a legal subtype of set because its
where clause is strong enough to ensure that set[K] is a
legal instantiation whenever map[K,V] is legal, and its
methods’ signatures conform to those of the associated
set methods.

In addition to the subtype relationship just discussed,
it may seem that we also want:

P[S] P[T] when S T

However, this form is actually not very useful because it
only works for the few types that do not use a parameter
type as (a component of) an argument type of any
method. For example, set has such a method, insert.
Suppose S T. Then set[S] is not a subtype of set[T]
because insert(S) does not conform to insert(T), due to

the contravariance rule. Such a situation occurs in types
(like set) with mutable objects (because of methods that
change the state of their object), and also in immutable
types if they have a comparison operator such as equal.
Therefore, this subtype relationship can rarely make
sense.

There is a practical semantic reason for not allowing
a subtype relationship between types such as set[S] and
set[T]. For example, suppose we have a hierarchy that
relates various kinds of animals, and we have declared
that types elephant and rhinoceros are subtypes of type
mammal but are not subtypes of one another. If we
allowed set[elephant] to be a subtype of set[mammal],
then it would be legal to pass a set[elephant] object
to a procedure that takes a set[mammal], and in this
procedure it would be legal to insert a rhinoceros object
into the set, since a rhinoceros is a mammal. But
the result is that our set of elephants now contains a
rhinoceros! (It’s interesting to note that this problem
was first pointed out in 1978 in the context of access
control [JL78].)

Another curious point is that sometimes the subtype
relation goes in the opposite way:

P[T] P[S] when S T

This relation makes sense whenever P is an “output-
only” abstraction, such as an output stream. The
relationship is ruled out, however, for any type with
a method that returns an object of the parameter type
(because of the covariance rule).

We do not permit these kinds of subtype relations
in Theta, for two reasons: the relations are rarely
interesting, and they are not compatible with the way
we implement method calls using multiple dispatch
vectors. Theta is a heap-based language in which
objects exist in the heap and variables point to them.
An object has a header that contains pointers to one or
more dispatch vectors; a dispatch vector is an array of
pointers to methods of the object. An object reference
always points to the place in the header that points to the
dispatch vector that should be used for that reference’s
declared type. References may need to be adjusted as
part of an assignment. For example, suppose that S T,
and objects of type S contain two dispatch vectors, one
used with references of declared type S, the other with
references of declared type T. An assignment

x: T := y

8

where y is of type S results in x pointing to a different
dispatch vector (a different place in the object’s header)
than y does. This approach allows for fast method
dispatch; details are given in [Mye94, Mye95].

The implementation problem is the following: A
reference to S object y from within an array[T] object
would point to y’s T dispatch vector, while a reference
from within an array[S] object would point to y’s S
dispatch vector. This causes a problem if an array[S]
can be passed where an array[T] is expected. It is not
clear that there is a way to fix this problem without
abandoning the efficient implementation! For example,
copying the array[S] object to change all the pointers
doesn’t work because it doesn’t preserve sharing (and
of course it’s expensive too).

5 Modules and Encapsulation

The main issue in designing a mechanism to implement
abstractions is providing encapsulation so that local
reasoning about the correctness of an implementation
is sound [LG86]. The encapsulation unit could be
the implementation of just one abstraction, or of
many abstractions. We chose the latter, for two
reasons: we need a way to implement a type and
some creation routines at the same time, and we believe
it is generally useful to implement several types and
associated routines together.

Thus, types and routines are implemented by
modules, and the question this raises is whether or
not modules should be parameterized. Parameterizing
modules (as in Modula 3 [Nel91]) could be convenient:
information about parameters and constraints could be
stated just once, in the module header. However,
the approach has an important drawback: it does not
allow a single module to contain implementations of
abstractions with different parameters and different
where clauses.

Therefore, modules in Theta are not parameterized.
Instead, a module contains a number of implementa-
tions, some of which might be parameterized. A typical
module contains a class that implements some type and
one or more routines that create objects of that type.
A module provides an encapsulation barrier: Code in-
side the module has access to implementation details,
including the instance variables of any classes in the
module, special constructors (one for each class) that
create new objects of the class, and any local methods

module implements hash map create

mapC = class [K, V] for map[K, V]
where K has equal (K) returns (bool)

pair = record[key: K, value: V]

% instance variables
default: V
hash: proc(K) returns (int) % the hash function
buckets: array[array[pair]]

% methods
fetch (key: K) returns (V) signals (not found)

i: int := hash(key)
for p: pair in buckets[i].elements() do
if p.get key() = key then % call on equal method of K

return (p.get value()) end
end except when bounds: end % no entries for key

signal not found
end fetch

...
end mapC

hash map create[K,V] (h:proc(K) returns(int), default:V)
returns (map[K,V])

where K has equal (K) returns (bool)
pair = record[key: K, value: V]
return (mapC[K, V]

default := default,
hash := h,
buckets := array new[array[array[pair]]())

end hash map create

end % module

Figure 6: Example Implementation

and routines, but code outside the module does not.
The module header lists routine implementations it is
exporting; routine implementations not listed are local
to the module. Type implementations are exported im-
plicitly if an exported routine returns an object of that
implementation.

An example of a module is given in Figure 6. The
figure shows part of a class mapC that provides a sim-
ple hashed implementation of the map type; the header

9

of the class states the type being implemented. The
creation routine, hash map create, takes the default
value and the hashing function as arguments; its behav-
ioral specification would state that the hashing func-
tion must return a positive integer. Hash map create
uses the special mapC constructor (in the expression
mapC[K,V]) to create a new object. A constructor
creates an object with a slot for each instance variable of
its class and a pointer to a dispatch vector that contains
pointers to the object’s methods (there might be several
dispatch vectors, as discussed in [Mye95]); all instance
variables are then initialized to the provided values.
Hash map create uses a built-in creation routine for ar-
rays: array new returns a new, empty array with low
bound 1. (Arrays in Theta can grow dynamically.)

In the example, the class has the same set of type
parameters as the type it is implementing, but this is
not required. A class may have fewer parameters than
the type it implements, by requiring one or more of
the type’s parameters to be instantiated with a specified
type. For example, a non-parameterized class could use
a bit string to implement set[char]. Similarly, a class
may have more parameters than the type it implements,
or it might have more where clauses; for example, a
sorted implementation of set might require an lt method
in addition to the equal method.

Theta allows a class to inherit code from a single
superclass. The type hierarchy is separate from the
inheritance hierarchy; the subclass need not implement
a subtype of the type implemented by the superclass.
Details can be found in [LCD 94].

6 Implementation

This section presents an efficient implementation of
parameterized abstractions for Theta. Our solution is
inspired by the way parameterization was implemented
for CLU [ALS78]. We assume that code is not
recompiled for each actual parameter type, since this
approach leads to code duplication. The scheme
described here is compatible with selector-table-
indexed dispatch schemes [DMSV89, Mye95, Ros88,
Str87]. A more complete description of our technique
can be found in [ML94].

Because parameterized code is shared by all in-
stantiations, the key issue is how the code accesses
the methods described by the where clauses. For
example, consider the mapC class from Figure 6.

The same code is used for all instantiations of this
class; thus a mapC[string,int] object shares code with
a mapC[employee,office] object. The code for the
fetch method of mapC must call the appropriate equal
method for the type parameter K. For example, when
fetch is invoked on a mapC[string,int] object, string’s
equal method must be used, but if it is invoked
on a mapC[employee,office] object, employee’s equal
method must be used.

Consider a method call x.fetch(), where x is a variable
of type map[string, int]. The information about which
equal method to call cannot be passed as an extra
(hidden) argument to the call, because the compiler
does not know x’s class, and the class determines which
methods are required. As discussed in Section 5,
x’s class might have different where clauses and even
different parameters than its declared type.

We provide the needed information using the object’s
dispatch vector. The code for fetch calls the equal
method by dispatching through a special dispatch vector
entry. (We ignore the fact that objects may have several
dispatch vectors, but the technique described here is
easily generalized to handle that case.)

The dispatch vector actually points to where-
routines: stubs that implement each of the declared
where clauses. A where-routine encapsulates the de-
tails of calling the parameter’s method. Usually, the
where-routine just invokes the appropriate method of
the actual type, but the Theta compiler also produces
special-purpose where-routines with an inlined imple-
mentation. For example, for a mapC[int,...] object, the
where-routine can compare integers directly rather than
invoking the int equal method, since integers are not
represented as full-fledged objects.

Figure 7 shows the necessary data structures for a
mapC[string,int] object. In the figure, the dispatch
vector slot labeled K.equal points to a where-routine.
This slot is located at the same offset in the dispatch
vector in all objects of mapC or any subclass of mapC.
The where-routines are placed at negative offsets in the
dispatch vector, as if they were private methods of the
class [Mye95], but negative offsets are not essential.

Routines are implemented as if they were objects
with a single invoke method. For routines with where
clauses, the associated where-routines are appended
to the dispatch vector of the routine object. When
a constant routine is called (i.e., the routine can be

10

K.equal

remove

fetch

object

...

...

...

...

...

shared
dispatch
vector

default

buckets

mapC[string, int]

hash

insert_default

keys

insert

string equal

Figure 7: Object Layout

identified at link time), the method call to invoke is
optimized away and the call is made directly. In
any case, the where-routines are accessible through
the routine’s dispatch vector, since the routine object
is implicitly passed as the self argument to its own
code. (Routine objects are also useful for implementing
currying, which is supported by Theta. Currying
produces a routine object with fields that contain the
curried arguments.)

Routine objects resulting from instantiations are
usually constructed at link time, using a template
(produced by the compiler) that describes the necessary
components of the routine dispatch vector. A
parameterized routine often contains an instantiation
of some other parameterized routine within it. For
example, hash map create uses an instantiation of the
array creation routine, array new. This instantiation
could be done each time hash map create runs, but
that would be unnecessarily costly. Instead, contained
instantiations are also performed at link time, as part of
doing the instantiation of the containing code, and the
dispatch vector produced for the containing code points
to the resulting objects. Thus the linker arranges that
the dispatch vector of every hash map create routine
object contains a pointer to the corresponding array new
object, which is used for the call to array new.

When an object is created, an instantiation-specific
dispatch vector containing the needed where-routines
and routine objects must be available. For example, the
hash map create routine creates mapC objects using
a mapC class constructor. This code must put an
appropriate dispatch vector pointer into the newly-
created object. This dispatch vector pointer is also

invoke

...

...

dispatch vector

array_new[...]

K.equal

...

hash_map_create[string, int]

DV: mapC[K, V]

See Figure 7

dispatch vector
mapC[string, int]

. . .

object
mapC[string, int]

hash_map_create[string, int]
routine object

Figure 8: Routine Object Layout

stored in the dispatch vector of the calling context.
Figure 8 shows the necessary data structures for

the routine object hash map create[string,int]. As just
discussed, the dispatch vector contains a pointer to the
array new routine object that hash map create invokes
to create a new array, and a pointer (DV) to the dispatch
vector for mapC[string, int] that hash map create uses
to build the new mapC object.

In summary, whenever a piece of parameterized code
runs in the system, there is an associated dispatch vector
that contains information for the particular instantiation
of the code that is running. For method code, the
associated dispatch vector is the dispatch vector of
the method’s object; for routine code, the associated
dispatch vector is the dispatch vector of the routine
object. In addition to the usual entries for methods, a
dispatch vector contains three kinds of entries:

1. A call to a method described in a where clause
requires a pointer to a stub routine that handles
the appropriate method invocation, e.g., K.equal in
Figure 7.

2. Use of a parameterized object constructor requires
a pointer to the dispatch vector that is installed in
the object, e.g, DV in Figure 8.

11

3. A call to a routine instantiation requires a pointer
to the object for the instantiation, e.g., array new in
Figure 8.

The format of the dispatch vector is determined
by inspecting the actual code of the parameterized
implementation. Since calling code does not depend
on the layout of (this part of) the dispatch vector, this
inspection does not prevent separate compilation.

Dispatch vector entries can be filled in at link
time, since the identity of all classes and routines
involved is known at that point. In the Theta
implementation, the linker performs instantiations
lazily, generating only those dispatch vectors that
are needed by existing code. Since some dispatch
vectors contain pointers to other dispatch vectors or
to procedure objects that contain dispatch vectors,
the instantiation process is recursive. In certain
pathological implementations, the instantiation process
cannot complete, because infinitely many instantiations
must be generated [ALS78]; linking fails in this
case. The problem could be solved by deferring some
instantiations until run time, but recursive instantiations
are not a problem in practice.

The technique described here has low cost in terms
of both space and time. It is fast because most work
is done at link time. A call to a where-routine is
roughly twice as expensive as an ordinary method call.
All objects belonging to the same instantiation of a
parameterized implementation share the same dispatch
vector(s). This implementation technique also supports
specialized implementations of parameterized types,
such as the special implementation of set[char] that
uses bitstrings.

7 Conclusions

In this paper we have argued that full support for
the construction of generic code requires both subtype
polymorphism and parametric polymorphism. Our
main contribution is to bring together in one place a
discussion of all of the language design issues involved
in providing both kinds of polymorphism. In addition,
using a new programming language, Theta, as an
example, we have presented a coherent set of design
decisions.

We showed that support for modular programming
and separate compilation requires a mechanism for
specifying constraints on the type parameters of a

parameterized abstraction. We explained why subtypes
cannot be used to capture constraints, and we presented
a simple alternative, where clauses. We compared
where clauses with constraint mechanisms in other
languages such as Emerald and Rapide. Where clauses
are both powerful and easy to use.

We discussed the advantages of having declared sub-
typing as opposed to derived subtyping: declared sub-
typing produces a finer-grained type system, allowing
the type checker to catch more errors, and it allows
for method renaming. We also discussed the relation-
ship between subtype and parametric polymorphism by
analyzing the subtype relations that exist among in-
stantiations of parameterized types. We argued that
it is desirable to support only relations of the form
P2[T] P1[T] for all T. We ruled out other relations,
such as P[S] P[T] when S T, since they are rarely
valid and the limitation allows for a very efficient im-
plementation of method dispatch. We also described a
way of implementing parameterized routines and types
that is efficient in both space and time.

Acknowledgments

The authors gratefully acknowledge the help given them
by Andrew Black, Luca Cardelli, Norm Hutchinson,
Roberto Ierusalimschy, John Mitchell, Raymie Stata,
members of the Theta design group, and the referees.

References

[ALS78] Russell Atkinson, Barbara Liskov, and Robert
Scheifler. Aspects of implementing CLU.
In Proceedings of the ACM 1978 Annual
Conference, October 1978.

[BH95] Andrew Black and Norman Hutchinson, Au-
gust 1995. Personal communication.

[BHJ 87] Andrew Black, Norman Hutchinson, Eric Jul,
Henry Levy, and Larry Carter. Distribution and
abstract types in Emerald. IEEE Transactions
on Software Engineering, SE-13(1):65–76,
January 1987.

[BSvG95] Kim Bruce, Angela Schuett, and Robert van
Gent. Polytoil: A type-safe polymorphic
object-oriented language. In ECOOP’95, 1995.

[Car84] Luca Cardelli. A semantics of multiple
inheritance. In Semantics of Data Types, LNCS
173, pages 51–68. Springer-Verlag, 1984.

12

[CCH 89] Peter Canning, William Cook, Walter Hill, John
Mitchell, and Walter Olthoff. F-bounded poly-
morphism for object-oriented programming. In
Proceedings of the Conference on Functional
Programming Languages and Computer Archi-
tecture, pages 273–280, 1989.

[Coo89] William R. Cook. A proposal for making Eiffel
type-safe. In ECOOP’89, pages 52–72, October
1989.

[DMSV89] R. Dixon, T. McKee, P. Schweitzer, and
M. Vaughan. A fast method dispatcher for com-
piled languages with multiple inheritance. In
OOPSLA ’89 Conference Proceedings, pages
211–214, New Orleans, LA, October 1989.
Published as SIGPLAN Notices 24(10), Octo-
ber, 1989.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The
Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[JL78] Anita K. Jones and Barbara Liskov. A language
extension for expressing constraints on data
access. CACM, 21(5):358–367, May 1978.

[KLMM94] Dinesh Katiyar, David Luckham, John
Mitchell, and Sigurd Melda. Polymorphism
and subtyping in interfaces. ACM SIGPLAN
Notices, 29(9):22–34, August 1994.

[LCD 94] Barbara Liskov, Dorothy Curtis, Mark Day,
Sanjay Ghemawhat, Robert Gruber, Paul
Johnson, and Andrew C. Myers. Theta
Reference Manual. Programming Method-
ology Group Memo 88, MIT Labora-
tory for Computer Science, Cambridge,
MA, February 1994. Also available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[LG86] Barbara Liskov and John Guttag. Abstrac-
tion and Specification in Program Develop-
ment. Cambridge MA: MIT Press, New York:
McGraw Hill, 1986.

[LSAS77] Barbara Liskov, Alan Snyder, Russell Atkinson,
and Craig Schaffert. Abstraction mechanisms
in CLU. CACM, 20(8):564–576, August 1977.

[LW94] Barbara Liskov and Jeannette M. Wing. A
behavioral notion of subtyping. ACM TOPLAS,
16(6):1811–1841, November 1994.

[Mey86] Bertrand Meyer. Genericity versus inheritance.
In Proceedings of OOPSLA ’86, September
1986.

[ML94] Andrew C. Myers and Barbara Liskov. Effi-
cient Implementation of Parameterized Types in
an Object-Oriented Language. Programming
Methodology Group Memo 91, MIT Lab for
Computer Science, July 1994. Also available at
ftp://ftp.pmg.lcs.mit.edu/pub/thor/param-
impl.ps.gz.

[Mye94] Andrew C. Myers. Fast Object Operations in
a Persistent Programming System. Technical
Report MIT/LCS/TR-599, MIT Laboratory for
Computer Science, Cambridge, MA, January
1994. Master’s thesis.

[Mye95] Andrew.C. Myers. Bidirectional object layout
for separate compilation. In OOPSLA ’95
Conference Proceedings, Austin, TX, October
1995.

[Nel91] Greg Nelson, editor. Systems Programming
with Modula-3. Prentice-Hall, 1991.

[RIR93] Noemi Rodrigues, Roberto Ierusalimschy, and
José L. Rangel. Types in school. ACM
SIGPLAN Notices, 28(8):81–89, August 1993.

[Ros88] John R. Rose. Fast dispatch mechanisms for
stock hardware. In OOPSLA ’88 Conference
Proceedings, pages 27–35, San Diego, CA,
October 1988. Published as SIGPLAN Notices
23(11), November, 1988.

[SCW85] Craig Schaffert, Topher Cooper, and Carrie
Wilpolt. Trellis Object-Based Environment,
Language Reference Manual. Technical Report
DEC-TR-372, Digital Equipment Corporation,
November 1985. Published as SIGPLAN
Notices 21(11), November, 1986.

[Str87] Bjarne Stroustrup. Multiple inheritance for
C++. In Proceedings of the Spring ’87 Euro-
pean Unix Systems Users’s Group Conference,
Helsinki, May 1987.

13

