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Subwavelength, Compact, Resonant Patch Antennas
Loaded With Metamaterials

Andrea Alù, Student Member, IEEE, Filiberto Bilotti, Senior Member, IEEE, Nader Engheta, Fellow, IEEE, and
Lucio Vegni, Member, IEEE

Abstract—We analyze the matching and radiation properties of
subwavelength resonant patch antennas filled with double-nega-
tive, double-positive, and/or single-negative metamaterial blocks.
Analyzing the theoretical limits inherently present when loading
such common radiators with metamaterials, we show how these
configurations may exhibit in principle an arbitrarily low resonant
frequency for a fixed dimension, but they may not necessarily ra-
diate efficiently when their size is electrically small. However, in-
teresting possibilities are suggested to overcome these limitations
by employing circular or more complex patch geometries in order
to select specific modes that, when appropriate loading ratios be-
tween the filling materials are chosen, also ensure radiation perfor-
mance comparable qualitatively with a regular patch radiator of
standard dimensions. Realistic numerical simulations, considering
material dispersion, losses and the presence of the antenna feed are
presented, showing how a practical realization is foreseeable. This
may open novel venues in the design of small-scaled radiators with
enhanced performance, which is of interest for many applications.

Index Terms—Metamaterials, miniaturized antennas, patch an-
tennas.

I. INTRODUCTION

N
OWADAYS the demand for compact radiators with suffi-
ciently high gain is rapidly increasing in many application

areas. In particular, modern wireless telecommunication sys-
tems and space communications require compact antennas with
high gain, which become even more relevant requirements when
the radiating elements have to be combined in large antenna ar-
rays for satellites, space vehicles, airplanes, etc.

Microstrip patch antennas, due to their inherent capabilities
(mainly low cost, low weight and low profile) are widely used in
those setups (see, e.g., [1] and [2]). Even though such antennas
are very thin compared to the operating wavelength
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in their cross section, however, still their transverse di-
mensions cannot be made arbitrarily short, since a regular patch
antenna resonates at a given frequency when its linear transverse
dimension is of the order of half wavelength.

The interest in overcoming this limitation represents one of
the main challenges for antenna designers. Over the years, in-
deed, several techniques have been proposed in order to squeeze
the resonant dimensions of patch radiators, while maintaining
their other radiation features. In this sense, the use of lumped
reactive loads, slots on the patch surface [3], shorting pins [4],
or high permittivity dielectrics may effectively lower the reso-
nant frequency for a fixed dimension of the patch [1], [2]. How-
ever, the radiation pattern, the cross-polarization levels and the
radiation efficiency may be worsened by the presence of such
elements or by the excitation of surface waves.

The use of artificial materials and surfaces, properly engi-
neered to improve some prescribed antenna features (impedance
matching, gain, bandwidth, efficiency, front-to-back ratio, etc.)
may represent a novel way of overcoming the limitations shown
by some of the well known techniques for reducing the antenna
size [5], [6]. In particular, the recent advances in the fabrica-
tion processes of ceramic oxide materials with high/low dielec-
tric constants make the material tapering an effective technique
to improve the performances of miniaturized antennas [7]. The
possibility of material design, in fact, offers new degrees of
freedom for the antenna designer. Several examples of com-
pact radiators have been recently proposed by Volakis and his
group [6], [8], exploiting properly textured engineered mate-
rials. The same group has also proposed the use of magnetic
photonic crystals (MPC) that seems to be a promising avenue for
achieving patch antenna miniaturization [9]. Other interesting
possibilities to miniaturize patch antennas through the use of
magnetodielectric materials and metasurfaces have also been re-
cently proposed by Mosallaei and Sarabandi [10], [11].

In this context of novel artificial materials an important role
may be played by metamaterials, which, due to their interesting
anomalous electromagnetic features, have attracted a great deal
of attention in recent years for several electromagnetic applica-
tions (see, e.g., [12]). Interest has been focused in particular on
the atypical wave interaction of metamaterials with anomalous
electromagnetic constitutive parameters, and in particular with
negative real part of their permittivity [ -negative ENG)], of
their permeability [ -negative (MNG)] or with both these quan-
tities being negative [double-negative (DNG)] in a specific fre-
quency range. Among the many applications, their use has been
proposed to overcome the diffraction limit in various configu-
rations. The phase compensation properties of DNG metama-
terials may allow synthesizing subwavelength cavity resonators

0018-926X/$25.00 © 2007 IEEE
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[13], waveguides [14] and scatterers [15] with resonant proper-

ties essentially independent on their effective physical size. In

the quasi-static limit, when the retardation effects are negligible

due to the small dimensions of such components and only one of

the two constitutive parameters interact with the field depending

on its polarization, even single negative (SNG) materials, i.e.,

ENG or MNG, may be utilized to achieve similar effects.

Such subwavelength resonances may be applied also to an-

tenna configurations. We have recently proposed their utiliza-

tion in planar [16] or cylindrical [17] subwavelength leaky-wave

antenna configurations and for enhancing the radiation from

subwavelength apertures in perfectly conducting screens [18],

[19]. The use of ENG or DNG covers to enhance the radia-

tion and matching properties of short electric dipoles has also

been proposed by Ziolkowski and his group (see, e.g., [20]),

and the idea of employing such covers, exciting higher-order

polariton resonances, in order to synthesize super-directive ra-

diators has been presented in [21]. As it happens in other ap-

plications [13]–[15], in these antenna problems the induced res-

onance happens fundamentally at the interface between mate-

rials with oppositely-signed constitutive parameters, allowing

to squeeze the resonant dimensions of these devices just around

these “complementary” interfaces [22], which do not depend

any more on their total electric size, but rather on specific filling

ratios between the metamaterials mentioned above and mate-

rials with positive constitutive parameters [which, for consis-

tency, we name double-positive (DPS)].

Applying these concepts to patch antennas is relatively

straightforward. A patch antenna resonance is closely associ-

ated with the cavity resonance of the volume between the patch

and the ground plane, closed at its sides by magnetic walls

[23], [24]. Mahmoud, inspired by the idea presented in [13],

has recently proposed a novel layout for squeezing the resonant

dimensions of circular ring patch antennas by loading it with

a concentric pair of DPS and DNG materials [25]. Applying a

cavity model to his geometry, in fact, he has shown that a proper

pairing of DPS and DNG materials may lead in principle to a

‘quasi-static’ resonant frequency, independent of the metallic

circular ring physical dimensions, but only depending on the

filling ratio of the substrate underneath the patch. Even though

dispersion and material loss were not considered in [25], and

the antenna radiating features in this subwavelength case have

not been analyzed, this interesting theoretical result has moti-

vated several groups to investigate the topic more thoroughly.

The results of some related studies have been presented in

a recent conference [26]–[28]. Ermutlu and Tretyakov [26]

have considered the subwavelength resonances of a rectangular

patch antenna loaded with a DPS-DNG pair, considering also

the DNG material dispersion (which is necessary and non-neg-

ligible in any passive material at the frequencies characterized

by negative parameters [29]). They showed how the DPS-DNG

loading may reduce considerably the resonant frequency also

in this rectangular geometry [26] for the dominant mode.

Petko and Werner have shown how it is possible to excite

the (i.e., azimuthally independent) resonant mode in

subwavelength circular patches [27]. All these results [25]–[27]

mentioned above, however, have considered only the possibility

that resonant modes may be supported by such subwavelength

Fig. 1. A rectangular patch antenna loaded with a transversally inhomogeneous
substrate.

radiators, without considering their radiation properties. As we

show in the following, in fact, these proposed layouts may not

properly radiate, unless specific modes are selected and excited.

Portions of these results, together with some of the analyses

reported in the following, have been orally presented by the

authors in [28].

In this paper, we thoroughly revisit the theory of patch an-

tennas loaded by metamaterials to show how a suitable pairing

of metamaterials and standard dielectrics may indeed allow a

subwavelength resonance in such structures. We find the neces-

sary and sufficient conditions to get such quasi-static resonances

for patch antenna setups. Then, we study theoretically the radi-

ation properties of such subwavelength patches, showing which

configurations may be designed to properly radiate in free space.

Finally, we verify some optimized designs through full-wave

numerical simulations, taking into account dispersion, losses

and feeding networks for these devices. The results we present

are encouraging for a future practical realization and may repre-

sent an interesting alternative way to build compact and efficient

patch radiators.

II. CAVITY MODEL: RESONANT FREQUENCIES AND

RADIATION PROPERTIES

A. Rectangular Patch

Consider the rectangular patch antenna depicted in Fig. 1. It

consists of a metallic patch with transverse dimensions

placed over a ground plane (distant ). The underneath substrate

is inhomogeneous, filled with two isotropic and homogeneous

materials with permittivity and permeability , and

, , in general varying with frequency (an nota-

tion is adopted in the following). The quantity represents the

filling ratio of the volume underneath the patch, as described in

the figure. The antenna is embedded in a suitable Cartesian ref-

erence system, as defined in the figure, and it radiates in free

space, with permittivity and permeability , .

The resonant frequencies of the radiator in Fig. 1 may be eval-

uated with good approximation by applying a standard cavity

model [23], [24]. The resonant frequencies of the equivalent

cavity for the modes may be easily obtained by ap-

plying all the boundary conditions, and they correspond to the

solution of the following dispersion equation:

(1)

where with , 1, 2.
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Substituting the tangent functions with their arguments under

the assumption of subwavelength size of the patch, i.e.,

, yields the approximate equation

(2)

If one hypothetically assumes that and are independent

of frequency (which they are not, [29]), this expression is sur-

prisingly independent of and , implying that in the first ap-

proximation the patch of Fig. 1 may resonate at any arbitrarily

low frequency for any arbitrarily small width of the patch, pro-

vided that the previous equality among the filling ratio and the

permittivities of the two materials is satisfied. (In other words,

for specific values of the permittivities filling this equivalent

cavity, in principle there is not a lower frequency limit below

which a cavity of given total dimensions cannot resonate. This

clearly overcomes, at least in principle, any other classical tech-

nique for squeezing the dimensions of such class of antennas.)

Not surprisingly however, this inequality implies that the two

permittivities are oppositely signed in the two materials, since

makes the left-hand side of (2) a strictly positive

quantity. Clearly, in fact, such a patch cannot resonate at low fre-

quency unless special metamaterials are employed. The fact that

an ENG, MNG or DNG material is necessarily dispersive with

frequency [29] ensures the indirect dependence of the previous

dispersion relation on frequency. (Also, from a practical point

of view, constructing metamaterials at a very low frequency is

a challenging task, if a highly subwavelength resonant inclu-

sion is desired. Therefore this issue introduces at some point a

practical lower limit for the size of the patch.) These findings,

consistent with the subwavelength cavities, waveguides, scat-

terers and antennas described in [13]–[17], for which again a

filling ratio factor, rather than their total size, determines the res-

onance of the system, may be justified by noticing that at the in-

terface between materials with oppositely signed permittivities

and/or permeabilities a local plasmonic resonance arises, which,

if properly designed, may induce a resonance in the whole com-

ponent. Notice how, due to the polarization of the mode under

analysis ( , with electric field and magnetic field

tangential to the interface) and due to the magnetic boundary

conditions at the side walls of the cavity, in the quasi-static limit

in which (2) applies the permittivities play a dominant role in the

possibility of achieving such quasi-static resonance. The pos-

sibility of this resonant behavior in subwavelength rectangular

patch antennas has been predicted applying a different approx-

imate technique (i.e., the transmission line model) in [26].

Applying the dispersion relation given by (1), it is possible

to determine the resonant frequencies of a given patch varying

its medium loading. Fig. 2, as an example, shows the resonant

frequency variation, as solution of (1), for a patch of width

with having one of the two media

being a DPS material with , and varying

the permittivity of the other material . In particular, Fig. 2(a)

shows the variation of the resonant frequency with assuming

, whereas Fig. 2(b) shows the resonance frequency vari-

ation versus the plasma frequency assuming a Drude disper-

sive material for the permittivity of the loading ENG material,

Fig. 2. (a) Variation of the resonant frequency of the rectangular patch antenna
of Fig. 1 with W = 50 mm, � = 0:5, " = 2" , � = � = � as a
function of " . (b) the same as a function of the electric plasma frequency of
a Drude-like dispersive metamaterial for the second medium, varying also its
permeability � as a parameter.

i.e., . In this second case, is also

varied as a parameter.

When the filling material is homogeneous, i.e.,

, the patch has its resonance at .

However, loading the patch with an ENG material can reduce

the resonance frequency in principle without limits, as shown

in Fig. 2(a). When the permittivity approaches the limit pre-

dicted by , which for the case at hand is , the res-

onance frequency may be made arbitrarily low (here material

losses are being neglected, which would eventually limit this

possibility at some point). Fig. 2(b) relates this variation to the

plasma frequency of a Drude-like dispersive material. This has

been adopted to model the realistic dispersion of an ENG meta-

material made by embedding specific inclusions inside a host

material (at microwaves -negative materials may be synthe-

sized by including conducting wires with specific size, length

and density in a host material). The value of the plasma fre-

quency may be directly related to the geometric properties of

such inclusions designed to synthesize the ENG material (see,

for instance, [30] and [31]). Also in this case, properly varying

the size and shape of the inclusions that form the second filling

material (and consequently its electric plasma frequency )
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in order to approach the effective permittivity of ,

the resonance frequency may in principle be brought down ar-

bitrarily. These results, as Fig. 2(b) shows, are weakly affected

by the permeability of the second material , and this depen-

dence becomes irrelevant when the resonant frequency is re-

duced, since the quasi-static approximation represented by (2)

holds. It is interesting to notice that in order to bring the reso-

nant frequency down for a fixed patch dimension, it is known

that a filling material with high electric permittivity may be em-

ployed instead of such plasmonic metamaterial. This solution,

however, is intrinsically limited by the fact that a higher per-

mittivity usually accompanies higher losses and the presence of

surface waves, and reducing the resonance frequency to very

low values would require the use of extremely high permittivi-

ties (for a fixed limited value of , moreover, there is still a limit

in the size of the patch to hold a resonance, whereas in this case

there is in principle no limit to this size). On the other hand,

the resonance is not obtained by adjusting the wavelength in the

filling material, but instead by inducing a plasmonic resonance

at the interface underneath the patch, which allows a phase can-

cellation similar to the effect predicted in [13].

This point is further clarified in Fig. 3, which shows the elec-

tric and magnetic field distributions at resonance predicted by

the cavity model for the patch considered in Fig. 2 for the three

cases when: (solid line) , i.e., when the substrate is ho-

mogeneous and the patch resonates at ; (dashed

line) for a second material chosen according to (1) to lower the

patch resonance1 to , i.e., using a material with

; (dotted line) for a second mate-

rial with its permittivity increased so that the patch can resonate

at the frequency , i.e., with . The

magnetic field amplitudes have been normalized in the figure

to their relative maximum and the electric field are normal-

ized accordingly for comparison. As it can be seen, the three

cases show very different properties. The standard resonance of

the patch would happen at , as the solid line

shows. At this frequency the patch width is , with being the

wavelength inside the homogeneous material loading the patch.

As it is well known, the magnetic field in fact experiences a

half-wavelength sinusoidal variation from one side to the other

of the patch, whereas the electric field flips its sign, with a 180

phase variation. Filling the region with a material with

allows getting a resonance at

, as shown by the dashed line. In this case the

magnetic field flips the sign of its derivative, due to the boundary

conditions at the interface between the two “oppositely signed”
materials, and this allows to shrink the electrical dimensions of

the equivalent cavity, similarly to what was speculated in [13],

i.e., exploiting the phase-compensating properties of negative

materials. As clearly seen in the figure, the electric field varia-

tion in this case is almost constant and its phase does not flip

1It should be emphasized again that the choice of a resonance at f = 0:5GHz

in this, and the next examples, is arbitrary since as Fig. 2 shows, in principle the
patch may resonate even at lower frequencies. In this case, its dispersion relation
(2), in fact, depends on the filling ratio of the equivalent cavity closed between
the patch and the ground plane, rather than on its total dimension, and this is
the main point behind the present technique of using metamaterials to reduce
the patch antenna dimensions. This choice, therefore, which was made for the
numerical examples here, does not represent a lower limit in this case.

Fig. 3. Variation of the (a) magnetic and (b) electric fields (as predicted by the
cavity model) underneath the rectangular patch antenna of Fig. 2, at resonance,
with: " = 2" (solid line), resonating at f = 2:12 GHz; " = �2:2"

(dashed line), resonating at f = 0:5GHz; " = 140" (dotted line), resonating
at f = 0:5 GHz.

passing from one side to the other of the patch. This affects the

radiation properties of the patch, as we will show in the fol-

lowing. Employing a high-dielectric material (dotted line), the

resonance frequency is made low by decreasing the wavelength

in the material in , which in fact is responsible for almost

all the sinusoidal variation of the magnetic field. The electric

field remains almost constant in the left material, but experi-

ences a 180 phase shift in the material with high permittivity.

Even though the three cases depicted in Fig. 3 all correspond

to resonances underneath the patch, their radiation features

are quite different. The radiation properties can be easily

predicted in the first approximation by applying an effective

aperture model [1], [2]. The well-known cause of radiation is

represented by the fringing electric field at the two sides of the

patch, i.e., at . They correspond to the equivalent

magnetic currents , where is the

electric field at , as predicted by the cavity model,

and is the normal to the side of the patch, i.e., ,

respectively. In the solid and dotted line cases, i.e., when the

cavity is resonating in a conventional way, the electric field on

the two sides of the patch is oppositely oriented, and therefore
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the two sides of the patch radiate in phase towards broadside.

This ensures the conventionally shaped radiation pattern of the

patch antenna, with reasonable directivity at broadside. In the

dot-line case, when a high permittivity is employed to squeeze

the patch width, we may expect a lower directivity, due to the

reduced electrical distance between the two radiating edges,

and a lowered gain caused by the presumably strong excitation

of surface waves, due to the presence of a high- substrate. Also

the potential presence of high losses in such material would

contribute to deterioration of its radiating performance. When

the patch is loaded with a metamaterial, however, the mode

excited (dashed line) will cause the two sides of the patch to ra-

diate out of phase. The radiation pattern, therefore, is expected

to have a null in the broadside direction. Due to the electrically

small dimensions of the patch, moreover, the two magnetic

currents almost cancel each other for all the visible angles,

and thus the radiation efficiency of such an antenna would be

very poor. In other words, such a subwavelength rectangular

patch may act more as a resonator rather than as an antenna

and the ratio of stored versus radiated energy is expected to be

extremely high for electrically small patches. Another aspect

should also be considered: the interfaces at and

support surface plasmons, since they are interfaces between

media with materials with opposite permittivities [32]. If the

plasmonic resonance at is the main factor responsible for

the subwavelength resonance, these surface plasmons, when

excited, would eventually trap some energy from the source,

thus further reducing the radiation efficiency of the antenna.

Following the previous considerations, it is clear that the rect-

angular geometry described in Fig. 1 is not a valid option for the

purpose of designing an efficient subwavelength radiator. We

show in the following that the circular geometry may provide

additional degrees of freedom for selecting the proper mode of

operation in order to get an efficient radiation from a subwave-

length radiator loaded with metamaterials.

B. Circular Patch

The main reason why the rectangular patch of Fig. 1 could

not provide an efficient radiation is represented by the impossi-

bility of selecting a higher-order resonant mode in the equivalent

cavity formed by the subwavelength patch loaded with meta-

materials. Only the fundamental mode can be excited in such a

subwavelength rectangular cavity, providing, thus, out-of-phase

radiation from the radiating edges of the patch. Matching fea-

tures may in principle show a subwavelength resonance tuned at

the desired frequency, while the gain of the radiator is expected

to be very poor. The parallel plate cavity studied in [13] showed

analogous limitations: there are no degrees of freedom in se-

lecting the desired operating mode in its subwavelength regime

of operation. However, in [15] it was shown how it is possible

to select the desired resonant mode in subwavelength cylin-

drical and spherical scatterers, acting as open subwavelength

resonators. Following a similar argument, we consider here the

circular patch geometry to overcome the problems highlighted

in the previous section.

The circular patch under analysis is depicted in Fig. 4. It is

loaded by a grounded inhomogeneous substrate, with thickness

Fig. 4. A circular patch antenna loaded with a radially inhomogeneous sub-
strate.

, consisting of a planar layer with permittivity and permeability

, with a core ring with permittivity and permeability

, . The patch radius is and the core radius is ,

with . The quantity again represents the filling ratio

of the volume underneath the patch.

A cavity model may again be applied to this problem, looking

for the resonant frequencies of the cavity which is obtained by

closing the volume underneath the patch with a cylindrical mag-

netic wall. Matching the boundary conditions provides the fol-

lowing dispersion relations for the modes:

(3)

where and represent, respectively, the Bessel and

Neumann cylindrical Bessel functions, as commonly defined

(see, e.g., [33]) and is the angular order of the mode (

variation, being the azimuthal angle in cylindrical coordi-

nates). Again, under the same quasi-static assumptions applied

to the rectangular case, which is , (3)

becomes

(4)

which is the analogous of (2), but in the circular geometry. We

also note here that the dispersion relation is a function of the

filling ratio and of the constitutive parameters of the two ma-

terials and that the relations in (4) again imply the use of op-

positely-signed materials. However, this time the dispersion re-

lations vary as a function of the angular order of the resonant

mode. This interesting peculiarity allows tuning the filling ratio

and/or the material parameters in order to select the proper an-

gular variation for the mode, which may also allow selection of

the desired radiation properties of the subwavelength patch, as

anticipated earlier. This is in analogy with what was found in

cylindrical subwavelength scatterers at resonance in [15] (no-

tice also the analogy in the dispersion formulas to get a sub-

wavelength resonance). It is interesting to note that a circular

patch loaded with regular DPS materials has a dominant

mode, as easily shown in the homogeneous case [1]. Here, how-

ever, by employing oppositely-signed materials it is possible in

principle to choose the desired angular variation for the domi-

nant mode of the subwavelength cavity and tailor its resonance

at the desired frequency.
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Fig. 5. (a) Variation of the resonance frequency of the circular patch antenna of
Fig. 4 with a = 20mm, � = 0:6, " = 3" , � = � as a function of � with
" as a parameter for the TM mode of operation. (b) The same as a function
of the magnetic plasma frequency of a Drude-like dispersive metamaterial for
the second medium. Here " is varied as a parameter.

Fig. 5, analogous to Fig. 2 but for this circular geometry, pro-

vides the variation of the resonance frequency in terms of the

permeability of the inner core material for an example of cir-

cular patch with , , , . In

this case the mode is considered, which is, as we show

below, the only one giving rise to effective radiation. Due to the

different boundary conditions in the cavity, now the permeabil-

ities play a dominant role for this mode in the quasi-static limit,

and this is why a MNG material is required to yield a subwave-

length resonance for this mode (the mode, as indicated by

(4), is the only one in which the permittivities dominate, anal-

ogously to what happens for the cylindrical scatterer problem

[15]). Again, it is evident how it is possible to reduce consid-

erably the resonance frequency of the patch (which in this case

would be at if a homogeneous substrate with

were considered) by varying the core perme-

ability. Fig. 5(b), similar to Fig. 2(b) for the rectangular case,

considers as an example a Drude dispersion for the core perme-

ability as and has as a parameter.

Metamaterials with resonant permeabilities (and therefore neg-

ative permeability in a given frequency range) may be synthe-

sized at microwave frequencies by embedding splint ring res-

onators (SRR) or similar loop inclusions in a host dielectric, as

experimentally shown in the recent years by several groups (e.g.,

[34] and [35]).2

The field variation for the different modes at resonance, as

predicted by the cavity model, is shown in Fig. 6 for the cir-

cular patch with geometry described in the caption of Fig. 5 as

a function of the radial coordinate (here the tangential fields

with respect to the interface, i.e., and are shown; for

modes with the normal component would also be

present, and is proportional to ). Fig. 6(a) refers to the mode

with no angular variation, i.e., . Its resonance for a ho-

mogeneous substrate (i.e., with , ) would

happen at (solid line), but it can be brought

down to by employing an ENG material with

(dashed line), or by increasing the permittivity

of the second material to the enormous value of .

In the dashed line case this mode would become the dominant

mode of the patch, and the typical V-shaped distribution of the

phase compensation of negative materials is evident from the

magnetic field distribution. Notice that the dotted line solution

would be characterized by other resonant modes with lower fre-

quency, since the extremely high permittivity of the second ma-

terial implies that this patch is not subwavelength at all (in this

case in fact a mode would be dominant, resonating at

). This mode of operation, when the ENG mate-

rial is employed (dashed line), is in many senses analogous to

the rectangular cavity previously analyzed. Indeed the electric

field remains somewhat constant in the cavity and does not flip

its sign from the center to the side of the patch, as it usually does

in the regular case.

In order to excite a different mode, we can play with (4) and

select a proper MNG material to yield the required resonance of

higher- modes. For instance, the mode may be excited at

the desired by choosing , as shown

by the dashed line (here, the permittivity was kept fixed at

) in Fig. 6(b). Consistent with the previous findings, here also

a flip in sign of the derivative of the tangential magnetic field

allows shrinking the electrical dimensions of the patch. The use

of a high-permeability material (dotted line) might lead again to

high losses and difficulties in realizing such very high values of

permeability, (and in this case also very high electric field with

related matching problems). Also the mode may become

dominant using a different MNG core, as shown in Fig. 6(c).

It is interesting to point out that, different from the rectan-

gular case, in this geometry the dependence of the field along

the side wall of the cavity , which, as we have seen, is

directly related to the radiating features of the patch, is not af-

fected by the subwavelength size of the patch, but it is uniquely

determined by the choice of the order of angular variation of

the mode. This implies that a proper choice of this variation in

the subwavelength case may lead to a subwavelength patch with

efficient radiation properties.

2The frequency dispersion of magnetic metamaterials synthesized using SRR
inclusions is generally modeled with a Drude–Lorentz generalized model. For
sake of simplicity here we have assumed a simple Drude model, which also
ensures causality, satisfies Kramers–Kronig relations, and approximates more
complex frequency dispersions over limited frequency ranges. These and the
following results may be easily verified for more relevant Lorentz dispersion
models.
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Fig. 6. Variation of the magnetic (left column) and electric (right column) fields (as predicted by the cavity model) underneath the circular patch antenna of Fig. 5,
at resonance, for the different modes (a) n = 0, (b) n = 1, (c) n = 2.

As in the rectangular case, the radiation properties of the an-

tenna of Fig. 4 are indeed directly related to the equivalent mag-

netic currents radiating on the patch side at and deter-

mined by the fringing electric field as . The

total power radiated by these currents in the spherical direction

is known to be proportional to the following integral [1],

[2]:

(5)

which in the quasi-static limit of reduces to

(6)

where is the Kronecker delta function, being unity when

its argument is zero and being zero otherwise. As easily con-

firmed by inspecting the electric field orientation for the dif-

ferent modes in Fig. 6. Equation (6) states that the mode

would produce a non-zero radiated field even in the limit of

vanishing electrical dimensions of the patch, due to the correct

phase variation around the patch side. Its dependence on and

therefore its directivity is reduced, due to the small electrical

dimensions of the magnetic current loop, but the fact that it is

radiating efficiently is not affected when the patch electrical size

is scaled down. All the other modal field configurations would

share the same problem of radiation cancellation that we have

verified in the rectangular case, even though the related reso-

nances may happen at very low frequencies and the impedance

matching may be acceptable at those specific frequencies.

At this point, it is worth noting that the other attempts recently

presented in the literature by other groups [32]–[34] to design a
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subwavelength patch antenna with resonant features would face

a similar radiation problem in a practical situation, since they

did not consider the radiation properties of such antennas. The

analysis presented in [25] for the subwavelength annular ring

patch antenna, which analyzed the mode applying the

appropriate cavity model, has shown that this mode may be ex-

cited at a low-frequency resonance by properly loading the sub-

strate with a DNG metamaterial, similar to the analysis shown

here. The field distributions reported in [25], however, clearly

show that in the limit of subwavelength size of the patch the two

equivalent magnetic current loops at the outer and inner side of

the ring would radiate out of phase with each other, producing a

cancellation of the radiated field for a subwavelength patch. The

possibility of exciting the mode in a subwavelength cir-

cular patch, as presented in [27], has also been shown to produce

a poor radiator, as (6) testifies. The same may be said about the

rectangular subwavelength patch analysis presented in [26], as

we have previously shown. Other patch shapes, i.e., elliptical or

more complex geometries, may be treated similarly to the anal-

ysis shown here, and proper resonant modes may be chosen to

have more efficient radiation combined with a small size. This

is not done here due to lack of space, but it may be the subject

of a future publication.

In the following section, we verify these results with full-

wave simulations conducted with the software tool (CST Mi-

crowave Studio [36]), considering the limitations that losses,

small shape variations (due to the discretization that the numer-

ical software applies) and the presence of the feed network may

cause to the results shown here. We also calculate the relevant

radiation properties in qualitatively realistic setups following

these findings.

III. NUMERICAL SIMULATIONS

A. Rectangular Patch

As a first example we study the behavior of the rectangular

patch antenna of Fig. 2, with , ,

, , , , properly

loaded with a Drude-dispersive and lossy ENG material with

. The plasma frequency

has been set at to get

, which may be obtained in an artificial metamaterial by

embedding properly designed conducting wires oriented along

in vacuum or another dielectric [30], [31] (the polarization

of the electric field underneath the patch is predicted by the

cavity model, as described in the previous section).3 Losses in

the metamaterial have also been added to reflect the possible

ohmic losses in the conducting inclusions, and thus the damping

frequency in the Drude model has been set at .

The antenna is fed by a coaxial probe placed at the position

, with inner radius of

and characteristic impedance . Also finite substrate

and ground pane have been considered, both with total size of

. In order to consider all the realistic aspects of

the design, the finiteness of the metal thickness has also been

3Here we assume an isotropic medium. However, we claim that the required
metamaterial does not have to be isotropic, due to the specific field polarization
that is expected when properly exciting the resonant mode.

Fig. 7. Full-wave numerical simulation results for (a) return loss and (b) input
impedance of the antenna in Fig. 2 with a Drude material with losses, fed by a
coaxial cable, as described in the text.

modeled, fixing it at 0.01 mm. The structure has been simulated

with a finite-integration-technique commercial software (CST

Microwave Studio [36]).

The return loss and the input impedance are reported in Fig. 7,

showing two distinct resonances at and at

, with good agreement with the cavity model. The

first resonance is the subwavelength resonance described in the

previous section, whereas the second one is a common reso-

nance happening when the material permittivity of the meta-

material is not affected by the presence of the inclusions, since

and it may be predicted by using (1)

with vacuum as the second material.

The subwavelength resonance in this case is poorly matched

(however the position of the probe has not been properly op-

timized in this case, since the radiation properties at such fre-

quency are expected to be poor anyhow, as shown in the pre-

vious section). The power taken from the feed is expected to be

lost in ohmic losses or trapped into the plasmonic waves trav-

eling along the interface .

Fig. 8 reports the electric field distribution (a snapshot in

time) for these two different resonance frequencies on the plane

of the patch. This clearly shows how the fringing fields are op-

positely directed in the subwavelength case, different from the

usual resonance at . The field distributions are
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Fig. 8. (Results calculated using CST Microwave Studio [36]). Electric field
distribution (snapshot in time, top view) at the first two resonant frequencies for
the antenna of Fig. 7: at (a) f = 0:48 GHz and (b) f = 2:44 GHz.

consistent with the cavity model analysis described in the pre-

vious section and confirm the different behavior of the field at

the radiating edges at the two frequencies, highlighting also the

standing waves present at the interface due to the excita-

tion of surface plasmons. The radiation patterns in the two cases

(not reported here) are substantially different, since at the lower

frequency the patch is not radiating properly and it shows a null

at broadside and an insufficient gain over all the visible angles.

This rectangular configuration at the frequency

ends up being a good candidate for a matching network for the

excitation of surface plasmons at the interface rather than

as a good radiator.

These full-wave simulations confirm and validate numeri-

cally the results reported in the previous section, which were ob-

tained with an approximate cavity model. As a next step we have

designed and simulated a circular patch, following the guide-

lines of the previous analysis.

Fig. 9. Full-wave numerical simulation results for (a) return loss and (b) input
impedance of the antenna in Fig. 5 with a Drude magnetic material with losses,
fed by a coaxial cable, as described in the text.

B. Circular Patch

We have modeled the circular patch of Fig. 4, similar to the

previous case, with the following parameters: ,

, , . The outer dielectric slab and the

ground plane were supposed to be finite with circular symmetry

and outer radius . For a realistic implementation

of the inner core with an MNG material, again a Drude model

has been assumed with

and the thickness of the substrate has been increased to

with respect to the previous design, in order to allow more

spacing for future hosting the split-ring resonators to construct

an MNG material (see, e.g., [34]). Similar results to those that

are shown in the following have been obtained with thinner sub-

strates any way, showing that this parameter does not affect sen-

sibly the previous analysis, provided that it is maintained well

below the other relevant dimensions of this geometry. The mag-

netic plasma frequency has been fixed at .

Applying (3), this should yield a resonance at .

The damping frequency has been set at , again to

take into account some possible ohmic losses in the conducting

inclusions that will be needed for construction of the MNG

metamaterial. The coaxial cable has been designed to have a

characteristic impedance with and

its position is at .
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Fig. 10. (Results calculated using CST Microwave Studio [36]). Electric field
distribution on the y = 0 plane for the antenna of Fig. 9 at f = 0:47 GHz.

The matching properties of such configuration are reported

in Fig. 9 and show that a good matching may be obtained over

a certain frequency band. In this case, the full wave analysis

shows a double resonance near the resonant properties, which

may improve the bandwidth of operation. We underline that

this is not an optimized setup, since our goal here is merely to

verify the theory reported in the previous section. However, the

results reported here are more than encouraging, and with op-

timized setups we expect to further improve this performance

that may cause the two peaks to be closer and thus have a better

bandwidth of operation. The agreement with the cavity model

is again good and the input port of the antenna is matched using

a simple coaxial cable with 50 impedance.

Fig. 10 shows the electric field distribution on the plane

at the frequency , showing how, despite the small

dimension of the patch, the two opposite sides of the patch can

indeed radiate in phase. Although the patch is subwavelength,

the excitation of the mode in fact allows the electric field

to flip its sign passing from one side to the other side of the

patch.

Another advantage of this configuration is that no surface

plasmons carrying power away from the source are expected,

due to the finiteness and “closedness” of the interface between

MNG and DPS materials. The electric current induced on the

metallic patch at is depicted in Fig. 11. It clearly

shows how the mode is at resonance, and it is indeed

interesting to notice how the current can be “closed” in elec-

trically small resonant loops, despite the small dimensions of

the patch (its diameter at this frequency is just 6.5% of the free

space wavelength).

The radiation pattern and gain for this configuration, as

reported in Fig. 12, show indeed encouraging performance.

The subwavelength patch radiates with a maximum gain at

broadside of 1.8 dBi, testifying a reasonable efficiency and

a good matching, which may offer interesting possibilities

for designing subwavelength small radiators. You may notice

how its directivity is less than the one obtained with a patch

of standard dimension, due to the small electrical size of the

effective radiating aperture, as expected from (6). Also, the

front-to-back ratio is drastically lower than the one of a patch of

regular dimensions, since the reduced size of the ground plane

(its diameter here is only 9.4% of the wavelength) does not

allow a significant reflection. We should emphasize, however,

that our goal here was in fact to design a radiator, whose overall

Fig. 11. (Results calculated using CST Microwave Studio [36]). Electric cur-
rent distribution on the metallic patch and on the underlying ground plane for
the antenna of Fig. 11 at f = 0:47 GHz.

Fig. 12. (Results calculated using CST Microwave Studio [36]). Gain (radia-
tion) pattern for the antenna of Fig. 11 at f = 0:47 GHz.

size is much smaller than the wavelength radiating efficiently

in free space. The radiation of Fig. 12 consistently corresponds

to the one of a short magnetic dipole radiating in free space,

since the overall size of the system is much shorter than the

operating wavelength. We have simulated the same antenna

with a larger ground plane, and have obtained similar results

but with an increased front-to-back ratio and therefore higher

gain. These results are not reported here for sake of brevity.

To conclude, we briefly discuss here some practical issues

concerning the realization of this miniaturized setup. It should

be noted at first that the orientation of the magnetic field un-

derneath the patch, well predicted by the cavity model as these

simulations show, gives a hint on how the inclusions in the core

metamaterial will need to be oriented to couple with the excited

magnetic field and give rise to the required interaction with the
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resonant mode. This makes the practical realization of this setup

foreseeable, since it is not necessary to build a totally isotropic

metamaterial, and we predict that with a reasonable number of

split-ring resonators or analogous resonant loop inclusions suit-

ably oriented and disposed one may be able to effectively syn-

thesize the required negative effective permeability for the core

material and obtain results comparable with the model presented

here. In this sense, the realization of an MNG metamaterial to be

used in this setup may not represent an insurmountable task in

the future. We are currently exploring and working on extensive

numerical simulations of some of these possibilities. The pre-

liminary results we have obtained so far are very encouraging

in this sense and an extended manuscript on the practical real-

ization of the MNG substrate for this setup and a proposed final

antenna layout is currently in preparation.

An important issue to underline relates to the required size

of the metamaterial inclusions (i.e., SRR) for this setup, which

should in principle fit in the dielectric region between the patch

and the ground plane. Due to the overall subwavelength size of

the patch, the inclusions’ dimension should be markedly lower

than the wavelength of operation (in the example presented here,

this implies that it should be of the order of or less.) Even

though for the present status of the metamaterial technology this

size represents a challenge for a practical realization, important

and impressive advances are being made to improve the cur-

rent technology in order to reduce the size of inclusions. For ex-

ample, the possible use of lumped capacitances in the SRR de-

sign may be a viable way to reduce their size [37], even though

this solution may not represent the most practical/optimal way

for mass production of these materials in our proposed setup.

So we can predict that in the near future, constructing metama-

terials with very small inclusions that can be suitable for our idea

may become a possibility. Regardless of needs for this techno-

logical development, the idea presented here represents an in-

teresting possibility for using metamaterials for squeezing the

patch antenna dimensions, while maintaining good matching

and radiation performance.

IV. CONCLUSION

In this contribution, we have analyzed the possibility of de-

signing subwavelength resonant patch antennas using metama-

terial blocks. After showing that the attempts proposed in the

literature by other groups may not lead to efficient radiators,

we have shown how a circular geometry may indeed offer inter-

esting possibilities for choosing the proper mode of operation in

these subwavelength antennas in order to obtain radiation per-

formances comparable with those of a regular patch radiator of

standard dimensions. Realistic numerical simulations, consid-

ering material dispersion, losses and the presence of the feeding

network have been also presented, providing a validation of the

theoretical results and showing how a practical realization is

foreseeable. This may indeed open interesting venues for the

design of small-scaled antennas with enhanced performance.
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