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Interaction of the internal states of an atom with spatially dependent standing-wave cavity field can impart

position information of the atom passing through it leading to subwavelength atom localization. We recently

demonstrated a different regime of atom localization �Phys. Rev. A 72, 013820 �2005��, namely sub-half-

wavelength localization through phase control of electromagnetically induced transparency. This regime cor-

responds to extreme localization of atoms within a chosen half-wavelength region of the standing-wave cavity

field. Here we present further investigation of the simplified model considered earlier and show interesting

features of the proposal. We show how the model can be used to simulate a variety of energy-level schemes.

Furthermore, the dressed-state analysis is employed to explain the emergence and suppression of the localiza-

tion peaks, and the peak positions and widths. The range of parameters for obtaining clean sub-half-wavelength

localization is identified.

DOI: 10.1103/PhysRevA.73.023813 PACS number�s�: 42.50.Ct, 42.50.Pq, 42.50.Gy, 32.80.Lg

I. INTRODUCTION

Precise localization of atoms has attracted considerable
attention in recent years. Optical manipulations allow prob-
ing the center-of-mass degrees of freedom of atoms with
subwavelength precision. The interest in subwavelength
atom localization is largely due to its applications to many
areas requiring manipulations of atomic center-of-mass de-
grees of freedom, such as laser cooling �1�, Bose-Einstein
condensation �2�, and atom lithography �3� along with fun-
damentally important issues such as measurement of the
center-of-mass wave function of moving atoms �4�.

Optical techniques for position measurements of an atom
are of considerable interest from both theoretical and experi-
mental point of view mainly due to higher spatial resolution
they offer. Several schemes have been proposed for the lo-
calization of an atom using optical methods �5�. For ex-
ample, in the optical virtual slits scheme the atom interacts
with a standing-wave field and imparts a phase shift to the
field. Measurement of this phase shift then gives the position
information of the atom �6�. Another related idea based on
phase quadrature measurement is considered in Ref. �7�.
Kunze et al. �8� demonstrated how the entanglement between
the atomic position and its internal state allows one to local-
ize the atom without directly affecting its spatial wave func-
tion. It is shown that, by using Ramsey interferometry, the
use of a coherent-state cavity field is better than the classical
field to get a higher resolution in position information of the
atom �9�. Resonance imaging methods have also been em-
ployed in experimental studies of the precision position mea-
surement of the moving atoms �10,11�.

More recently, atom-localization methods based on the
detection of the spontaneously emitted photon by the atom
while it is interacting with the classical standing-wave field

are considered �12–15�. It is, however, important to note that
from an experimental point of view, observation of the spon-
taneous emission spectrum is very tricky and difficult. In this
context, another scheme based on a three-level �-type sys-
tem interacting with two fields, a probe laser field and a
classical standing-wave coupling field, is used for atom lo-
calization by Paspalakis and Knight �16�. They observe that
in the case of a weak probe field, measurement of the popu-
lation in the upper level leads to subwavelength localization
of the atom during its motion in the standing wave. Thus, in
essence, this scheme uses absorption of a probe field for
atom localization. Atomic coherence effects, such as coher-
ent population trapping, have also been shown to be useful
for subwavelength localization of atoms by Agarwal and Ka-
pale �17�, where monitoring the coherence of the trapping
state gives rise to subwavelength localization of an atom to a
pre-chosen precision through the ratio of the square of Rabi
frequencies of the strong standing-wave drive field and a
weak probe field.

The authors �with collaborators� recently proposed a sub-
wavelength atom localization scheme through phase control
of the absorption of a weak probe field by the atom. A modi-
fied �-type level scheme with an extra level and the drive
fields forming a complete loop was shown to introduce a
phase dependence in the response of the atomic medium to a
weak probe field. This phase controllable atomic response
was shown to give rise to tunable group velocity from sub-
luminal to superluminal in a single system �18�. By consid-
ering one of the drive fields to be a standing-wave field of a
cavity it was shown that the same scheme can be used to
localize an atom flying through the standing-wave field to
subwavelength domain �19�.

This paper is a sequel to the earlier paper �19�, henceforth
referred to as paper I. In paper I a restricted parameter range
of the model was considered to show the possibility of sub-
half-wavelength localization. In this paper further investiga-
tions of the analytical results are carried out to show how the
model can be used to simulate a variety of atomic systems
with varying energy-level spacings, different atomic dipole
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matrix elements, and decay properties. Appropriate param-
eters required to obtain different regimes of localization are
studied in detail. A dressed-state approach is also considered
to give insight into the results obtained.

The paper is organized as follows: For completeness, a
brief description of the procedure to determine the suscepti-
bility of the atom to a weak probe field is given in Sec. II.
Then, in Sec. III A, the susceptibility expression is studied in
detail to arrive at the conditions for observing atom localiza-
tion. Various parameter ranges for the drive field Rabi fre-
quencies and decay properties are considered in order to
simulate variety of atomic species and to clarify experimen-
tally controllable features and properties of the model and
numerical results and their explanation through the analytical
probe-susceptibility expression is presented in Sec. III B. A
simple dressed-state treatment is presented in Sec. III C in
order to explain the results obtained in the earlier sections.
Finally the conclusion is presented.

II. MODEL AND EQUATIONS

The schematics of the proposed scheme are shown in Fig.
1. We consider an atom, moving in the z direction, as it
passes through a classical standing-wave field of a cavity.
The cavity is taken to be aligned along the x axis. The inter-
nal energy-level structure of the atom is shown in Fig. 1�b�.
The radiative decay rates from the level �a1� and �a2� to level
�c� are taken to be �1 and �2. The upper level �a1� is coupled
to the level �a2� and further the level �a2� is coupled to level
�b� via classical fields with Rabi frequencies �3 and �2,
respectively. In addition, the upper level �a1� is coupled to
level �b� via a classical standing-wave field having Rabi fre-
quency �1. It should be noted that the Rabi frequency of the
standing wave is position dependent and is taken to be
�1�x�=�1sin �x. Here �1�x� is defined to include the posi-

tion dependence and � is the wave vector of the standing-
wave field, defined as �=2� /�, where � is the wavelength
of the standing-wave field of the cavity. We assume that the
atom is initially in the state �c� and interacts with a weak
probe field that is near resonant with �c�→ �a1� transition.

The detuning of the probe field on this transition is taken to
be �. We assume that the center-of-mass position distribution
of the atom is nearly uniform along the direction of the
standing wave. Therefore we apply the Raman-Nath approxi-
mation and neglect the kinetic part of the atom from the
Hamiltonian �20�. Under these circumstances, the Hamil-
tonian of the system in the rotating-wave approximation can
be written as

H = H0 + HI, �1�

where

H0 = � 	a1
�a1��a1� + � 	a2

�a2��a2� + � 	b�b��b� + � 	c�c��c� ,

�2�

and

HI = −
�

2
��1e−i
1tsin �x�a1��b� + �2eikx cos �2e−i
2t�a2��b�

+ �3eikx cos �3e−i
3t�a1��a2� +
Ep�a1c

�
e−i
pt�a1��c�	 + H.c.

�3�

Here 	i are the frequencies of the states �i� and 
i are the
frequencies of the optical fields, and �2, �3 are the angles
made by the propagation direction of the fields �2 and �3

with respect the x axis, respectively. The subscript p stands
for the quantities corresponding to the probe field—i.e., Ep

and 
p are the amplitude and frequency of the probe field.
Also �a1c is the dipole matrix element of the �c�→ �a1� tran-

sition. For simplicity, we assume that the Rabi frequencies
�1 and �2 are real and �3 is complex—i.e., �3=�3e−i�.
This choice of imparting a carrying phase to field 3 is only
for the convenience of calculations. As will become clear
later, only the relative phase of the three fields is important
and absolute phases do not matter. The dynamics of the sys-
tem is described using density-matrix approach as


̇ = −
i

�
�H,
� −

1

2

�,
� , �4�

where 
� ,
�=�
+
�. Here the decay rate is incorporated

into the equation by a relaxation matrix �, which is defined
by the equation �n �� �m�=�n�nm. The detailed calculations of

these equations are given in the Appendix of paper I.
Our goal is to obtain information about the atomic posi-

tion from the susceptibility of the system at the probe fre-
quency. Therefore we need to determine the steady-state
value of the off-diagonal the density-matrix element 
a1c.

After necessary algebraic calculation and moving to appro-
priate rotating frames, we obtain a set of density matrix
equations. To determine 
a1c we only need the following

equations:


̇̃a1c = − �i�	a1c − 
p� +
1

2
�1

̃a1c +

i

2
�3e−i�eikx cos �3
̃a2c

+
i

2
�1sin �x
̃bc − i

Ep�a1c

2�
�
̃a1a1

− 
̃cc�,

FIG. 1. The model: �a� The cavity supports the standing-wave

field �1� corresponding to Rabi frequency �1. Two other fields �2,

3� are applied at an angle as shown. The atom enters the cavity

along the z axis and interacts with the three drive fields. The whole

process takes place in the x-z plane. �b� The energy-level structure

of the atom. The probe field, denoted by Ep, is detuned by an

amount � from the �a1�− �c� transition. The fields �2, 3� shown in �a�
correspond to the fields with Rabi frequencies �2 and �3, respec-

tively. The decay rates from the upper levels �a1� and �a2� are taken

to be �1 and �2, respectively.
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̇̃a2c = − �i�	a2c − �
p − 
3�� +
1

2
�2

̃a2c +

i

2
�2eikx cos �2
̃bc

+
i

2
�3ei�e−ikx cos �3
̃a1c − i

Ep�a1c

2�

̃a2a1

,


̇̃bc = − �i�	bc + 
1 − 
p� + �bc�
̃bc +
i

2
�1sin �x
̃a1c

+
i

2
�2e−ikx cos �2
̃a2c − i

Ep�a1c

2�

̃ba1

. �5�

The ˜ denotes that we are working in an appropriate rotated
frame so as to eliminate explicit time dependence of the light
fields from the rate equations. It is also to be noted that for
the populations—i.e., the diagonal density-matrix
elements—rotation has no effect. Thus 
̃cc=
cc and so on.

As we know, the dispersion and absorption are related to
the susceptibility of the system and is determined by 
a1c. We

take the probe field to be weak, and calculate the polarization
of the system to lowest order in Ep. We keep all the terms of
the driving fields but keep only linear terms in the probe
field. The atom is initially in the ground state �c�; therefore
we use


̃cc
�0� = 1, 
̃ba1

�0� = 0, 
̃a2a1

�0� = 0, 
̃a1a1

�0� = 0. �6�

Equation �5� can then be simplified considerably to obtain


̇̃a1c = − �i� +
1

2
�1

̃a1c +

i

2
�3e−i�eikx cos �3
̃a2c

+
i

2
�1sin �x
̃bc + i

Ep�a1c

2�
,


̇̃a2c = − �i� +
1

2
�2

̃a2c +

i

2
�3ei�e−ikx cos �3
̃a1c

+
i

2
�2eikx cos �2
̃bc,


̇̃bc = − i�
̃bc +
i

2
�1sin �x
̃a1c +

i

2
�2e−ikx cos �2
̃a2c. �7�

Here we have introduced the detuning of the probe field and
the frequency difference between levels �a1� and �c�,

� = 	a1c − 
p = 	a2c + 
3 − 
p = 	bc + 
1 − 
p. �8�

Here we have also assumed that �bc=0. It can be easily seen
that these set of equations can also be used to simulate a
variety of level schemes as shown in Fig. 2, after redefining
the decay rates accordingly as discussed in the caption. The
scheme in Fig. 2�b� requires special attention as the positions
of the states �a1� and �a2� are reversed in the order of increas-
ing energy compared to the other level schemes. This entails
small change in the rotating frame that is chosen to arrive at
the simplified density-matrix equations. The transformation
required can be accomplished by replacing the complex Rabi
frequency �3 by its complex conjugate �3

* and changing its
frequency 
3 to −
3. The density-matrix equations so ob-
tained are identical to the set �7� given above except for the
redefinition of the phase from �→−�. However, as will be
seen later, the phase enters through the term cos � in the
response of the atoms to a weak probe field, thus the final
results are identical for all the models discussed in Fig. 2.

This set of equations can be solved analytically; the de-
tailed discussion can be found in the Appendix of paper I.
Thus the off-diagonal density-matrix element corresponding
to the probe transition is obtained as


a1c = 
̃a1ce
−i
pt =

1

Y�
��2

2 − 4�2 + 2i�2��Ep�a1ce
−i
pt,

�9�

where we have chosen, without loss of generality, �3=� /4,
�2=� /2+� /4, moreover, Y is defined to be

Y = A + iB , �10�

with

A = − 8�3 + 2���1
2sin2�x + �2

2 + �3
2� + 2�1�2�

+ �1�2�3�ei� + e−i��sin �x ,

B = 4�2��1 + �2� − �1�2
2 − �2�1

2sin2�x . �11�

The susceptibility at the probe frequency can be written as

FIG. 2. Several level schemes that can be studied using our model in Fig. 1�b�, within the weak probe limit. The decay rates are defined

as follows: �a� �1=�a1b+�a1c and �2=�a2b+�a2c; �b� �1=�a1b+�a1c and �2=�a2a1
+�a2b+�a2c; �c� �1=�a1a2

+�a1b+�a1c and �2=0; �d�
�1=�a1a2

+�a1b+�a1c and �2=�a2b. Here �ij corresponds to the spontaneous decay rate from level �i� to level �j�. It can be noted that the

positions of levels �a1� and �a2� in �b� are reversed compared to the other schemes. Slight modifications in the equations are needed to

simulate level scheme in �b� with the equations given in the text. The transformation required is: the complex Rabi frequency �3→�3
*, i.e.,


3→−
3. It can be easily shown that the results remain unchanged under these transformations, as discussed in the text.
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� =
2N�a1c
a1c

�0Ep

ei
pt =
2N��a1c�

2

�0

��2
2 − 4�2 + 2i�2��

Y�
,

�12�

where N is the atom number density in the medium. The real
and imaginary parts of susceptibility are given as

�� =
2N��a1c�

2

�0 � Z

��2

2 − 4�2�A + 2�2�B� , �13�

�� =
2N��a1c�

2

�0 � Z

2�2�A − ��2

2 − 4�2�B� , �14�

where Z=YY* and �=��+ i��. It is imperative to point out
that the phase enters the susceptibility expression only
through the quantities A and Y. Even the phase dependence
of Y is only through the quantity A. Moreover, we observe
that the phase-dependent term in A is �1�2�3�ei�

+e−i��sin �x. Thus the phase factor could very well have

come from either of the three driving fields. As pointed out
earlier, if all the fields had phase dependence, only the col-
lective phase would be important and no individual phase-
dependent terms would occur. This is because the Rabi fre-
quencies �i in all the other terms appear through �i

2, which
is ��i�2 for a complex Rabi frequency �i= ��i �ei�i. The col-
lective phase can be easily determined to be �=�2+�3−�1,
by repeating the susceptibility calculation. Here �i is the

phase of the complex Rabi frequency �i of the ith driving
field.

In the next section we consider the imaginary part of the
susceptibility �� in detail and obtain various conditions for
subwavelength localization of the atom.

III. RESULTS AND DISCUSSIONS

We study the expression �14� for the imaginary part of the
susceptibility on the probe transition in greater detail in the
following discussion. It is clear that ��—i.e., probe
absorption—depends on the controllable parameters of the
system like probe field detuning, amplitudes, and phases of
the driving fields. First we present analytical considerations
of the probe absorption maxima and its relation to the atom
localization. Then we present the results of the numerical
study for a variety of different sets of values of the param-
eters. In the end we present the dressed-state analysis to shed
some light on the numerical results.

A. Probe absorption maxima

Noting the dependence of �� on sin �x, it is, in principle,
possible to obtain information about the x position of the
atom as it passes through the cavity by measuring the probe
absorption. Nevertheless, for precise localization of the atom
the susceptibility should show maxima or peaks at certain x

positions. We obtain the conditions for the presence of peaks
in �� in the discussion to follow. Equation �14� can be re-
written as follows, using N=2N ��a1c�2 / ��0:

��

N
=

A + B��x�

�1�A + 2B��x�� + �2
2��1

2sin2�x − 4�2�2 + �8�3 − 2���1
2sin2�x + �2

2 + �3
2� − 2�1�2�3cos � sin �x�2

=
A + B��x�

�1�A + 2B��x�� + �2
2�1

4�sin �x − R1�2�sin �x − R2�2 + 4�2�1
4�sin �x − R3�2�sin �x − R4�2

, �15�

where

A = �1�4�2�2
2 + ��2

2 − 4�2�2� ,

B��x� = �2��1
2�2

2sin2�x + 4��1�2�3cos � sin �x + 4�2�3
2�

= �2�1
2�2

2�sin �x − L1��sin �x − L2� ,

L1,2 =
2��3

�1�2

�− cos � ± �cos2� − 1� ,

R1,2 = �
2�

�1

,

R3,4 =
1

2��1

�− �2�3cos �

± ��2
2�3

2cos2� − 4�2��2
2 + �3

2 − 4�2�� . �16�

It can be seen that the probe field absorption would peak at
positions satisfying

sin �x = R1,2,3,4. �17�

The roots L1,2 do not contribute to the probe absorption
maxima as they appear in both the numerator and the de-
nominator and these contributions mutually cancel. More-
over, for a given set of parameters not all four roots contrib-
ute to the probe absorption maxima, as they have different
weighting factors given by �2�1

4 and 4�2�1. The dominant
weighting factor, being independent of position, governs
which set of roots 
R1,2� or 
R3,4� will be important for dic-

tating the atom-localization positions.
It can be clearly seen that for �2=0 the maxima positions

governed by R1,2 do not occur; whereas for �=0 the roots
R1,2 are more important compared to R3,4. In the regime
where both � and �2 are zero interesting consequences
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follow. This competition of the roots gives rise to various

interesting regimes of parameters and possibilities in the

atom localization. In the following we will throw light on

the interesting properties arising due to this freedom. It

can be noted that in paper I the roots L1,2 and R1,2 did not

appear as �2 was taken to be zero, which leads to B��x�=0.

For completeness we give the expression of �� as used in
paper I:

�� =
2N��a1c�

2

��0

�1��2
2 − 4�2�2

�1
2��2

2 − 4�2�2 + �8�3 − 2���1
2sin2�x + �2

2 + �3
2� − 2�1�2�3cos � sin �x�2

=
2N��a1c�

2

��0

�1��2
2 − 4�2�2

�1
2��2

2 − 4�2�2 + 4�2�1
4�sin �x − R3�2�sin �x − R4�2

. �18�

A direct calculation of �� from Eq. �14� shows that the
positions of maxima of do not strongly depend on the decay
parameters, and are functions of only the drive field Rabi
frequencies and phases. However, for a chosen value of the
detuning the widths of the peaks observed in the plots of ��

vs �x depend on the values of the decay parameters. To make
a connection with the positions of maxima predicted by the
roots of the denominator in Eq. �15�, i.e., the roots R1,2,3,4,
we study these roots in detail in the following discussion.

The probe field detunings required to obtain probe field
absorption peaks as a function of the x coordinate along the
cavity field axis can be obtained by solving equations
sin �x=R1,2,3,4 for �. We use generic label � to these solu-
tions to distinguish them from an experimentally chosen and
fixed value of the probe field detuning �. It can be further
noted that the roots � have spatial dependence as they signify
the value of the probe field detuning at a given position along
the cavity standing-wave field so that probe absorption expe-
riences maxima. Thus for a chosen value of the detuning �,
the equation ��x�=� will be satisfied only at some spatial

points; this gives rise to maxima in the probe absorption
along the standing-wave field. Once such increased probe
maxima is observed it would give rise to localization of at-
oms at one of the positions given by ��x�=�. This is illus-

trated in the discussion to follow.
We denote the solutions for sin �x=R1,2 as �1,2 and the

solutions for sin �x=R3,4 as �3,4,5. It can be easily shown that

�1,2 = �
�1

2
sin �x �19�

and �3,4,5 are the solutions of sin �x=R3,4, i.e., the cubic
equation

4�3 − ���1
2sin2�x + �2

2 + �3
2� − �1�2�3sin �x cos � = 0.

�20�

When the relative phase �=� /2, the above equation can be
readily solved to give

�3 = 0, �4,5 = ±
1

2
��1

2sin2�x + �2
2 + �3

2. �21�

Thus for �=� /2 the above equations give the values of the
probe detuning for observing probe absorption maxima as a

function of the spatial position along the standing-wave field.
It is clear that for the probe detuning such that �=�3�x�=0,

atom localization is not possible as the probe absorption
would be the same at all spatial positions. We do not give
expressions for �3,4,5 for the case of �=0 as they are quite
complicated; however, they can be readily evaluated numeri-
cally to verify the predictions.

It can also be noted that for the simplified case of
�2=�3=� the �3,4,5 expressions are considerably simplified
and are given by

�3 = −
1

2�1sin �x ,

�4,5 =
1

4
��1sin �x ± ��1

2sin2�x + 8�2� for � = 0.

�22�

This means that �3=�1 for �=0; however, we also have

L1,2 = −
2�

�1

for � = 0,

L1,2 =
2�

�1

�− 1 ± i� for � = �/2. �23�

Thus L1,2=R1, therefore the peaks arising from
sin �x=R1—i.e., �1—will be completely suppressed for
�=0. Moreover, �2 will only appear if �2 is considerably
larger compared to all other parameters of the system. The
numerical study presented in the next subsection suggests
that for �2�10�, the roots �1,2 to start showing up. It
can also be seen that �1 starts showing up for �=0 if
�1�10�2. These features can be understood by observing
Eq. �15� and comparing the weighting coefficients of various
roots of the numerator and denominator. These features are
confirmed by the numerical study presented in the next sub-
section.

B. Numerical considerations

In the discussion to follow we plot the roots �1,2,3,4,5 as a
function of �x and show their connection with the behavior
of �� vs the probe detuning along the cavity field.

To make contact with our earlier work, paper I, we first
consider the parameter range with �2=0 and �2=�3 and
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study the effect of increasing �2 on that result. The findings
are summarized in Fig. 3. In the first column we plot the
roots �1,2,3,4,5 so that their relation to the probe absorption
maxima can be established. Then the contour-density plot of
�� vs the probe-field detuning � and the �x and �� vs �x for
chosen value of � are plotted for different values of �2 start-

ing with �2=0. The color of the line plots correspond to the
horizontal lines in the first-column plots for the respective
phase value. This correspondence helps to determine the po-
sitions and number of the peaks in the line plots from the
places at which the horizontal line intersects the roots
�1,2,3,4,5��x�. It is clear that the roots �3,4,5, denoted by solid

FIG. 3. �Color online� The effect of �2 on the localization. The parameters are �1=30, �2=�3=20, and �1=1. Top three rows: �=0;

bottom three rows: �=� /2. The first column shows the plots of the roots �1,2 using dashed lines and that of �3,4,5 by solid lines. The dashed

horizontal lines labeled �a�–�f� correspond to values of detuning � chosen for the plots �� vs �x in the line plots shown later in each row for

different values of �2. The detuning values are as follows: �a� �=0, �b� �=5, �c� �=13, �d� �=0, �e� �=12, and �f� �=16. The line plots

are preceded by three-dimensional �3D� surface plot and contour plot of �� to give an idea of its dependence on � as well as position, �x.

The brightness of a given location in the contour plot is proportional to its height in a 3D plot of �� vs � and �x. It can be observed that for

�2=�3=� the roots �1 and �3 coincide. The roots �4,5 lose their significance as �2 increases �see the surface plots in the second column�.
This result can be explained through the dressed-state approach as described in the text. For �=0 and �2=10� the root �1=�3 dominates as

opposed to �4,5 as expected. Despite expectation the root �2 never appears for � different from � /2. It can be noticed that for �=0 and

nonzero �2 one might expect both the roots �1,2 to dominate, however, this is the case only when �=� /2.
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lines, are dominant most of the time as opposed to �1,2. The
same conclusion can be drawn from the dressed-state ap-
proach but for different reasons as discussed in the next sub-
section.

We label the dominant roots, �3,4,5, such that the root
crossing the �=0 line �for �=0� or the �=0 line itself �for
�=� /2� as �3, the root above the �=0 line as �4, and the
one below the �=0 line as �5 as seen in the first-column
plots in Fig. 3. Among the nondominant roots—denoted by
dashed lines in the first-column plots in Fig. 3—the root that
coincides with �3 is denoted as �1 and the other one is �2. It
can be noted that the �1,2 are independent of the relative
phase of the drive fields �. This labeling of the roots will be
used for the rest of the discussion.

In Fig. 3, we further observe that with increasing �2, the
roots �4,5 start diminishing. It is, however, to be noted that
this behavior can only be seen from the density plots of ��

and the plots of �3,4,5 themselves do not give this informa-
tion. Another way to explain the peak widths and their domi-
nance is through the decay rates of the dressed states. We
discuss the implications in the next subsection where we
evaluate the dressed states.

We consider the results depicted in the line plots in Fig. 3
in further detail. The effect of increasing �2 can be easily
seen from the peaks arising due to the roots �4,5, as seen in
the plots in the last column �labels �c� and �f�� of Fig. 3 for
both �=0 and � /2. We first consider the results for �=0.
For �2=0, out of the four peaks �corresponding to �=13�
label �c�� occurring in the first half-wavelength region, the
outer ones arise from �4 and the inner ones from �3. Thus the
expectation—from the surface and density plots—would be
that the inner roots would remain sharp and dominant while
the outer ones will lose their height and sharpness; this
expectation is confirmed by the line plots for �2=� and
�2=10�. The �=5� peaks, labeled by �b�, which arise solely
through �3 are unaffected by increasing the value of �2. The
same is true for the line plots labeled by �a�, which corre-
spond to the probe detuning of �=0, showing peaks at the
nodes of the cavity standing-wave field. Now we consider
the case of �=� /2. Here �3 coincides with the zero line,
hence for �2=0 the line plot labeled by �d� ��=0� gives

equal absorption at all spatial points but starts showing spa-
tial dependence as �2 increases which can also be clearly
seen from the surface and density plots in the �=0 region.
The �=16� peaks �labeled by �f��, in this case, arise from �4

and therefore diminish in height as �2 increases. The line
plots labeled by �e� ��=12�� show that �1,2 do not contribute

for this particular choice of parameters and show zero ab-
sorption for all values of �2. The results depicted in the line
plots coincide very well with the corresponding density and
surface plots.

The curves in Fig. 3, corresponding to the detuning
�=0, with labels �a� and �d�, show different behavior for
different phase values. For �=0 �label �a��, the height and
width of the peaks observed at the zero detuning of the probe
field are immaterial of the lifetime of level �2�, as they arise
from the zero eigenvalue of the dressed state which does not
contain any �2� component. This corresponds to a regime of
localization that is very common in several other localization
proposals, namely, the observance of localization peaks at

the nodes of the standing-wave cavity field. For �=� /2, the
�=0 value is special as it does not show any localization for
�2=0 �observe the plots labeled �d� in the lower three rows
of Fig. 3�. It can be seen that these peaks become sharper
with increasing �2, whereas the other line plots at different
detuning values show diminishing height and increasing
width of the peaks. This can be explained as follows: at
�=0 and �2�0, roots �1,2 dominate as opposed to �3,4,5 for
all other values of the detunings. Thus, for �=� /2, the root
�=0 starts losing its significance as �2 increases and only the
nodal points show peaks which arise from �1,2, shown by
dashed-line plots in the first column. This feature is absent
for �=0 as �1 does not occur for the parameters of Fig.
3—as explained in the context of Eq. �23�—and �2 is not
large enough for �2 to show up compared to the dominant
root �3. However, with a different parameter range of values
this competition of roots can be seen for �=0 as depicted in
Fig. 4. It is also interesting to note that for �=0, in the
current figure, the localization peaks at the nodes of the cav-
ity standing-wave field are much sharper than the ones ob-
served for �=� /2.

Thus the general conclusion that can be drawn from Fig. 3
is that as �2 increases only the maxima due to the root �3 �for
�=0,�� and root �1,2 �for �=� /2� show sharp peaks and the
other peaks diminish in magnitude and sharpness. The drive
field parameters chosen in Fig. 3 were as that of the earlier
work in paper I except for the nonzero �2.

Now we study the effect of varying the amplitudes of the
drive fields and go beyond the condition �2=�3 on the
probe field absorption. The results are summarized in Fig. 4.
The results for �=� /2 in Fig. 4 are very similar to those in
Fig. 3, except for the plots labeled �e� corresponding to
�=12�. Here the detuning values are the same in both fig-
ures, however, the roots �4,5 have a larger range than before
due to their dependence on the drive-field Rabi frequencies.
Thus new peaks appear for the plots labeled �e� in Fig. 4 as
opposed to no peaks for corresponding plots in Fig. 3. These
peaks, however, diminish as �2 is increased making them
useless for atom localization for larger �2. For the case of
�=0 the roots �3,4,5 have completely different profiles com-
pared to their counterparts in Fig. 3. The plots labeled �a�
have the same behavior as in Fig. 3, being a very commonly
observed localization regime for the probe detuning �=0.
Moreover, the disappearance of the roots �4,5 with increasing
�2 exists in this parameter range as well. Due to this the
peaks in the plots labeled �b� and �c� lose their height and
sharpness with increasing �2.

We observe that an interesting regime arises when �2

�0 and the detuning of the probe field �=0. In this regime
the roots �1,2 dominate compared to �3=0 for �=� /2; it can
be clearly seen from the last column of plots in Fig. 4. The
significance of this is clearly apparent for �=� /2, where the
probe absorption is uniform over all spatial points for �3=0
when �2=0; however, as �1,2 become dominant due to in-
creasing �2 absorption peaks start emerging at positions cor-
responding to the nodes of the standing-wave field.

Another interesting feature observable from Fig. 4 is that
the root given by �3 is not dominant at all spatial positions as
it is in Fig. 3. With increasing �2 the relatively flat regions in
the plot of �3 vs �x start losing their significance as �2 is
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increased. This can be ascribed to the broadening of the reso-
nances owing to increased �2. When �3 remains close to the
line ��1 /2�sin �x, the state is very close to the first eigen-

state discussed in Eq. �27� and these parts remain sharp be-
cause �2 has no effect on the sharpness of this state, whereas
departure of �3 from ��1 /2�sin �x lines can be ascribed to

increasing components of state �a2�, which decays with �2, in
the dressed state. Thus the flat regions lose their significance
for localization with increasing �2.

Noting that for �2�� we can expect the behavior of the
probe absorption to be completely dominated by �1,2 as op-

posed to �3,4,5 we choose appropriate values for the param-

eters and consider the density plots of �� in Fig. 5. However,
this parameter range is unrealistic and also not very useful as
there will be four peaks observed for the detuning lying in
the interesting regime as both the �1,2 roots exist giving rise
to four intersection points in one wavelength for a chosen
value of the probe detuning. Nevertheless, the observations
made in the context of Eq. �23� can be confirmed from the
results in Fig. 5. Both the curves appearing for �=� /2 have
equal characteristics as they both are due to �1,2, which arise
from the same term in the denominator. However, for �=0,

FIG. 4. �Color online� Localization characteristics for nonidentical drive field intensities and interplay of different roots. The parameters

are �1=30,�2=20, �3=10, �1=1. Top three rows: �=0; bottom three rows: �=� /2. The structure of the figure is the same as Fig. 3. The

roots �4,5 lose their significance as �2 increases. This result can be explained through the dressed-state approach as described in the text. For

�=0 and �2=10� the roots �1,2 dominate as opposed to �3,4,5 as expected for �=� /2. This can be clearly seen as the �3=0 line becomes

insignificant and only the nodal points �arising from �1,2� remain with increasing �2.
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as discussed earlier, �1 is canceled by the roots of the nu-
merator and instead of �1, the sharper root �3 appears. Only
when �2 is sufficiently large �3 and �2 acquire same sharp-
ness as seen in the last column plots of Fig. 5.

Deeper understanding of the interplay of different roots
can be achieved through the dressed-state calculation. We
determine the dressed states in the next subsection and ex-
plain the above obtained results from a different point of
view.

C. Dressed-state approach

To understand the emergence of several roots for the
maxima of the probe absorption we consider the dressed-
state approach. The effective Hamiltonian, taking into ac-
count only the strong drive fields, can be expressed as

Heff

=
i

2�
0 �3e−i�eikx cos �3 �1sin �x

�3ei�e−ikx cos �3 0 �2eikx cos �2

�1sin �x �2e−ikx cos �2 0
�

�24�

in the basis 
�a1� , �a2� , �b��. Choosing �2=� /4 and �3=� /2

+� /4, in the above Eq. �24� we arrive at the secular equation

4�3 − ���1
2sin2�x + �2

2 + �3
2� − �1�2�3sin �x cos � = 0,

�25�

where � are the eigenenergies of the Hamiltonian. It can be
noted that Eq. �25� is identical to Eq. �20�. Thus there is a
direct connection between the detuning values for the probe
field at which it experiences maximum absorption, �3,4,5, and
the dressed-state eigenvalues. The dressed-state eigenvalues
� give the Stark shifts in the energy of the state �a�. When
this Stark-shifted transition �a�-�c� is probed by the weak
probe field, the resonances will occur at the points where the

probe frequency matches the energy-level difference be-
tween the Stark-shifted levels �a� and level �c�. If the probe
field frequency, or the detuning �, is chosen such that it is in
resonance with one of the dressed states then it experiences
absorption maxima. This can be expressed by a condition
�=�. It can, however, be noted that only the detuning solu-
tions �3,4,5 can be explained through the dressed-state ap-
proach and not the solutions �1,2, as explained later.

The actual form of the dressed states for general param-
eters is quite complicated and is not required as we are only
interested in locating the positions of the resonances in the
frequency space. In general, the probe absorption peaks are
quite sharp except at the stationary points along the x axis
and when �2 increases. This calculation can be extended fur-
ther to obtain the spontaneous decay rates of the dressed
states. These decay rates could then give more information
about the widths of the probe absorption maxima and the
loss of sharpness with increasing �2.

For a completely general set of parameters evaluating the
actual form of the dressed states and their spontaneous decay
rates is sufficiently involved compared to the information
that can be gained by such an exercise. Therefore we con-
sider a restricted regime of parameters to extract information
about the sharpness of the probe absorption peaks through
the dressed-state approach. Assuming �2=�3=� and �=0
we obtain the eigenvalues to be

�−
1

2
�1sin �x,

1

4
��1sin �x ± �8�2 + �1

2sin2�x�� �26�

with the corresponding eigenstates

1

�2�
− �a1�

0

�b�
�, N�±,0��

�a1�

c2
�±,0��a2�

�b�
� , �27�

where

FIG. 5. �Color online� Dominance of the roots R1,2. The parameter values are the same as in Fig. 3 except for �2. �a� �2=10�, �b�
�2=103�, �c� �2=104�. It can be seen that the less dominant maxima slowly vanish as �2 is increased. Thus for �2��1 only �=0 shows

peaks in probe absorption. As �2 increases R1 starts dominating which is the same as R3, however, for somewhat unrealistically larger �2,

both the roots R1 and R2 dominate. This result cannot be explained through the dressed-state approach but can be very clearly seen through

Eq. �15�.
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c2
�±,0� =

e−ikx/�2��3�1sin �x ± �8�2 + �1
2sin2�x�

2�2 + �1
2sin2�x ± �1sin �x�8�2 + �1

2sin2�x

�28�

and N�±,0� is the appropriate normalization constant, whereas
for �=� /2 we obtain the eigenvalues

�0, ±
1

2
�2�2 + �1

2sin �x� �29�

with the corresponding eigenstates

N1
��/2��

i�a1�

− i
1

�
e−ikx/�2�1sin �x�a2�

�b�
�, N2

�±,�/2��
c1

�±,�/2��a1�

c2
�±,�/2��a2�

�b�
� ,

�30�

where

c1
�±,�/2� =

− �1sin �x ± i�2�2 + �1
2sin2�x

i�1sin �x � �2�2 + �1
2sin2�x

,

c2
�±,�/2� =

− 2�e−ikx/�2

i�1sin �x � �2�2 + �1
2sin2�x

�31�

with N1
��/2�

and N2
�±,�/2�

being the appropriate normalization

constants.

The message to be taken from the dressed-state represen-

tation, N�ca1
�a1�+ca2

�a2�+cb �b��, is that the decay rate of

the corresponding dressed state is given by �= �ca1
�2�1

+ �ca2
�2�2, as the level �b� is the ground state. Therefore it is

clear that for �=0 the first dressed state has the decay rate

�1 /4 whereas the other states decay at the rate proportional

to �N�±,0��2��1+ �c2
�±,0��2�2�. This results in sharp localization

peaks when the probe field is in resonance with the first

dressed state and not so sharp localization peaks when the

probe field is in resonance with the other two dressed states.

In fact, with increasing �2, as seen already in the numerical

solutions, the latter two states contribute wider and wider
resonances which are increasingly useless for atom localiza-
tion. Similar conclusions can be drawn for the case of
�=� /2; all three roots are equally sharp when �2=0 and the
latter two roots increasingly lose their sharpness and de-
crease in amplitude for larger �2. This observation can be
confirmed through the plots in Figs. 3 and 4.

Another important conclusion that can be drawn from the
dressed-state eigenvalues is that for the case of �=0 the
eigenvalues can be made to be well separated by choosing
�1 to be little smaller than �2=�3=�. In such a case the
three roots do not overlap and the detuning can be chosen in
the range 
0,�1 /2� to obtain sub-half-wavelength localiza-

tion. We illustrate this regime in Fig. 6.

FIG. 6. �Color online� Illustrating the appropriate conditions to obtain good sub-half-wavelength probe absorption peaks along the cavity

field, i.e., sub-half-wavelength localization �observe the line plots in next-to-last column�. The parameters are �1=20�, �2=22�,

�3=25�, �1=�2=�. In the first column we show the plots of the roots �1,2 in dashed lines and that of the roots �3,4,5 in solid lines along with

labeled horizontal lines for chosen values of probe detuning � that are considered for more study in the last three columns. In the second

column the surface plots of �� and in the third column contour plots of �� are shown. Each row corresponds to a value of � as shown at the

start of the row. For �=5� �see plots �b�, �e�, and �h�� we show the probe absorption peaks to illustrate the regime of sub-half-wavlength

localization and its dependence on the phase �. We choose other � values as well to contrast the sub-half-wavelength regime. The condition

�2 ,�3��1 separates the central root �3 from the other ones �4,5 and provides localization for �=0 and no localization for �=� /2. The

localization peaks appear in the other sub-half-wavelength region for �=� as a mirror image �around the �x=0 line� of the line plots for

�=0.
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Moreover, this result holds true even when the drive fields
�2 and �3 do not have the same value, �2��3, and when
�1��2 ,�3. Another message to be taken from Fig. 6 is that
the results for �=� are a mirror image of that of �=0 taken
around the vertical line �x=0. This holds true for all param-
eter ranges, hence we have plotted only the nontrivial cases
�=0 and �=� /2 in all the other plots. The range of detuning
� spanned by the root �3 �for �=0,�� gives an ideal range
where sub-half-wavelength localization can be observed,
which can always be calculated by solving Eqs. �25� or �20�,
when it is very well separated from the other roots �4,5. This
happens as discussed above when �1��2 ,�3.

In spite of the use of the restricted parameters for the
evaluation of the dressed states the results are valid in gen-
eral as our numerical studies show. Nevertheless, it can be
noted that in the parameter range where �2 has a role to play
on the dominance of the roots �1,2 or when �2��1,2,3 the
results cannot be explained through the dressed-state ap-
proach �see Fig. 5�. This breakdown of the dressed-state ap-
proach for large �2 is easy to understand. Dressed-state cal-
culation is usually done with the assumption that the drive
field Rabi frequencies are large compared to all the other
parameters of the system, which breaks down in the large
�2�� limit, giving rise to roots which are not predictable by
the dressed states.

IV. CONCLUSIONS

We have studied of a variant of a �-type electromagneti-
cally induced transparency �EIT�, where a phase dependence

is introduced through the application of three driving fields
in a loop configuration. The advantage of the phase depen-
dence is in the tunability that becomes available to manipu-
late the response of the atomic medium to a weak probe
field. By choosing one of the drive fields to be a standing-
wave field of the cavity the phase dependence can be ex-
tended to obtain atom localization. We have given equations
that could be used to simulate several, apparently quite dif-
ferent, energy-level schemes. The effect of different param-
eters are studied with analytical as well as numerical tech-
niques. A dressed-state approach is developed and it is used
to explain the peak probe absorption and the peak widths.
Also a region of parameters is identified which gives clean
sub-half-wavelength localization for a wide range of probe
detunings, thus increasing the applicability of the model. In
this range of parameters we show how the choice of phase
governs whether localization would be observed or not.
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