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We investigate the transmission of evanescent waves through a slab of photonic crystal and explore the

recently suggested possibility of focusing light with subwavelength resolution. The amplification of near-field

waves is shown to rely on resonant coupling mechanisms to surface photon bound states, and the negative

refractive index is only one way of realizing this effect. It is found that the periodicity of the photonic crystal

imposes an upper cutoff to the transverse wave vector of evanescent waves that can be amplified, and thus a

photonic-crystal superlens is free of divergences even in the lossless case. A detailed numerical study of the

optical image of such a superlens in two dimensions reveals a subtle and very important interplay between

propagating waves and evanescent waves on the final image formation. Particular features that arise due to the

presence of near-field light are discussed.
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I. INTRODUCTION

Negative refraction of electromagnetic waves, initially

proposed in the 1960s,1 recently attracted strong research

interest2–16 and generated some heated debate.17–29 In par-

ticular, much attention was focused on the intriguing possi-
bility of superlensing suggested in Ref. 5: a slab of uniform
‘‘left-handed material’’ with permittivity e521 and perme-
ability m521 is capable of capturing both the propagating
and evanescent waves emitted by a point source placed in
front of the slab and refocusing them into a perfect point
image behind the slab. While the focusing effect of propa-
gating waves can be appreciated from a familiar picture of
rays in geometric optics, it is amazing that perfect recovery
of evanescent waves may also be achieved via amplified

transmission through the negative-index slab. Some of the
discussion of this effect relies on an effective-medium
model6 that assigns a negative e and a negative m to a peri-
odic array of positive-index materials: i.e., a photonic
crystal.30 Such an effective-medium model holds for large-
scale phenomena involving propagating waves, provided that
the lattice constant a is only a small fraction of the free-space
wavelength in the frequency range of operation. However, in
the phenomenon of superlensing, in which the subwave-
length features themselves are of central interest, an
effective-medium model places severe constraints on the lat-
tice constant a: it must be smaller than the subwavelength
details we are seeking to resolve. The question of whether
and to what extent superlensing would occur in the more
general case of photonic crystals still remains unclear.

Recently, we showed that all-angle negative refraction
~AANR! is possible using a photonic crystal with a positive
index, and we demonstrated imaging with a resolution below
or on the order of wavelength in this approach.12,15 In this
paper, we investigate the possibility of photonic-crystal su-
perlensing in detail by studying the transmission of evanes-
cent waves through a slab of such a photonic crystal. It is

important to note that the transmission considered here dif-

fers fundamentally from its conventional implication of en-

ergy transport, since evanescent waves need not carry energy

in their decaying directions. Thus, it is possible to obtain

transmission amplitudes for evanescent waves greatly ex-

ceeding unity without violating energy conservation. Here,

we discuss two mechanisms linking amplification of evanes-
cent waves to the existence of bound slab photon states.
These bound states are decoupled from the continuum of
propagating waves, thus our findings are distinct from the
effect of Fano resonances31 in electromagnetism, which were
recently studied in the context of patterned periodic
structures32–36 and surface-plasmon-assisted energy
transmission.37–39 As for the problem of negative refraction,
we have found that the concept of superlensing does not in
general require a negative refractive index. Moreover, we
argue that the surface Brillouin zones of both photonic crys-
tals and periodic effective media provide a natural upper cut-
off to the transverse wave vector of evanescent waves that
can be amplified, and thus no divergences exist at large trans-
verse wave vectors24 in photonic crystals or in effective
media.27 As with effective media, the lattice constant of pho-
tonic crystals must always be smaller than the details to be
imaged. We derive the ultimate limit of superlens resolution
in terms of the photonic-crystal surface periodicity and infer
that resolution arbitrarily smaller than the wavelength should
be possible in principle, provided that sufficiently high di-
electric contrast can be obtained. We pursue these ideas in
realistic situations by calculating the bound photon states in
carefully designed two-dimensional ~2D! and 3D slabs of
AANR photonic crystals and present a comprehensive nu-
merical study of a 2D superlensing structure. A subtle and
very important interplay between propagating waves and
evanescent waves on image formation is revealed, which
makes the appearance of the image of a superlens substan-
tially different from that of a real image behind a conven-
tional lens. These numerical results confirm the qualitative
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discussions in this paper and can be readily compared to
experimental data.

This paper is organized as follows. Section II is a general
discussion for amplified transmission of evanescent waves
through a photonic-crystal slab. Section III considers the
implementation of superlensing in photonic crystals and its
ultimate resolution limit and, also, describes qualitatively the
expected appearance of the image of a superlens. Section IV
presents numerical results for superlensing in a model pho-
tonic crystal. Section V discusses further aspects of super-
lensing in photonic crystals, and Sec. VI summarizes the
paper.

II. ORIGIN OF NEAR-FIELD AMPLIFICATION

Let us first consider the transmission of a light wave
through a slab of lossless dielectric structure @Fig. 1~a!#, pe-
riodic in the transverse direction, at a definite frequency v
~with free-space wavelength l52pc/v) and a definite
transverse wave vector k. Let the slab occupy the spatial
region 2h,z,0, and in this paper we also assume a mirror
symmetry with respect to the plane z52h/2 at the center of
the dielectric structure. The transmission through a finite-slab
structure can be conceptually obtained by first considering
the transmission through a single interface between air and
the photonic crystal @Fig. 1~b!# and then summing up all the
contributions as light bounces back and forth inside the slab.
The incident field Fin , the reflected field Fre f l , and the trans-
mitted field Ftrans are related to each other by the transmis-
sion coefficient t, defined formally by Ftrans5tFin , and the
reflection coefficient r, defined formally by Fre f l5rFin .
Here, all fields are understood to be column vectors ex-
pressed in the basis of all the eigenmodes of the correspond-
ing medium, with transverse wave vectors differing from k

only by a reciprocal lattice vector of the surface. In this way,
t and r are matrices represented in these basis modes. The

overall transmission coefficient through the slab structure
can be written as

t5tp-a~12Tk,prp-aTk,prp-a!21Tk,pta-p . ~1!

In Eq. ~1!, ta-p and tp-a are the transmission coefficients
through the individual interfaces from air to the photonic
crystal and from the photonic crystal to air, respectively, rp-a

is the reflection coefficient on the photonic-crystal/air bound-
ary, and Tk,p is the translation matrix that takes the fields
from z52h to z50 inside the photonic crystal. When h is
an integral multiple of the crystal’s z period, Tk,p is diagonal
with elements e ikzh for a crystal eigenmode of Bloch wave

vector k1kzẑ, with Im kz>0. In what follows, we discuss
the possibility of amplification in t, beginning with the diag-
onal element that describes the zeroth-order transmission—
i.e., transmission of waves with k in the first surface Bril-
louin zone, referred to as t00 .

Generally speaking, Eq. ~1! describes a transmitted wave
that is exponentially small for large enough uku. This can be
seen in the special case of a slab of uniform material with
permittivity e and permeability m , where all the matrices in
Eq. ~1! can be expressed in the basis of a single plane wave
and thus reduce to a number. In particular, Tk,p5exp(ikzh)

5exp(ihAemv2/c2
2uku2), which becomes exponentially

small as uku goes above Aemv/c . Equation ~1! then becomes
a familiar elementary expression

t005
tp-ata-pe ikzh

12rp-a
2 e2ikzh

. ~2!

Equation ~2! has an exponentially decaying numerator, while
for fixed rp-a the denominator approaches 1. Thus, waves
with large enough uku usually decay during transmission in
accordance with their evanescent nature.

There exist, however, two separate mechanisms by which
the evanescent waves can be greatly amplified through trans-
mission, a rather unconventional phenomenon. The first
mechanism, as proposed in Ref. 5, is based on the fact that
under appropriate conditions, the reflection and transmission
coefficients through individual interfaces can become diver-

gent and may thus be called a single-interface resonance. For
example, under the condition of single-interface resonance,
ta-p ,tp-a ,rp-a→` , and in the denominator of Eq. ~2! the

term rp-a
2 exp(2ikzh) dominates over 1. In this limit, Eq. ~2!

becomes

t005
tp-ata-p

2rp-a
2

e2ikzh. ~3!

The divergences in Eq. ~3! cancel each other, and the net
result is that for large uku, t005exp(2ikzh), leading to ampli-
fication of exactly the right degree to focus an image. The
same arguments can be applied to the general case of Eq. ~1!,
as long as kz is regarded as the z component of the corre-
sponding eigenmode’s wave vector with the smallest imagi-
nary part (Im kz), which produces the dominant term via
e ikzh. As elements of rp-a grow sufficiently large, the matrix
product Tk,prp-aTk,prp-a dominates over the identity matrix.

FIG. 1. Illustration of light-wave transmission through a photo-

nic crystal. ~a! Transmission through a slab of photonic crystal. The

incident field Fin and the reflected field Fre f l are measured at the

left surface of the slab (z52h), and the transmitted field Ftrans is

measured at the right surface of the slab (z50). ~b! Transmission

through a boundary surface between air and a semi-infinite photonic

crystal. The incident field Fin , the reflected field Fre f l , and the

transmitted field Ftrans are all measured at the air/photonic-crystal

interface. In both figures, k is the transverse wave vector of light

and as indicates the surface periodicity.
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Since, in this case, the matrix under inversion in Eq. ~1!
scales as exp(22 Im kzh) and the rest scales as
exp(2Im kzh), the amplification behavior is still present in
general, in each element of t. The transmission t00 can be
represented by Eq. ~3! with the coefficients to the exponen-
tial replaced by smooth functions of v and k.

The second mechanism for enhancement of evanescent
waves relies on a direct divergence in the overall transmis-
sion: i.e., an overall resonance. This is clear from the uni-
form medium case ~2!, whose denominator becomes zero

when 12rp-a
2 exp(2ikzh)50, which is the condition for trans-

verse guiding via total internal reflection. An evanescent in-
cident wave can satisfy this condition exactly. It thus holds
that a direct divergence can exist in the overall transmission
of evanescent waves without any accompanying single-
interface resonance, and therefore finite and strong amplifi-
cation of evanescent waves results when the incidence wave
does not exactly satisfy but is sufficiently close to this con-
dition of overall resonance. In this case, there is no upper
limit on the amplification and the transmission can even ex-
ceed that prescribed by Eq. ~3!; hence there is the potential to
form an image provided that the correct degree of amplifica-
tion is induced. These arguments are also valid in the general
case ~1!, at or near the singular points of 1
2Tk,prp-aTk,prp-a whose inverse occurs in the transmission.
If we write the relation between the light frequency v and
wave vector k at these singular points as v5v0(k), then
close to such a resonance the transmission t00 is described by

t005
C0~v ,k!

v2v0~k!
, ~4!

where C0(v ,k) is some smooth function of v and k. For a
given v , the issue is then to design photonic crystals with the
appropriate dispersion relation v0(k) so that Eq. ~4! approxi-
mates the required amount of amplification.

Both mechanisms of evanescent-wave amplification de-
scribed here involve some divergences in the transmission
process. Physically, such a divergence means that energy is
being pumped indefinitely by the incident wave into both the
transmitted and reflected fields, whose amplitudes increase in
time without limit. Equivalently, a finite field inside the
structure can be produced by zero incident field; i.e., it is a
bound ~guided! electromagnetic mode. In other words, a
bound photon mode on the air/photonic-crystal surface ~a
surface state! leads to a single-interface resonance, and a
bound photon state inside the slab leads to an overall reso-
nance. In the overall resonance case, the dispersion relation
of the bound photon mode is just v5v0(k) in Eq. ~4!. A
similar equation can also be used to represent the zeroth-
order term in tp-a close to a single-interface resonance:

tp-a ,005
Cp-a~v ,k!

v2vp-a~k!
, ~5!

with the single-interface bound photon dispersion relation
vp-a(k) and a smooth function Cp-a(v ,k). Both Cp-a and C0

here represent the coupling strength between the incidence
wave and the respective bound photon state.

It is instructive to compare these two amplification
mechanisms by their applicable ranges. As shown in Ref. 5,
in an ideal material slab with e(vsp)521 and m(vsp)
521, every evanescent wave is amplified by a single-
interface resonance at the surface plasmon frequency vsp .
For such a slab, rp-a diverges for any incident k and no
overall resonance happens at the plasmon frequency. How-
ever, both e and m are necessarily dispersive,7 and detuning
from the single-interface resonance frequency we can satisfy
the guiding condition

12rp-1
2 ~v6!e2ikzh

50 ~6!

at two separate frequencies v6 , above and below vsp , re-
flecting the fact that the surface photon states on the two
interfaces of the slab interact with each other, forming sym-
metric and antisymmetric combinations. In the general case,
Eq. ~6! can be satisfied and bound photon states inside the
slab form even without the prior existence of interface
states—i.e., without rp-a diverging. Thus both mechanisms
may be available to amplify evanescent waves. To have a
single-interface resonance in Eq. ~1!, it is required that the
term associated with single-interface reflections dominate
over 1. This can be expressed as

uv2vp-a~k!u!uCp-aue2Im kzh. ~7!

For an overall resonance, the condition becomes

uv2v0~k!u'uC0ue2Im kzh ~8!

in order to produce an amplification magnitude similar to
that in Eq. ~3!. We note that Cp-a and C0 are on the same
order of magnitude if the bound photon modes inside the
slab are constructed from combinations of the surface photon
states. It is thus clear that in the general case, amplification
of evanescent waves requires operation much closer to an
exact resonance in the single-interface resonance mechanism
than in the overall resonance mechanism. In addition, just
like the situation near a surface photon state discussed pre-
viously, the overall resonance can in principle happen near a
bulk-guided mode that is not evanescent inside the photonic-
crystal slab. Put in another way, in general amplification is
more easily achieved using an overall resonance than using a
single-interface resonance. In the following, therefore, we
make primary use of the second resonance mechanism and
realize amplification of evanescent waves in the manner dis-
cussed here.

Amplification thus arises due to the coupling between the
incident evanescent field and bound photon states of infinite
lifetime, which usually exist below the light line.40 In a pe-
riodic structure, the range of wave vector region below the
light line is limited by the boundary of the surface Brillouin
zone, due to Bragg scattering. What happens to the transmis-
sion of evanescent waves whose wave vectors are so large
that they lie beyond the first surface Brillouin zone and be-
come folded back into the light cone? In this case, the asso-
ciated slab photon resonance mode changes from a bound

state to a leaky state, and its frequency v0(k) becomes
complex—i.e., v0(k)→v0(k)2ig(k), with v0 and g being
real. This situation is actually described by the diagonal ele-
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ment tnn of t with n5” 0 if we use n to index the surface

reciprocal lattice vectors and assume k to be in the first sur-
face Brillouin zone. When the incidence evanescent wave is
sufficiently close to a leaky photon mode the transmission
becomes

tnn5

C0~v ,k!

v2v0~k!1ig~k!
, ~9!

which always has a finite magnitude. In principle, utnnu can
also reach values larger than unity provided that g is small
enough. However, as n goes away from 0 the spatial varia-
tion in the incident wave becomes more rapid. The leaky
photon state, on the other hand, always maintains a constant
field profile with variations on a fixed spatial scale, roughly
that of each component in a cell of the crystal. Hence, for n

sufficiently far from 0, C0 in Eq. ~9!, determined by the
overlap between the incident wave and the slab photon
modes, must always approach zero and so must utnnu. Note
that this is not true in the case of bound photon modes with
g50: amplified transmission may still occur if the incident
wave is close to an exact overall resonance. The numerical
results presented later in this paper indicate that, for the
structure considered here, the transmission for evanescent
waves coupling to leaky modes with n5” 0 is always small
and the possible amplification effect can be ignored.

It should be clear from this discussion that an amplified
transmission of evanescent waves at a given v and k is not
restricted to materials with e,0 or m,0 only and can be
achieved by coupling to bound photon states in general. An-
other interesting feature of this approach is that, as shown in
Ref. 5, with the single-interface resonance-amplification
mechanism, the reflection coefficient r can vanish, but in the
overall-resonance mechanism here an amplified transmission
process also implies an amplified reflected evanescent field
in general. Since the latter mechanism is used in our numeri-
cal calculations below, most of the effects that arise due to
the transmitted evanescent waves should also be expected in
the reflected waves as well. These might lead to nontrivial
consequences—for example, a feedback on the emitting
source. In this paper, we assume that the source field is gen-
erated by some independent processes and ignore the poten-
tial influences of these effects.

III. PHOTONIC CRYSTAL SUPERLENSES

We now consider the problem of superlensing at a given
frequency v in photonic crystals. An ideal point source emits
a coherent superposition of fields Fsource(k) of different
wave vectors k, with uku,v/c being propagating waves and
uku.v/c being evanescent waves. We place such a point
source on the z axis ~the optical axis! at z52h2u and ob-
serve the image intensity I image in z>0 to be

I image~r!5UE dk„ . . . ,tkexp~ ikn•rt!, . . . …•Tk,a~z !t~k!Tk,a~u !Fsource~k!U2

. ~10!

In Eq. ~10!, Tk,a(z) is the translation matrix in air that takes

the fields through a distance z, tk is a polarization vector, rt

stands for transverse coordinates, kn5k1Gn , with Gn being

the reciprocal vectors of the surface, and kn is the transverse

wave vectors in the air basis that we have been using. The

brackets represent a row of polarizations and phases of the

basis, and its dot product with the column vector of the trans-

mitted field produces the complex field amplitude. The inte-

gral is carried out over the first surface Brillouin zone, and in

the case of a uniform material it is over all k’s in the trans-

verse plane.

Conventional lenses only image the portion of the inci-

dent field with uku,kM for kM,v/c , limited by the numeri-

cal aperture. A perfect lens,5 made of left-handed materials

with e521 and m521, not only focuses all propagating

waves with negative refraction, but also amplifies all evanes-

cent waves with uku.v/c , so that all Fourier components of

the source field reappear perfectly in the image plane of geo-

metric optics. One unusual aspect in such a scenario is that

the fields in certain spatial regions become divergent and the
associated energy density becomes infinite if the losses are
ignored.24 However, this observation merely reflects the fact
that infinite-resolution imaging requires an infinite time in-
terval to reach its steady state, and the original proposal5 still

remains valid in the sense that arbitrarily fine resolution is in

principle possible. Here, we use the term superlens to denote

a negative-refractive slab that not only focuses all propagat-

ing waves by negative refraction without limitation of finite

aperture, but also amplifies at least some evanescent waves in

a continuous range beyond that of the propagating waves. In

this context, superlensing refers to the unconventional imag-

ing effects due to the presence of the additional near-field

light. The phenomena considered here thus contain the main

features of Ref. 5. In general, however, the magnitude of

transmission will not reproduce exactly that for perfect im-

age recovery, and the resulting image will be imperfect and

possess quantitative aberrations. Below, we focus our atten-

tion on 2D situations where most of the quantities can be

treated as scalars. We choose the transverse coordinate to be

x and use unity for every Gn component of Fsource(k) for all

k, appropriate for a point source in 2D.

Our starting point here is the focusing by negative refrac-

tion of all propagating waves with k,v/c ~AANR! ~Ref.

12!; a brief discussion of the behaviors outside the frequency

range of AANR will be presented in Sec. V. With AANR, all

propagating waves can be transmitted through the photonic-
crystal slab with transmittance of order unity and produce a
intensity maximum behind the slab; i.e., they focus into a
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real image there. Superlensing requires amplified transmis-
sion for an additional range of transverse wave vectors,
v/c,k,kM . In Ref. 5, kM5` . The important difference
for superlensing with a photonic crystal is that kM is in gen-
eral finite. This is clear from the discussion in Sec. II, where
a finite high cutoff to the transmission spectrum results as a
consequence of Bragg scattering of light to leaky photon
modes. This finite kM makes the image reconstruction pro-
cess through a photonic-crystal superlens no longer divergent
even in the lossless case. Physically, the amplification of eva-
nescent waves requires near-resonance coupling and the re-
sulting growth of an approximate bound photon state during
transmission. Amplification of larger k components thus re-
quires exponentially higher energy density in the bound pho-
ton mode and an exponentially longer time interval to reach
a steady state. Our numerical results below are mainly cal-
culated in the frequency domain and therefore represent the
steady-state behavior after the transients have died away in
finite time.

To actually realize amplification of evanescent waves for
v/c,k,kM , one must design the photonic-crystal structure
carefully so that Eq. ~8! holds for all evanescent waves in

this range. For large k, kz51Av2/c2
2k2 has a large posi-

tive imaginary part, and therefore the operation frequency v
should be very close to the resonance frequency v0(k) of a
bound photon state. This means that for large k, the disper-
sion relations v0(k) must approach a ‘‘flat’’ line near v
within the AANR range, as shown in Fig. 2. In general, there
are two classes of bound photon modes within a photonic-
crystal slab. One consists of those guided by the slab as a
whole, similar to the guided modes in a uniform dielectric
slab. The other class includes those guided by the air/slab
surfaces; i.e., they are linear combinations of surface states,30

which decay exponentially both in air and in the slab away
from the surface. Although both classes of bound modes can
be employed to achieve amplification for a given k, most of
the wave vector region v/c,k,p/as within the AANR fre-
quency range involves a partial photonic band gap and can
only accommodate the surface photon states. Furthermore,
the surface states of photonic crystals are known to depend
on the fine details of the surface structure—e.g., the surface
termination position in a given direction—and can be tuned
to be any frequency across the band gap at least for a single
k point.30 Thus, the slab surface photon states are attractive
candidates for achieving flat bound photon bands within the
AANR range for superlensing. In our numerical example, we
give one 2D design that meets this goal by simply adjusting
the termination position of the crystal surface.

What is the ultimate limit to the imaging resolution of a
photonic-crystal superlens? Following Ref. 5, we may inter-
pret the image of a point source as an intensity peak within
the constant-z plane of AANR focusing, and we can measure
the resolution of such a peak by the distance between the
nearest minima of this intensity peak. Taking into account
the decay of the evanescent light as it travels in air from the
source plane to the incidence surface of the slab and from the
exit surface of the slab to the image plane, we can estimate
the image field using a simplified model. In this model, we
assume unit total transmission from the source to the image
for uku,kM and zero transmission for uku.kM . The intensity
profile on the image plane then reads

I image~x !5UE
2kM

kM

e ikxdkU2

5

4 sin2~kMx !

x2
, ~11!

which has a peak amplitude at x50 with a transverse size
D52p/kM—i.e., the distance between the first zeroes
around the peak. This image size is zero in a material with
e521 and m521, since kM5` , leading to the interpreta-
tion of a ‘‘perfect’’ image. At present in a photonic crystal,
quantitative estimates of the minimum possible D ~i.e., maxi-
mum possible kM) may be obtained by looking at Fig. 2. In
the best situation, all the surface modes with k

,0.5(2p/as) can be used directly for amplification if they
satisfy ~8!,41 which gives kM>0.5(2p/as). Since this esti-
mate ignores the strong Bragg-scattered wave components in
the surface states near the surface Brillouin zone edge, it is a
conservative estimate. From Fig. 2, we also deduce the maxi-
mum wave vector of a ‘‘flat’’ surface band below the light
line that can be coupled to at frequency v to be (1
2vas/2pc)(2p/as)52p/as2v/c , which is an overesti-
mate. Putting these results together, we thus obtain the ulti-
mate resolution limit of a photonic-crystal superlens to be

asl

l2as

,D,2as . ~12!

According to the Rayleigh criteria, the minimum feature size
that can be resolved by such a device is D/2. Thus, the reso-
lution of a photonic-crystal superlens at a single frequency is
only limited by its surface period as instead of the wave-
length of operation l; i.e., superlensing is in general possible

FIG. 2. Schematic illustration of amplification of evanescent

waves and superlensing in photonic crystals. The light-shaded re-

gions are the light cone, and the dark shaded region is the AANR

frequency range. The curve marked v0(k) outside the light cone is

a band of bound photon states inside a slab of photonic crystal. The

dashed line marked v indicates the operation frequency. Amplifica-

tion requires that uv2v0(k)u be small for all k.v/c , especially

the large k’s, which in turn requires the v0(k) curve be ‘‘flat.’’ In

this repeated zone scheme, a bound photon state may only exist in

the range v/c,k,2p/as2v/c , which imposes an upper cutoff

for superlensing using photonic crystals.
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in a positive-index photonic crystal. Our considerations also
give a guideline for designing high-resolution superlenses:
for a given wavelength, the smaller as—i.e., the lower in the
band structure one operates with AANR—the better the reso-
lutions will be. In principle, by using sufficiently large di-
electric constants in its constituents, a photonic-crystal super-
lens can be designed to operate at a wavelength arbitrarily
larger than as . A similar superlensing trend42 is also achiev-
able using localized plasmon polariton resonances in metallic
photonic crystals,43,44 in accordance with known results in
the left-handed materials. If, furthermore, a sufficiently flat
surface band is achieved in the AANR frequency range of
such a photonic-crystal slab by manipulating its surface
structures, imaging arbitrarily exceeding the diffraction limit
is possible. Therefore, there is no theoretical limit to super-
lensing in photonic crystals in general. In practice, of course,
available materials, material losses, and unavoidable imper-
fections in surface structures will limit the performance of
such superlenses.

It must be noted that the image of a superlens considered
above is substantially different from the conventional real
image of geometric optics. Conventional real optical images
always correspond to an intensity maximum: i.e., a peak of
the field amplitude distribution both in x and z directions.
When only the propagating waves are transmitted through
the superlens, they similarly produce an intensity maximum
in z.0: i.e., the image of AANR. The position of this image

may be simply estimated by paraxial geometric optics
around the z axis. However, when evanescent waves are in-
cluded, they bring distortions to the image and the resulting
intensity maximum is no longer at the position of the AANR
image. A simple illustration of the image pattern is provided
by our simplified cutoff model. The full expression of the
image in this model with a high cutoff kM.v/c can be
written as

I image~x ,z !5UE
2v/c

v/c

e ikx1iAv2/c2
2k2(z2z0)dk

1S E
2kM

2v/c

1E
v/c

kM D e ikx2(Ak2
2v2/c2)(z2z0)dkU2

,

~13!

where z5z0 is assumed to be the focusing plane of AANR.
Inside the absolute value sign of Eq. ~13!, the first term has
constructive interference at z5z0 and represents an intensity
maximum there, but the second term always displays asym-
metric amplitude distributions in z across z5z0. Thus, for
kM.v/c the overall intensity distribution no longer has a
maximum at z5z0. The detailed image pattern has a sensi-
tive dependence on the interplay between the propagating
and evanescent waves.

FIG. 3. ~Color! Bound photon modes with TE ~magnetic field perpendicular to the plane! polarization in a 2D photonic crystal slab. ~a!

Left panel: the actual photonic crystal used in calculation. The parameters are as5A2a , b150.5as , b250.2as , and h54.516as . Right

panel: the calculated band structure of bound photon modes ~black curves!, plotted on top of the photonic band structure projected along the

surface direction ~the red-filled region!. The blue-filled region indicates the light cone. The green range is the frequency range for AANR in

this photonic crystal. ~b! Distribution of the magnetic field perpendicular to the plane for the surface photonic modes at k

50.45 (2p/as). Left and right panels represent odd and even symmetries with respect to the mirror plane at the center of the structure. Red

and blue indicate positive and negative values of the magnetic field.
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For kM slightly above v/c , the strength of evanescent
waves is comparable to that of propagating waves. An inten-
sity maximum still exists in the region z.0, but is shifted
away from z5z0 toward the lens. This intensity maximum
thus appears as a real image similar to conventional optics.
Note that in general it will have a transverse size that is a
little bit smaller than 2p/kM—i.e., the transverse size of the
peak in the plane z5z0. Since this situation is for kM slightly
above v/c , it may be called the moderate subwavelength

limit, and the transverse size of an intensity maximum is
always limited by a fraction of the wavelength.

When kM exceeds a certain threshold, the evanescent
waves begin to dominate the image pattern. In this situation,
an intensity maximum completely disappears in the region
z.0, where the optical intensity becomes monotonically de-
creasing. We estimate the kM threshold for this behavior to
be about kM ,th51.35v/c , with a transverse size of the inten-
sity maximum about half a wavelength at this threshold, us-
ing the simplified model ~13!. This crude qualitative estimate
will be confirmed in our numerical calculations. The case of
superlensing with kM.kM ,th can thus be called the extreme

subwavelength limit. From another viewpoint, at v/c!kM

we have l@as , and if we also assume that the slab thickness
h is small compared to l , then the system may be regarded
to be in the near-static limit. The absence of an intensity
maximum in z.0 may then be understood simply by the
elementary fact that in electrostatics and magnetostatics po-
tentials can never reach local extrema in a sourceless spatial
region. Thus, in the extreme subwavelength limit the imag-
ing effect of a superlens is strictly in the transverse direction
only. Compared to a conventional lens, which generally has a
power-law decaying intensity distribution away from its im-
age, the superlens has a characteristic region between the
superlens and the image where an exponentially growing in-
tensity distribution exists.

A related effect of evanescent waves on the image is that,
for kM.v/c , the image intensity is generally larger than that
for kM<v/c . This occurs in the simplified model ~13! due to
the addition of evanescent-wave components. Note also that,
in this model, no exact resonant divergence is present in the
transmission and the intensity enhancement effect is promi-
nent in the region between the slab and image plane of geo-
metric optics. A more general situation occurs when the op-
erating frequency v falls inside the narrow frequency range
of the bound photon states, so that a distinct number of
bound mode with near-zero group velocities can be excited
on exact resonance. The contribution from one such exact
resonance pole at v5v0(k0) to the transmission may be
estimated as

E dk
C0~v ,k !

v0~k0!2v0~k !
'

1

~]v/]k !uk5k0

E dk
C0~v ,k !

k02k
.

~14!

The integral over k, though not suitable for analytical evalu-
ation in general, can usually be regarded as having a finite
principal value and depends on the detailed behavior in
C0(v ,k). The influence of each pole on the transmitted im-
age can be thus seen to be inversely proportional to the group

velocity of the bound photon state at the resonance and is
strongest for modes with the smallest group velocities. When
operating on exact resonance to the flat surface bands with
very small group velocities, the field pattern in a wide spatial
region in z.0 that extends beyond the image may be domi-
nated by the surface states, often with extraordinary strength.
Thus, we can call this regime of superlensing enhanced sur-

face resonance. On the one hand, such an effect might be
useful in applications where a large field amplitude is de-
sired. On the other hand, since a surface resonance is a de-

localized field distribution, there is very little information
contained within the intensity distribution about the trans-
verse location of the source in this case. This is a subtle point
to be avoided in imaging applications.

In many experimental situations, light intensity is the

FIG. 4. Frequency spectrum of transmission and links to bound

slab photon modes. ~a! Zeroth-order transmission (ut00u
2) through

the photonic-crystal slab in Fig. 3 for various transverse wave vec-

tors, plotted on a logarithmic scale vs frequency. ~b! The transmis-

sion curves in ~a! are plotted on the bound photon band structure of

the photonic-crystal slab @Fig. 3~a!#. The arrows indicate the trans-

verse wave vector for each transmission curve. The shaded region is

the light cone.
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quantity that is responsible for most physical effects and can
be measured directly. Both the subwavelength transverse
resolution and the spatial region of extraordinarily high in-
tensity can thus serve as direct experimental evidence of su-
perlensing. From the viewpoint of applications, imaging in
the transverse direction alone below the diffraction limit is
sufficient and desirable for many situations, such as sensing
and detecting or strong focusing for active phenomena. Our
considerations indicate the possibility of a variety of image
patterns impossible in conventional geometric optics in the
image of a superlens, based on the interplay between near-
field and far-field light. With a photonic crystal, a flexible
superlens may be constructed in which all of these physical
effects are readily observable.

IV. NUMERICAL RESULTS

In this section, we present numerical results that confirm
the above discussion on superlensing in photonic crystals.
The main crystal structure we choose to study is a square
lattice of two overlapping rectangular air voids in a lossless

dielectric e512, oriented along the ~11! direction and with
the various sizes specified in Fig. 3~a!. The lattice constant of
the square lattice is a, and the surface lattice constant is as

5A2a . This configuration possesses a similar infinite-crystal
band structure to the one studied in Ref. 12. Since it is a
layered structure along the ~11! direction, this crystal struc-
ture also allows for efficient numerical computations of
transmission through a finite slab in the frequency domain.
For brevity, we assume a TE ~magnetic field perpendicular to
the 2D plane! polarization in all our calculations in this pa-
per, and similar results can be expected for TM modes as
well.

A. Surface band structure

The band structure of the bound photon states on the
photonic-crystal slab suspended in air with ~11! surface ter-
mination is calculated by preconditioned conjugate-gradient
minimization of the block Rayleigh quotient in a plane-wave
basis45 using the supercell approach. The results are pre-
sented in Fig. 3~a!. Below the light cone and inside the re-

FIG. 5. ~Color! Transmission and intensity distribution in the image space for v50.193 (2pc/a), for a photonic crystal slab in Fig. 3

illuminated with an ideal point source. ~a! Zeroth-order transmission @ ut00u
2 for k,0.5(2p/as)] plotted on a logarithmic scale vs the incident

transverse wave vector. The gray curve indicates the transmission value for perfect image reconstruction at the AANR focusing position of

the present slab. The effective high cutoff of the transverse wave vector kM is marked out in dashed lines. ~b! The intensity distribution in

real space to the right of the slab for z.0. The right surface of the slab is at z50. ~c! The data in ~b! plotted in the plane of z50.6as

50.16l—i.e., through an intensity maximum. ~d! The data in ~b! plotted with x50—i.e., on the z axis.
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gion of projected band structure of an infinite crystal, the
modes are bound photon states guided by the slab as a
whole; the modes inside the partial photonic band gap are the
surface states guided around the air/slab interfaces in this
photonic crystal. The field profiles of the symmetric and an-
tisymmetric combinations of the surface modes on the two
surfaces with respect to the mirror symmetry plane are also
shown in Fig. 3~b!. Deep in the gap where the confinement is
strong, the splitting between these two bands becomes small
and the two bands merge into one curve in Fig. 3~a!. The
crystal thickness h and its associated surface termination po-
sition are chosen so that the frequencies of the surface modes
lie inside the AANR frequency region with little dependence
on the transverse wave vector k—i.e., two flat, nearly degen-
erate bound photon bands near the frequency v
50.192(2pc/a). This situation thus approximately realizes
that in Fig. 2 and is well suited to achieve superlensing.

B. Transmission spectrum

The transmission calculations for arbitrary frequency v
and wave vector k have been performed in the scattering-
matrix approach under Bloch periodic boundary conditions,
such as that of Whittaker and Culshaw for patterned layer
photonic structures.46 To compare the results with those ob-

tained from eigenmode computation by plane-wave expan-

sion, we fix the incident wave vector and calculate the fre-

quency spectrum of the transmission. The transmission is
presented on a logarithmic scale in Fig. 4~a!. The pro-
nounced peaks in the transmission indicate resonant excita-
tion of the bound photon states by the incident radiation, and
they approach infinity in the limit of continuous numerical
sampling points in frequency. From the comparison between
the transmission peaks and the surface band structure in Fig.
4~b!, we find excellent agreement between the two numerical
methods. Near each resonance, the transmission of evanes-
cent waves reaches large amplification values well exceeding
unity, providing the basis of superlensing.

An unusual feature to notice in the transmission spectrum,
not expected in a uniform negative-index slab, is the pres-
ence of zeros in the transmission when the frequency is in
the photonic band gap. These zeros occur as sharp dips on
the spectrum, and the number of these dips increases with the
slab thickness in a manner suggestive of Fabry-Perot inter-
ferences. However, they cannot be explained by the conven-
tional Fabry-Perot interference, which only occurs in the de-
nominator of Eq. ~2! and never leads to a zero. Instead, they
occur as a result of interference between the different eva-
nescent eigenmodes of the photonic crystal in Eq. ~1!,
coupled together through the phase matrix Tk,p . Zeros occur

FIG. 6. ~Color! Numerical results similar to those shown in Fig. 5 for v50.192 (2pc/a). ~c! is a plot in the plane of z50.6as

50.16l ~not through an intensity maximum!.
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because inside a photonic band gap, several eigenmodes can
have equal amplitude and cancel each other exactly. These
zeros are apparently quantitative new features in the trans-
mission spectrum, but since they are only at a discrete num-
ber of frequency points, they do not change the qualitative
structure of imaging. The quantitative effects of transmission
zeros are included in the numerical results of superlensing in
the next section.

C. Image patterns of a superlens

We calculate the transmission as a function of incident
wave vector k at a fixed frequency v close to that of the
surface modes, using the method of Sec. IV B. The complex
transmission data for these plane waves are then summed at
each z values as in Eq. ~10! to obtain the image pattern from
a point-dipole source placed on the z axis at z52h2u .
Here u50.1as is used in these calculations, and the k sam-
pling points range from k525(2p/as) to k55(2p/as) in
steps of 0.001(2p/as), to model the continuous range of
2`,k,` . This finite resolution roughly corresponds to a
finite transverse overall dimension of the structure of 1000
periods and is sufficient for illustrating the various appear-
ances of the image.47 Our results are summarized in Figs. 5,
6, and 7. The frequency of operation is shifted by only
0.001(2pc/a) from one figure to the next. In the all cases

here, the transmission for propagating waves is nearly the

same and close to unity. However, large differences in the

field patterns for z.0 can be observed in the results, indi-

cating that a fine control over the transmission of evanescent

waves is possible.

For v50.193(2pc/a) ~Fig. 5!, the operation frequency is

outside the frequency range of the ‘‘flat’’ surface bands. The

transmission results in Fig. 5~a! show smooth behavior

throughout the range of wave vectors and exhibit zeros as

noted in Sec. IV B. Notice that the magnitude of transmis-

sion oscillates around order unity for the evanescent waves

for 0.27(2p/as),k,0.73(2p/as), but for k.0.73(2p/as)

the transmission drops precipitously to a low level below 1

31023. This confirms our previous expectation that the

‘‘flat’’ bound photon band below the light cone (0.27

,kas/2p,0.73) should lead to amplified transmission of
evanescent waves and that the amplification effect should
disappear when the evanescent wave is coupled back into the
continuum. In the calculated image shown in Fig. 5~b!, a
clear intensity maximum at x50,z50.6as50.16l in free
space can be observed. Quantitative cross sections of this
maximum in both the x and the z axes are shown in Figs. 5~c!
and 5~d!, respectively. The transverse x size of this peak is
0.66l,l , demonstrating that the contribution of evanescent
waves to imaging is comparable to that of propagating

FIG. 7. ~Color! Numerical results similar to those shown in Fig. 5 for v50.191 (2pc/a). ~c! is a plot in the plane of z5as50.27l ~not

through an intensity maximum!.
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waves. This situation, however, still possesses an intensity
maximum and is therefore in the moderate subwavelength
regime. The imaging pattern is similar to what we obtained
previously using the finite-difference time-domain ~FDTD!
method,12 in which an intensity maximum was identified
with the location of a real image. Meanwhile, in the present
case, the geometric image location of AANR calculated from
constant-frequency contours of this photonic crystal is at z

51.4as50.38l . In the constant-z plane of the AANR image,
the intensity distribution in x is similar to that in Fig. 5~c!,
with a transverse size D50.71l . This value corresponds to
an effective high cutoff kM'1.4v/c50.38(2p/as), which is
close to the threshold kM value in the simplified model ob-
tained in Sec. III. For the present position of the AANR
image, we plot the amplification required to restore the
source perfectly in gray lines in Fig. 5~a!, which can be com-
pared to the actual transmission data and the effective cutoff
kM . Although the imaging is not perfect, the range v/c,k

,kM roughly indicates the interval in which the actual trans-
mission follows the behavior in the ideal case. Since kM is
actually larger than the wave vectors of several transmission
zeros in the spectrum, we have confirmed that these zeros do
not have a significant influence on superlensing.

If v is decreased slightly to v50.192(2pc/a) ~Fig. 6!,
the frequency falls inside the narrow range of the surface
mode frequencies. The transmission increases dramatically,
and pairs of peaks in the transmission spectrum occur, rep-
resenting excitation of surface mode combinations of even
and odd parity. These surface modes have large amplitudes,
as evidenced by the compressed color table in plotting Fig.
6~b! and the exponential decay of intensity along z axis in
Fig. 6~d!, and they now completely dominate the image. In
accordance with our discussion before, the focusing effect of
propagating waves becomes insignificant against this strong
background. If the field distribution in a plane of constant z

is measured, an example shown in Fig. 6~c!, many closely
spaced, near-periodic strong peaks occur, in striking contrast
to the familiar appearance of a focused optical image. Here,
this pattern of intensity distribution persists for increasing z
in the near field and even appears on the focusing plane of
AANR z51.1as50.31l . Due to the exponential decay of
intensity along the z axis and the delocalized field distribu-
tion in the transverse direction, neither the z coordinate nor
the transverse location of the source can be easily retrieved
from this image pattern. The present image field pattern is
hence undesirable for imaging purposes and should instead
be exploited in situations where enhanced intensity in an
extended spatial region is preferred. We infer the effective
cutoff wave vector by the width of the central peak D
51.8as50.49l on the plane of AANR image, and obtain
kM50.56(2p/as), as marked out on Fig. 6~a! where the
transmission curve for perfect image reconstruction is also
plotted. It is evident that the actual transmission deviates
significantly from the ideal case, which explains the nonfo-
cused image pattern.

An image pattern with intermediate behavior between
these two situations can occur, for example, if we take v to
be v50.191(2pc/a) ~Fig. 7!. This frequency is outside the
‘‘flat’’ surface band frequency range, and consequently the
transmission becomes smooth again. Amplified evanescent
waves are still present in the image space, which create an
exponentially decaying intensity profile along the z axis as
shown in Fig. 7~d!. In contrast to the case in Fig. 6, a distinct
intensity peak can now appear within a plane of constant z

shown in Fig. 7~c!, with a size significantly smaller than the
wavelength. Here we have actually achieved D50.45l at z

5as50.27l , approximately the same location as predicted
by AANR. This image size is in accordance with the general
prediction of Eq. ~12! where asl/(l2as)50.37l and 2as

50.54l for the present photonic crystal. We infer the high
cutoff wavelength kM in this case to be kM52.2v/c
50.6(2p/as), which corresponds to the extreme subwave-
length limit. In this limit, there is no intensity maximum in
z.0, consistent with our previous expectation, and the cal-
culated transmission for k,kM also displays roughly the
same trend in k dependence as the ideal transmission for
perfect image recovery. We have therefore found a superlens-
ing image pattern quite similar to that considered in the
original perfect lens proposal,5 in the present case with an
upper cutoff, without requiring negative-index materials.

To summarize, these computational results establish that
superlensing is possible with carefully designed photonic
crystals and exhibit large modifications to the image field
distribution due to the presence of evanescent light. To pre-
serve an intensity maximum in the image space, only a mod-
est amount of evanescent waves can be included in the mod-
erate subwavelength regime, and the resolution of the
resulting intensity maximum is limited by a fraction of the
wavelength ~Fig. 5!. Alternatively, it is also possible to en-
hance the transmission of evanescent waves to such an extent
that they dominate over propagating waves ~Fig. 6!. In this
case of enhanced surface resonance, a focused image disap-
pears completely and the field distribution becomes that of
the resonantly excited, delocalized surface modes. Further-
more, a scenario qualitatively similar to that of a left-handed

FIG. 8. The detailed surface band structure and its influence on

subwavelength imaging. The solid circles are the divergence peaks

in the calculated transmission through the structure in Fig. 4. The

dark-shaded area in the upper left corner is the light cone. The

frequency range for imaging with none or moderate subwavelength

contribution is from 0.1928 to 0.1935. The frequency range for

extreme subwavelength superlensing is from 0.1905 to 0.1911. The

region between them is the region of the flat surface bands for

enhanced surface resonance. The sequence of these three frequency

ranges here are due to the particular shape of the surface bands and

can be different in other systems.
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material with e521 and m521 can be obtained ~Fig. 7!,
with an evanescent field distribution containing a localized
intensity peak in the focusing plane of AANR. The minimum
size of this peak in this extreme subwavelength regime is
limited only by the surface periodicity of the photonic crystal
and not by the wavelength of light and is in principle only
limited by the refractive index. Finally, our calculations in-
dicate that in the present structure, each of these image pat-
terns can appear in a narrow frequency range inside that of
AANR, as indicated in the detailed surface band structure in
Fig. 8. We conclude that the intensity distribution of the op-
tical image formed by a superlens depends sensitively on the
detailed balance between propagating and evanescent waves
and can be tuned with great flexibility in photonic crystals.

V. DISCUSSION

For completeness, we show in Fig. 9 the calculated near-
field intensity distributions in z.0 for a point source of vari-

ous frequencies throughout the first photonic band, with all

other parameters the same as those in Sec. IV C. It is clear

that for frequencies lower than the AANR range „v
5(0.050,0.100,0.145)(2pc/a)…, since most of the propagat-

ing waves do not experience negative refraction and are not

focused, a broad background peak is always present in the

transverse direction. An interesting feature to observe is that
v50.145(2pc/a) is close to the band edge where there are
many flat bands of guided photon bound modes that can be
resonantly excited. Consequently, significant subwavelength
surface resonance features appear on the broad background
behind the slab. However, the overall resolution is now
determined by the background, which is spatially broad
and does not correspond to a subwavelength imaging effect.
For frequencies above the AANR range „v
50.195,0.210(2pc/a)…, since some of incident propagating
radiation from air will experience total external reflection,
the transverse resolution is always limited to be larger than
or equal to the operating wavelength. All these can be com-

FIG. 9. ~Color! Numerical re-

sults of the imaging for various

frequencies throughout the first

photonic band for the structure in

Fig. 3. ~a! Intensity distribution

along the transverse direction,

commonly measured at z50.5as

for several frequencies shown as

insets. This z value is chosen for

exhibition of large near-field ef-

fects at certain frequencies @e.g.,

v50.145(2pc/a)]. The trans-

verse intensity distribution at

larger z values has a similar-

shaped background but weaker

near-field modulations. ~b! Inten-

sity distribution along the z axis

for the shown frequencies. In both

panels the inset numbers are the

frequencies corresponding to each

curve, in units of (2pc/a).
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pared to v50.193(2pc/a) where the extraordinary super-
lensing enhancement in both the imaging resolution and in-
tensity is shown. From this analysis, we conclude that the

only frequencies at which one can observe superlensing are

inside the AANR range and close to a flat surface band.
The above discussion has focused on ideal situations with

no material absorption of light or structural imperfections. In
practice, material losses are always present, which means
that no transmission considered here will be truly infinite. In
general, appreciable material losses will impose severe limi-
tations on the transmission coefficient of evanescent waves,
in a manner similar to that of the intrinsic energy leakage
rate of a crystal mode above the light line, which in turn
reduces the superlensing effect. However, it is also expected
that, in the limit of extremely small material loss, in the
sense implied by the original proposal of perfect lens,5 our
findings about the image of a superlens will remain valid. As
an example, we show the calculated focusing effect in
slightly lossy photonic crystals in Fig. 10. The losses are
modeled as a positive imaginary part on the permittivity e of
the dielectric host, and results are calculated at the extreme
subwavelength frequency v50.191(2pc/a) for e starting
from e51210.01i up to 1210.05i . As the losses increase,
the strength of the transmitted near fields is attenuated, and
the subwavelength features in the central image peak gradu-
ally disappear. It is clear that a resolution at or below D
50.5l for a localized intensity peak in x is still achievable if
e<1210.01i . The effects of surface imperfections on sub-
wavelength imaging can also be qualitatively analyzed. We
consider these defects to occur only on a length scale that is

smaller than a lattice constant and, thus, much smaller than

the operating wavelength, with correspondingly little influ-

ence on propagating waves. Since the transmission of eva-
nescent waves depends sensitively on the bound surface pho-
ton states, which in turn depend sensitively on the surface
structure, imperfections are expected to be most influential
on the crystal surface. Their effects may thus be minimized
by improving the surface quality. Another kind of structural
imperfection is a finite lateral size of the crystal. We have
applied the FDTD method to such finite systems and found
that, for a 20-period-wide slab, a focusing resolution around
D50.6l can be still obtained. These considerations suggest
that the effects described in this paper should be observable
in realistic situations.

Our discussion on the image of a 2D superlens can be put
to experimental verification in a manner similar to that sug-
gested in Ref. 12. Because the superlensing occurs in the first
photonic band, it should also be directly applicable to 2D
photonic-crystal systems suspended in 3D.48 A more interest-
ing extension of these phenomena would be to a full 3D
system, which requires much more intensive computation for
numerical modeling. For example, in 3D the resolution of
focusing with infinite aperture but without evanescent waves
is still limited by the wavelength l , while the surface peri-
odicity discussed in Eq. ~12! should be replaced by the re-
ciprocal of the minimum radius of the surface Brillouin zone.
We show here in Fig. 11 the results of the computed bound
photon modes of a slab of a 3D photonic crystal proposed in
Ref. 15. As discussed in detail there, this photonic crystal
enables AANR in full 3D and is most effective for waves

FIG. 10. ~Color! Calculated transverse intensity distribution for imaging with lossy photonic crystals. Each inset number corresponds to

the permittivity of the dielectric host for the curve of the same color. The crystal and point source are otherwise identical to those in Fig. 7.

The intensity is plotted in the plane z5as at the frequency v50.191(2pc/a).

SUBWAVELENGTH IMAGING IN PHOTONIC CRYSTALS PHYSICAL REVIEW B 68, 045115 ~2003!

045115-13



polarized along (101̄). The surface band structure along GK

and GM computed here, complicated as it may seem at first
sight, bears a striking similarity to the TE and TM slab po-
lariton bands of a dispersive negative-index materials calcu-
lated by Ruppin49,50 when the direction of light polarization
is taken into account. For the particular surface termination
shown in Fig. 11, it is possible to obtain surface states within
the AANR range of this photonic crystal. Since there is still
a vast amount of freedom in tuning the fine details of the

crystal surface structure without breaking the periodicity, it
can be further expected that particular designs exist which
lead to flat surface bands and can enable superlensing in full
3D. This tunability and flexibility in our approach should
make photonic crystals a powerful and beautiful candidate in
manipulating and focusing light on subwavelength scales,
especially in the optical regime.

VI. CONCLUSIONS

In conclusion, we have explained the principles of the
amplified transmission of evanescent waves and superlensing
in general photonic crystals and presented specific designs of
superlenses based on AANR in photonic crystals as well as a
comprehensive numerical study of their subwavelength im-
aging properties in 2D. Special emphasis is given to the fo-
cusing resolution and image patterns of these devices, and
our studies demonstrate that the interplay between propagat-
ing and evanescent waves can lead to various image behav-
iors not possible with conventional lenses in geometric op-
tics. We hope that this work should clarify the underlying
physics of near-field imaging and stimulate interests of ex-
perimental studies of superlensing.
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