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We suggest a novel type of photonic topological edge states in zigzag arrays of dielectric nanoparticles
based on optically induced magnetic Mie resonances. We verify our general concept by the proof-of-
principle microwave experiments with dielectric spherical particles, and demonstrate, experimentally, the
ability to control the subwavelength topologically protected electromagnetic edge modes by changing the
polarization of the incident wave.
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Topological insulators represent a novel class of
materials with a topologically protected phase order [1].
Such materials attracted a lot of attention in the past due to
the existence of novel types of conducting surface states in,
otherwise, insulating bulk materials being protected by
time-reversal symmetry, and they demonstrate exotic phe-
nomena such as the quantum Hall effect [2,3]. Recently,
the concept of topological insulators became attractive in
optics, and different types of electromagnetic topological
states have been realized for microwave and photonic
systems [4]. In particular, the recent suggestions include
breaking the time-reversal symmetry by applying a periodic
modulation to the structure [5] and engineering photonic
crystals and metamaterials with synthetic magnetic fields
and spin-orbit interactions [6,7]. The first electromagnetic
topological edge states were demonstrated for radio
frequencies [8–10], and such novel photonic states were
also realized at optical frequencies in coupled optical
waveguides [11,12] and optical lattices [13,14].
Recently, it was predicted theoretically that a novel type

of topological edge states can be realized in the subwave-
length regime for a zigzag chain of plasmonic nanoparticles
[15]. Nontrivial topological properties of these plasmonic
edge states have been studied in the framework of the
coupled-dipole approximation and, also, by direct numeri-
cal simulations of Maxwell’s equations.
The purpose of this Letter is twofold. First, we demon-

strate, both theoretically and experimentally, that the
concept of plasmonic topological edge states in zigzag
arrays introduced earlier for metallic nanoparticles [15] is,
in fact, much more general, and it can be employed for a
broader class of subwavelength photonic and electromag-
netic structures including arrays of dielectric nanoparticles
with electric and magnetic Mie resonances, recently sug-
gested as building blocks of all-dielectric metamaterials.
More importantly, due to this generality, the subwavelength
structures with a topological order can be observed for
different types of coupled optical modes, including optically

induced magnetic quadrupole resonant modes. Second, we
employ microwave experiments with zigzag arrays of
electromagnetically coupled dielectric spheres and provide
the first proof-of-principle experimental observation of
optically induced magnetic topological edge states operating
in the subwavelength regime. We demonstrate that such
topological edge states can be selectively excited with the
linear polarization of the incident electromagnetic wave, and
we visualize them directly by mapping the corresponding
electromagnetic fields. Furthermore, we demonstrate the
difference between topologically trivial and nontrivial
electromagnetic modes in this model. Importantly, in a sharp
contrast to plasmonic arrays [15], the optically induced
response of dielectric nanoparticles includes both electric
and magnetic resonances which do not suffer from strong
losses in metals at visible frequencies, so that the dielectric
structures can be employed for the realization of a large
variety of novel low-loss nanophotonic devices with superior
characteristics [16] and topological properties.
First, we start from the discussion of topological proper-

ties of a general model originating from two major assump-
tions: (i) polarization-dependent interaction between
resonant modes of its structural elements, and (ii) a zigzag
shape of the array [Fig. 1(a)]. The structure Hamiltonian
reads

H ¼
X
j;ν

E0a
†
jνajν þ

X
hj;j0i;ν;ν0

a†jνV
ðj;j0Þ
νν0 aj0ν0 ; ð1Þ

whereE0 is the resonance energy, the indices j and j0 label the
particles, and hj; j0i are the nearest neighbors. We are
interested only in the states excited at the normal light
incidence upon the zigzag plane (xy); i.e., the mode polari-
zation ν can be x or y for dipole resonances and ν ¼ xz; yz

for the quadrupole resonances. Hence, Vðj;j0Þ
νν ¼ t∥cos2ψ þ

t⊥sin2ψ (with ν ¼ x or xz), Vðj;j0Þ
νν ¼ t∥ sin2 ψ þ t⊥ cos2 ψ

(with ν ¼ y or yz) and Vðj;j0Þ
νν0 ¼ ðt∥ − t⊥Þ sinψ cosψ for

ν ≠ ν0, where ψ is the azimuth angle of the vector
R ¼ rj − rj0 . Here, t∥ and t⊥ are the coupling constants of
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the modes copolarized and cross polarized with respect to the
link R; for quadrupole-quadrupole interaction t∥=t⊥ ¼ −4
and for dipole-dipole interaction t∥=t⊥ ¼ −2. The calculated
spectrum of the Hamiltonian (1) for the finite chain with
N ¼ 60 particles is shown in Fig. 1(e) as a function of the
angle θ between two consecutive links in the zigzag. The
value of θ equal to π corresponds to a straight line when
the two polarizations ν are decoupled, the system is not
gapped and no edge states are present [Figs. 1(b), 1(d)]. The
case θ ≪ 1 corresponds to a degenerate zigzagwith very acute
angles. For jθ − π=2j < arcsin j2t=Δj, a spectral gap appears
with a pair of eigenstates, one localized at the left edge and one
at the right edge [Figs. 1(a), 1(c)]. Their topological origin
follows from the bulk 4 × 4 Hamiltonian

HðkÞ ¼
�

0 Q

Q† 0

�
; Q ¼ h0 þ h · σ; ð2Þ

where K is the Bloch wave vector, h0¼ t̄ð1þe−iKÞ, hz¼
ðΔ=2Þð1þe−iK cos2ϕÞ, hx ¼ðΔ=2Þe−iK sin2ϕ, hy ¼ 0,

t̄ ¼ ðt∥ þ t⊥Þ=2, Δ ¼ t∥ − t⊥. Equation (2) is written in
the basis of the excitations on first and second particles in
the unit cell; the Pauli matrices σ act in the polarization space.
The Hamiltonians Eq. (1) and Eq. (2) are chiral and belong
to the chiral orthogonal class [17]. According to Refs. [18]
and [19], this symmetry guarantees at least a pair of zero-
energy eigenstates when the winding number W of detQ,
calculated when K varies from π to −π, is not equal to zero.
The parityP of thewinding number is shown in Fig. 1(f). It is
equal to one for jθ − π=2j < arcsin j2t=Δj and plays a role of
Z2 topological index in our system [20]. Explicit derivations
are given in the Supplemental Material [21]. In the nearest-
neighbor approximation, the edge states are robust against all
perturbations respecting the chiral symmetry, including
fluctuations of both coupling constants and link angles
(Fig. S3 in [21]). We note, that for t∥t⊥ > 0 when
jΔj < 2jtj, the gap is open, and the edge states are present
for all θ ≠ 0; π, see Fig. S4 in [21]. Such a situation could be
realized for coupled micropillar cavities [22].
Topological edge states in our system strongly rely on

polarization degeneracy of eigenmodes of individual par-
ticles, and thus, the problem is more general and much
richer than the celebrated scalar Su-Schrieffer-Heeger
(SSH) model for polyacetylene [23]. Although optical
analogues of the SSH model were extensively studied in
dimer superlattices [24–26], its topological properties have
been fully understood only recently [14,27,28]. In our
system, contrary to the SSH model, all the particles are the
same and a pair of zero-energy states is present for both odd
and even numbers of particles N. Localization degree
increases with the number of particles [21]. For odd N
and θ ¼ π=2 the edge states are copolarized, and for even
N, they are cross polarized. This opens a possibility to
selectively excite the left or right edge of the same structure
by varying the incident wave polarization.
For our Letter, we choose dielectric spheres with large

permittivity (ε ¼ 15) as the building blocks (or “meta-
atoms”) of our subwavelength electromagnetic structures
[see Figs. 1(a), 1(b)]. From the exact Mie solution of light
scattering by a spherical particle, the lowest frequency
resonance in the spectra is the magnetic dipole resonance
(at the frequency ω ≈ c=R for ε ¼ 15, where c is the speed
of light), the second one is the electric dipole resonance
(ω ≈ 1.4c=R), and the third one is the magnetic quadrupole
resonance (ω ≈ 1.5c=R), see Ref. [29]. Based on the
symmetry analysis above, the topologically nontrivial edge
states are expected for both electric or magnetic Mie-type
resonant modes, see also Fig. S5 in [21]. According to the
multipole decomposition of a single dielectric sphere [see
Fig. 2(a)], an obvious advantage of the magnetic quadru-
pole resonance is the high quality factor (Q ∼ 70) due to
reduced radiative losses. The experimentally measured
forward scattering amplitude of a single sphere is shown
in Fig. 2(b). In agreement with the theoretical results in
Fig. 2(a) based on the optical theorem, the experimental

(a) (b)

(d)(c)

(e)

(f)

FIG. 1 (color online). Artist’s view of (a) topologically non-
trivial zigzag array and (b) topologically trivial linear chain of
nanoparticles. (c),(d) Numerically calculated electric field dis-
tributions in both structures under the excitation by the plane
wave with the direction of magnetic fieldH0 shown in the graphs.
(e),(f) Energy spectrum and parity of the winding number
P≡Wmod2 of the zigzag chain calculated as functions of the
bond angle θ. Red dashed line indicates the region when the edge
states are formed. Calculated at t∥ ¼ 4, t⊥ ¼ −1, E0 ¼ 0 for
N ¼ 60 particles.
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scattering spectrum demonstrates three maxima at the
positions of magnetic dipole, electric dipole, and magnetic
quadrupole resonances, marked on the graph. Figure 1
shows two types of dielectric arrays made from such
spheres: a zigzag array with the bond angle θ ¼ π=2, in
Fig. 1(a), and a linear array, in Fig. 1(b). For both the arrays,
the spheres are touching each other. Panels 1(c) and 1(d)
show the numerically calculated electric field amplitude
induced by a plane wave in both zigzag and linear
structures at the frequency of the quadrupole resonance
of the single sphere. In both cases, the incoming plane wave
is polarized perpendicular to the array as indicated by an
arrow for the magnetic field H0. The full-wave numerical
simulations are performed using the CST MICROWAVE

STUDIO 2014. The colors correspond to the absolute value
of the electric field at the surface of the particle. The
calculated field has strong maxima at the first and last
particles in the zigzag array [see Fig. 1(c)]; however, the
field distribution in the linear array is rather uniform and no
edge states can be observed [see Fig. 1(d)].
Being inspired by this numerical demonstration of the

edge excitation in the zigzag array, we have performed the
proof-of-concept experiments in the microwave frequency
range. To mimic the electromagnetic properties of silicon
nanoparticles, we employed MgO-TiO2 ceramic spheres
that are characterized by a dielectric constant of 15 and
small dielectric loss factor in the 4–10 GHz frequency
range [30]. The sphere radius is equal to R ¼ 7.5 mm and
the spheres are touching each other. Our main experimental
results are summarized in Fig. 3. For chosen parameters,
the magnetic quadrupole resonance frequency is equal to
f ¼ 7.2 GHz [see Fig. 2(b)]. Next, we proceed to the
analysis of the near-field maps measured in the close
vicinity of the dielectric zigzag array at the magnetic
quadrupole resonance [see Figs. 3(a)–3(d)]. In order to
approximate the plane wave excitation, we utilize a
rectangular horn antenna. It is connected to the transmitting
port of a vector network analyzer (Agilent E8362C). We
use an automatic mechanical near-field scanning device
and an electric field probe connected to the receiving port
of the analyzer. The probe is oriented normally with respect

to the interface of the structure, and we measure the Ez
component of the electric field. The near field was scanned
at the 1 mm distance from the back interface of the zigzag
array to avoid the contact between the probe and the
sample. The polarization dependence of the structure
response is examined by rotating the source antenna.
Figures 3(a)–3(d) show the electric field maps for different
angles ϕ between the polarization direction of the incident
magnetic field H0 and the x axis. The maps present a direct
confirmation of the edge excitation in the structure at the
magnetic quadrupole resonance. The relative intensity of
the field above the edges can be switched by rotating the
incident wave polarization. For 3(a) ϕ ¼ 0° or 3(b) ϕ ¼ 90°
polarizations, only the first or last sphere is excited,
respectively, while for 3(d) ϕ ¼ 45° polarization, the
induced electric fields are localized near both edges of
the zigzag array. These results directly demonstrate the
difference between our polarization sensitive system and
the scalar SSH model. Based on the simplified analysis [15],
the edge mode excitation scenario is different for an even
number of particles, where both edges are excited identically
with polarization-dependent intensities. Similar behavior is
observed experimentally for six dielectric particles at the
magnetic quadrupole resonance [see Figs. 3(e), 3(f)].

(a) (b)

FIG. 2 (color online). (a) Scattering efficiency calculated by
Mie theory, and (b) measured forward scattering of a dielectric
sphere.

(a) (b)

(c) (d)

(e) (f)

FIG. 3 (color online). Experimental results. (a)–(d) Measured
electric field intensity at the frequency of the magnetic quadru-
pole resonance of a single sphere for different incident wave
polarizations ϕ ¼ 0°; 90°;−45°, and 45°, respectively, indicated
in the panels by arrows. (e),(f) Electric field intensity measured at
the 1 mm distance from the surface of particles for (e) ϕ ¼ 0° and
(f) ϕ ¼ 90° polarizations. (a)–(d) Results for odd number of
particles. (e)–(f) Results for even number of particles. White scale
bar represents the incident wavelength.
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The experimental results of Fig. 3 are in full qualitative
agreement with the predictions of the symmetry analysis of
the Hamiltonian Eq. (1).
Further evidence of the presence of the topological edge

states in our structure can be provided by an analytical
model including the retarded coupling between the quadru-
pole modes and their Mie scattering on the spheres. The
electric field outside the spheres is expanded over magnetic
quadrupole modes

EðrÞ ¼
X
ρ

X
M¼�1

Cρ;MY
ð2Þ
2Mðr − ρÞHð1Þ

2 ðωjr − ρj=cÞ;

where ρ is the sphere center position, Yð2Þ
2M is the transverse

electric (TE) polarized spherical harmonics with the total
and orbital momenta equal to 2, and the azimuthal momen-

tum M [31], Hð1Þ
2 is the Hankel function of the first kind.

The xz and the yz quadrupole modes can be expressed as the
linear combinations Cρ;xz ¼ ðCρ;1 þ Cρ;−1Þ=

ffiffiffi
2

p
, Cρ;yz ¼

ðCρ;1 − Cρ;−1Þ=ði
ffiffiffi
2

p Þ. The values of the expansion coeffi-
cients Cρ;M are obtained from the equation system

Cρ;M ¼ rðTEÞ2 ðωÞ
�
ξð0ÞM þ

X
M0¼�1

X
ρ0≠ρ

GðTE;TEÞ
ρM;ρ0M0Cρ0M0

�
:

Here, rðTEÞ2 ðωÞ is the Mie reflection coefficient of the TE

spherical wave from a sphere [32],GðTE;TEÞ
ρM;ρ0M0 are the structure

constants of the vector Korringa-Kohn-Rostocker method

[33,34] and ξð0ÞM ¼ −4πE�
0 · Y

ð2Þ
2MðezÞ, whereE0 is the electric

field amplitude of the plane wave incident along the z
direction.
Figures 4(a)–4(f) show a comparison between our

analytical results for the quadrupole-quadrupole model
with the results of our full-wave numerical simulations.
In Fig. 4(a), we plot the numerically calculated extinction
cross section for the single sphere (red curve), for the
zigzag chain when ϕ ¼ 45° (blue dashed curve), and
ϕ ¼ 0° (black solid curve). The frequency of the magnetic
quadrupole resonance of a single sphere is marked by the
black dashed line. The spatial distributions of the electric
field near the first and last dielectric particle are shown in
Figs. 4(c)–4(f). At each frequency, we normalize the
electric field above the first (#1) and last (#7) particle
centers by the averaged field above the central particles
(#2–#6). Both analytical and numerical calculations dem-
onstrate strong resonant excitation of the edge spheres.
The insets in Figs. 4(c)–4(f) show the electric field maps
above the zigzag chain for different polarizations of the
incident plane wave at the magnetic quadrupole resonance
frequency. The polarization dependence of the effect and
the field distributions perfectly agree with the experiment
of Fig. 3. We also compare the electric field dependence on
the particle number in numerical simulations, analytical
model, and experiment [see Fig. 4(b)]. The agreement

between the theoretical and experimental results is quite
good. A small difference can be explained by the tolerance
of dielectric particle manufacturing and small deviations of
permittivities of different spheres. It should be mentioned
that the experimental curve (blue line) in Fig. 4(b)
corresponds to jEzj2, while the analytical (green line)
and numerical (red line) curves correspond to jEj2. In
numerical simulations, we also observe the edge excitation
when the incident wave is polarized with ϕ ¼ −45° [see
Fig. 4(e)], while in the experiment this effect is not
pronounced [see Fig. 3(c)]. This is due to the fact that,
when ϕ ¼ −45°, the amplitude of the induced fields is
much weaker [see the inset in Fig. 4(e)] than in the case of

(a) (b)

(c) (d)

(e) (f)
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FIG. 4 (color online). (a) Extinction cross section spectrum
for a single particle (red solid curve), and for the zigzag
array at ϕ ¼ 45° (blue dashed curve) and ϕ ¼ 0° (black
solid curve). (b) Dependence of the electric field near the
particle center on the particle’s number for ϕ ¼ 45°.
(c)–(f) Near-field intensity at 1 mm above the first and last
spheres for incident wave polarization ϕ ¼ 0°; 90°;−45°, and
45°, respectively. Solid lines correspond to the analytical
results and dashed lines to the results of numerical simulations.
The insets correspond to the electric field intensity at the
quadrupole magnetic resonance of the single particle (marked
by a dashed black curve).
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excitation with ϕ ¼ 0°; 90°; 45° [see the insets in Figs. 4(c),
4(d), and 4(f)].
In conclusion, we have theoretically proposed and exper-

imentally demonstrated a novel class of photonic topological
edge states realized in the zigzag arrays of subwavelength
dielectric resonant structures. We have demonstrated, exper-
imentally, selective excitation of topological edge states by
adjusting the polarization of the incident wave, and we have
clarified the difference between topologically trivial and
nontrivial electromagnetic modes in such arrays. We believe
that the study of topological polarization-entangled eigenm-
odes suggests a new way for engineering the properties of
subwavelength structures and all-dielectric metamaterials for
novel applications in nanophotonics.

We thank A. Khanikaev and D. Jacobs for useful
discussions. This work was supported by the Australian
Research Council, the Government of the Russian Federation
(Grant No. 074-U01), the Dynasty Foundation (Russia),
and the Russian Fund for the Basic Research. A. P. S.
acknowledges a support of the SPIE scholarship. A. N. P.
acknowledges a support of the President Grant of
the Russian Federation (No. MK-6029.2014.2).

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[3] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science
314, 1757 (2006).

[4] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photonics
8, 821 (2014).

[5] K. Fang, Z. Yu, and S. Fan, Nat. Photonics 6, 782 (2012).
[6] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M.

Kargarian, A. H. MacDonald, and G. Shvets, Nat. Mater.
12, 233 (2013).

[7] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[8] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
Nature (London) 461, 772 (2009).

[9] W. Tan, Y. Sun, H. Chen, and S.-Q. Shen, Sci. Rep. 4, 3842
(2014).

[10] W.-J. Chen, S.-J. Jiang, X.-D. Chen, B. Zhu, L. Zhou, J.-W.
Dong, and C. T. Chan, Nat. Commun. 5, 5782 (2014).

[11] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,
Nat. Photonics 7, 1001 (2013).

[12] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O.
Zilberberg, Phys. Rev. Lett. 109, 106402 (2012).

[13] L.-J. Lang, X. Cai, and S. Chen, Phys. Rev. Lett. 108,
220401 (2012).

[14] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin,
T. Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795
(2013).

[15] A. Poddubny, A. Miroshnichenko, A. Slobozhanyuk,
and Y. Kivshar, ACS Photonics 1, 101 (2014).

[16] M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S.
Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker,
A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A.
Fedyanin, and Y. S. Kivshar, Nano Lett. 14, 6488 (2014).

[17] S. Ryu, A. P. Schnyder, A. Furusaki, and A.W.W. Ludwig,
New J. Phys. 12, 065010 (2010).

[18] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[19] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Phys. Rev.

B 83, 224511 (2011).
[20] S. Ganeshan, K. Sun, and S. Das Sarma, Phys. Rev. Lett.

110, 180403 (2013).
[21] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.114.123901 for details
of (S1) analysis of the energy spectrum and topological
properties; (S2) edge states at the dipole resonance; (S3)
dependence on the number of particles; (S4) the role of
material losses in the system, which includes Refs. [17],
[19], [22].

[22] S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński,
N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and
P. Senellart, Appl. Phys. Lett. 99, 101103 (2011).

[23] S.-Q. Shen, Topological insulators. Dirac equation in
condensed matters (Springer, Heidelberg, 2013).

[24] A. A. Sukhorukov and Y. S. Kivshar, Phys. Rev. Lett. 91,
113902 (2003).

[25] N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen,
Opt. Lett. 34, 1633 (2009).

[26] F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte,
S. Longhi, and A. Szameit, Phys. Rev. Lett. 105, 143902
(2010).

[27] H. Schomerus, Opt. Lett. 38, 1912 (2013).
[28] X. Li, E. Zhao, and W. Vincent Liu, Nat. Commun. 4, 1523

(2013),.
[29] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang,

and B. Luk’yanchuk, Sci. Rep. 2, 492 (2012).
[30] R. S. Savelev, A. P. Slobozhanyuk, A. E. Miroshnichenko,

Y. S. Kivshar, and P. A. Belov, Phys. Rev. B 89, 035435
(2014).

[31] D. A. Varshalovich, A. Moskalev, and V. Khersonksii,
Quantum theory of angular momentum (World Scientific,
Singapore, 1989).

[32] M. Born, E. Wolf, and A. Bhatia, Principles of optics:
Electromagnetic theory of propagation, interference and
diffraction of light (Cambridge University Press, Cambridge,
England, 1999).

[33] X. Wang, X.-G. Zhang, Q. Yu, and B. N. Harmon, Phys.
Rev. B 47, 4161 (1993).

[34] I. E. Psarobas, N. Stefanou, and A. Modinos, Phys. Rev. B
62, 278 (2000).

PRL 114, 123901 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015

123901-5

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1038/nphoton.2014.248
http://dx.doi.org/10.1038/nphoton.2014.248
http://dx.doi.org/10.1038/nphoton.2012.236
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/10.1038/srep03842
http://dx.doi.org/10.1038/srep03842
http://dx.doi.org/10.1038/ncomms6782
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1103/PhysRevLett.109.106402
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1103/PhysRevLett.108.220401
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1021/ph4000949
http://dx.doi.org/10.1021/nl503029j
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1103/PhysRevB.83.224511
http://dx.doi.org/10.1103/PhysRevB.83.224511
http://dx.doi.org/10.1103/PhysRevLett.110.180403
http://dx.doi.org/10.1103/PhysRevLett.110.180403
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.123901
http://dx.doi.org/10.1063/1.3632111
http://dx.doi.org/10.1103/PhysRevLett.91.113902
http://dx.doi.org/10.1103/PhysRevLett.91.113902
http://dx.doi.org/10.1364/OL.34.001633
http://dx.doi.org/10.1103/PhysRevLett.105.143902
http://dx.doi.org/10.1103/PhysRevLett.105.143902
http://dx.doi.org/10.1364/OL.38.001912
http://dx.doi.org/10.1038/ncomms2523
http://dx.doi.org/10.1038/ncomms2523
http://dx.doi.org/10.1038/srep00492
http://dx.doi.org/10.1103/PhysRevB.89.035435
http://dx.doi.org/10.1103/PhysRevB.89.035435
http://dx.doi.org/10.1103/PhysRevB.47.4161
http://dx.doi.org/10.1103/PhysRevB.47.4161
http://dx.doi.org/10.1103/PhysRevB.62.278
http://dx.doi.org/10.1103/PhysRevB.62.278

