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Enabling efficient non-reciprocal acoustic devices is challenging, yet very desirable for a variety 

of applications, including acoustic imaging, underwater communications, energy concentration 

and harvesting, signal processing and noise control. We discuss the theory and design of a fully 

linear compact acoustic circulator based on spatio-temporal modulation of the effective acoustic 

index, providing a compact and practical way to realize large sound circulation at any desired 

frequency. Our proposal enables tunable isolation levels up to 40 dB, with insertion losses as 

low as 0.3 dB, in a noise-free, integrable, frequency scalable device whose total size does not 

exceed / 6λ  . 

PACS: 43.20.-f, 43.35.-c, 03.65.Ge 

I. Introduction 

In wave physics, reciprocity is a property directly related to the fundamental symmetry of wave 

propagation, according to which transmission between two points in space is independent on the 

direction of propagation, and it directly stems from the invariance of wave propagation upon 
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time reversal. There are applications in which one would like to break reciprocity and obtain 

one-way wave transmission, for instance in order to protect a source from unwanted load 

reflections. The first reciprocity relations were introduced in 1856 by Von Helmholtz [1], and 

further developed by Lord Rayleigh in the particular case of acoustic waves [2]. However, 

practical devices that can significantly break reciprocity have been for a long time exclusively 

realized for electromagnetic waves using magnetically-biased ferrites based on the Faraday 

effect [3], leading to the development of Faraday isolators, a technology that is widely used in 

nowadays communication systems. Because of the relatively weak interaction between elastic 

waves and a d.c. magnetic field in magneto-acoustic crystals [4], obtaining strong magnetically-

induced acoustic non-reciprocity is quite challenging [5], and until recently no solution for large 

acoustic signal isolation in a compact device existed. 

The conditions under which Rayleigh reciprocity theorem holds can be broken in three different 

ways: (i) breaking linearity, (ii) biasing with a vector that is odd under time reversal, or (iii) 

breaking time invariance [6,7]. Large acoustic isolation has been obtained using option (i) in a 

non-linear medium paired with a frequency selective mirror [8,9], or with the help of nonlinear 

acoustic inclusions [10]; however, all these nonlinear solutions typically introduce severe signal 

distortions and only work for large acoustic intensities. According to the Casimir-Onsager 

principle of microscopic reversibility [11], linear isolation is possible if the system is biased with 

an odd-vector upon time reversal, just like the static magnetic field in the case of the Faraday 

isolator [option (ii)]. Following this principle and using angular momentum as the biasing vector, 

we have recently proposed large nonreciprocity at audible frequencies in an acoustic circulator 

constructed with a resonant ring cavity filled with an internal fluid in constant rotating motion 

[12]. A drawback of this method is the practical challenge to implement at higher frequencies 
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such mechanical motion, as the size of the resonator shrinks. In addition, this method may not be 

directly applicable to other types of mechanical waves, such as structural of surface waves, for 

which the possibility to break the reciprocal nature of their propagation may lead to novel venues 

in energy manipulation, concentration and harvesting.  

In this article, we propose a practical route towards linear, noise-free, ultrasonic acoustic 

isolation through an effective rotation of a subwavelength ultrasound circulator obtained via 

parametric modulation. Consider the geometry in Fig.1 (top): three cylindrical acoustic cavities 

are connected to each other via small channels, forming an acoustic resonator with 120o  

rotational symmetry. Three additional channels couple this resonator to external waveguides, 

defining a three-port network. We break reciprocity by applying suitable spatio-temporal 

modulation to the cavity volumes with modulation frequency / (2 )m mf ω π= . This modulation is 

applied in a rotating fashion: the volume 0V  of cavity 1 is modulated by an amount 

1 cos( )mV V tδ ωΔ = , whereas the volumes of cavities 2 and 3 are modulated at the same frequency 

mf  and strength Vδ , but with 2 / 3π  and 4 / 3π  phase delays, i.e.  2 cos( 2 / 3)mV V tδ ω πΔ = −  

and 3 cos( 4 / 3)mV V tδ ω πΔ = − , respectively. Because of this dynamic modulation, the system is 

no longer time-invariant, and time-reversal symmetry is broken by the effective angular 

momentum imparted by the modulation, violating the assumptions of Rayleigh reciprocity 

theorem, and possibly leading to strong nonreciprocal effects. An analogous functionality was 

achieved for radio-waves in a parametric lumped circuit in [13], and we now translate these 

concepts to acoustic propagation. 
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Fig. 1. Geometry of the proposed three-port network. Top: three acoustic cavities connected via 

small channels and coupled to three waveguides. The volumes V  of the cavities are weakly 

modulated in a rotating fashion, with amplitude Vδ and frequency mω . Bottom: Equivalent 

lumped circuit model in the long wavelength limit. The modulation of the physical volume of the 

cavity translates into a modulation of their acoustic compliance, represented here by variable 

shunt capacitors. 
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II. Theory 

a. Lumped circuit model equivalent 

The behavior of the proposed device can be predicted in the low frequency limit by considering 

its lumped circuit model equivalent. In this limit, we can assume that the acoustic pressure is 

constant within each of the three cavities, with pressure amplitudes 1p , 2p  and 3p . The three 

cavities can be modeled as parallel acoustic capacitors [Fig. 1(bottom)], since they store potential 

acoustic energy and accumulate a net amount of pressure ip , or acoustic voltage in the 

equivalent circuit, with respect to the static pressure 0p  represented by the ground in the circuit 

model. The difference in pressure stored by two adjacent cavities creates a force that acts on the 

mass of the fluid filling the small channel coupling them. Therefore, the elements connecting the 

three capacitors at nodes 1p , 2p  and 3p  behave as acoustic inductors of value L . The coupling 

to the external ports is also assumed to be of inertial, or inductive, nature, which is again 

represented by inductors connecting the nodes 1p , 2p  and 3p  to ports 1, 2 and 3. To take into 

account the modulation in the equivalent circuit of Fig. 1, we recall that the expression for the 

acoustic capacitance 0C  of a cavity in the long wavelength limit is given by 0 0 0C V β=  [14], 

where 0V  is the unbiased cavity volume and 0β  is the compressibility of the acoustic medium 

filling it, taken here to be Silicon Rubber RTV-602, with density 3
0 990 kg/mρ =  and 

compressibility 10 1
0 9.824 10  Paβ − −= [15]. Assuming that the volume modulation is obtained 

using actuators that compress the acoustic medium filling the cavities, and that the material is 

deformed elastically, the compressibility 0β  is untouched by the modulation, and therefore the 



6 

 

actuators directly modulate the acoustic capacitance with modulation depth 0 0/ /C C V Vδ δ= . 

This is represented in the equivalent circuit by variable capacitors. 

b. Temporal coupled-mode theory 

In order to model the device and solve the scattering problem for a signal incident at one of the 

ports, we use temporal coupled-mode theory, which is essentially perturbation theory applied in 

the time domain. This theory is justified here as we assume weak modulation depth and low 

modulation frequency throughout the paper. The first step is to consider the resonant properties 

of the unbiased structure, before applying perturbation theory to include the effect of the 

modulation. 

 

Figure 2 : Lumped element model of the resonator alone. 

 

Let us consider the unbiased resonator by itself, represented in Fig. 2. The capacitors have 

constant values 1 2 3 0 0C C C V β= = =  and we do not consider at this point the coupling to ports 1, 
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2, and 3, i.e. there are no radiative losses. We start by applying Kirchhoff's laws to the circuit, 

obtaining  
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Next, we represent the acoustic state of the resonator by the three component vector 
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whose time evolution is obtained directly from (1)  as 
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 In (3), we have introduced the Hermitian time evolution operator  
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We can transform (3) into the frequency domain eigenvalue problem 

 2
0M ψ ω ψ= − , (5) 
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whose solutions are the three eigenmodes of the unbiased structure. The first one, with 

eigenvalue 0ω =  and eigenvector  
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, (6) 

 is the d.c. mode, which expresses the capability of the cavity to store a uniform static pressure 

(at d.c., the capacitors are replaced by open circuits and the inductors by shorts, obtaining a node 

that is unconnected to the ground, whose voltage is arbitrary). The second and third modes, +  

and − , are counter-rotating degenerate modes associated with the lumped resonance of the 

structure at 03 / LCω± = ,  
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Next, we apply perturbation theory to the unbiased resonator. We assume that the values of the 

capacitors 1C , 2C  and 3C  are modulated by the amounts 1CΔ , 2CΔ  and 3CΔ  in a rotating 

fashion, following 
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 where mω  and 0C Vδ β δ=  are respectively the modulation frequency and modulation depth. We 

further assume that the modulation is practically realizable, i.e., it is sufficiently weak and slow, 

0C Cδ   and mω ω± . Under these assumptions, Eq. (3) is replaced by 
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Applying perturbation theory, we expand at any instant t  the acoustic state ( )tψ  in the biased 

cavity into the basis of eigenvectors of the unbiased time-evolution matrix 0M , obtaining 

 0( ) ( ) 0 ( ) ( ) ( )i
i

t a t a t a t a t iψ + −= + + + − =∑ , (12) 

where ( )ia t  denotes the time-dependent amplitude of the mode i . Plugging this expansion into 

(10), and considering the fact that the eigenmodes of 0M have been normalized with respect to 

the scalar product  

 * * *
,1 ,1 ,2 ,2 ,3 ,3a b a b a b a bp p p p p pψ ψ = + + , (13) 
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we obtain the following differential equations for the mode amplitudes: 
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The matrix elements i M jδ can be evaluated using (11) together with Eqs. (6)-(8) for the 

normalized eigenstates of 0M . We find that the modulation induces no coupling from the d.c 

mode into the counter-rotating modes, 

 0 0 0M Mδ δ+ = − = , (15) 

and that the diagonal matrix elements are null, 

 0 0 0M M Mδ δ δ= + + = − − = . (16) 

However, the other matrix elements are non-zero and are calculated as: 
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Next, we make the assumption that the acoustic device is designed such that the values of L  and 

0C  satisfy the following condition 
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that is, the lumped resonance frequency of the structure is far from d.c. If we assume that we 

excite the structure at a frequency ω  close to ω± , and considering that  mω ω± , we conclude 

that coupling of energy between the counter-rotating modes and the d.c mode is very inefficient 

(secular approximation). Under these conditions, the couple-mode equations (14) simplify to  
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where 2
0/ (2 )C Cχ ω δ±= .  

c. Scattering parameters 

To evaluate the scattering properties of the device, we now add coupling to the external ports, 

with decay rate γ , which is assumed to be constant over the frequency range of interest, and 

identical for both counter-rotating modes. This assumption is valid as long as the quality factor 

of the structure is large enough, which is the case here since the coupling channels to the ports 

are very narrow. We further note iS +  the incident signal at port i ,  and iS −  the outgoing one, and 

introduce the notation 

 iω γ± ±Ω = + . (21) 
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Owing to energy conservation, 120o symmetry, and the time-reversal properties of the structure, 

Eq. (20) is modified to yield the full couple-mode equations including decay and coupling to the 

ports  
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The outgoing signals are given by 
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Let us assume that the structure is excited by a monochromatic signal at frequency ω , incident 

only from port 1. By plugging 1
i tS e ω+ −= and 2 3 0S S+ += =  in Eq (22), we obtain the differential 

system 
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We see that the incident signal couples directly to both +  and −  modes, which will therefore 

necessarily inherit a frequency component at ω . Inspecting Eq. (24) further, it is evident that the 
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time-dependent coupling term between the mode amplitudes will force the +  mode to have a 

frequency component at mω ω− , whereas the −  mode will have a component at mω ω+ . We 

therefore make the following assumption for the solution, 
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 where the coefficients j
iα  are assumed to be time-independent. After plugging (25) into (24), 

and some straightforward algebra, we obtain the following linear system for the coefficients j
iα , 
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From the solution of (26), we obtain the components 0α+  and 0α−  of the +  and −  modes at 

ω : 
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We also get the components α −
+ and α +

− , of the +  and −  modes, respectively at mω ω−  and 

mω ω+ : 
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From the mode amplitudes, we can evaluate the outgoing signals iS −  using (23). Because they 

are expressed as linear combinations of the mode amplitudes, these signals contain the excitation 

frequency ω , as well as its two intermodulation products mω ω± . Therefore, after dividing iS −  

by the incident signal 1
i tS e ω+ −= , we extract three different sets of scattering parameters: the set 

of ijSω  describing scattering of an incident wave at ω  into outgoing waves at the same frequency 

ω , 
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 and the sets m
ijSω ω± , which describe the scattering of a wave at ω  into outgoing waves at 

frequencies mω ω± , 
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Eqs. (31)-(33), together with Eqs. (27)-(30), describe fully the frequency and modulation 

dependency of the scattering of the system. Sω  describes the scattering of input signals at ω  into 

output signals at ω , and it is the quantity of interest to predict the isolation performance. The 

other two matrices mSω ω±  describe the conversion of a portion of the input energy at ω  into 

undesired parasitic output signals at mω ω± , which we ideally want to keep at very low levels.  

 

III. Results 

a. Key performance metrics 

The performance of the device can be evaluated using four relevant metrics: (i) the isolation 

31 1320 log /IS S Sω ω=  of the device, which describes its ability to let an acoustic signal flow from 

port 1 to 3, but not vice versa. A larger isolation requires a stronger non-reciprocal response; (ii) 
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the forward insertion loss 3120 logIL Sω= − , which quantifies the signal loss introduced by the 

device in transmission; (iii) the reflection coefficient 1120logR Sω= ; (iv) the intermodulation 

strength of the parasitic signals at mω ω± , 3120log mP Sω ω−= . Ideally, the proposed device should 

provide large isolation, low insertion loss, low reflection and low parasitic signals.  

 

Fig. 3. Effect of the modulation depth /C Cδ  and modulation frequency mf  on the metrics of the 

circulator at its resonance frequency rω . Top left panel: isolation. Top right panel: insertion loss. 

Bottom left panel: reflection coefficient. Bottom right panel: strength of the intermodulation 

products. Points A and B are two design points considered in the text. 
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Figure 3 shows contour plots for these quantities, calculated at the resonance frequency ω±  of 

the unbiased resonator, for a range of reasonable values for [ ]0,1500  Hzmf ∈  and 

[ ]0/ 0,0.15C Cδ ∈ . We assumed cavities 3 mm thick with a diameter of 1cm, cylindrical internal 

coupling channels with diameter of 2 mm  and 1 mm length, and cylindrical external coupling 

channels with diameter of 0.5 mm and 1 mm length. The external square waveguides are 3 mm 

by 3 mm. This resonator is characterized by 18628 Hzf± =  and 12 76.75 sγ π −= . The top left 

panel shows the value of IS , showing that there is a specific balance between the choice of 

modulation frequency mf  and depth 0/C Cδ  to achieve isolation up to 50 dB. Too slow 

modulation, with frequencies below 50 Hz, yields high isolation only for unrealistically large 

values of 0/C Cδ , for which our perturbation theory may not even properly hold. By increasing 

mf  to around 100 Hz, however, it is possible to reach point B in the figure, for which 0/C Cδ  

has its minimum value 0/ 2.5%C Cδ = , while 50dBIS =  is still maximal. By further increasing 

mf , the required modulation depth slightly increases, and we reach point A in the plot 

( 0/ 5%C Cδ = , 1200 Hzmf = ) , for which the value of IS  has decreased a bit, down to 40 dB. 

These two points are of interest for isolation purposes and, to determine the best design, we need 

to look at the other metrics under the same conditions. For this purpose, we look next at the 

reflection, shown in the bottom left panel. In order to get low reflections from the device, one 

needs to operate in the blue region. Interestingly, this blue region and the red region of high IS  

of the top left panel seem to get closer and closer as mf  increases, which indicates that point A is 

a better choice in terms of impedance matching, with 40 dBR = − , as opposed to 10 dBR = −  

for point B. A look to the insertion loss and parasitic signals contour plots, respectively the top 
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right and bottom right panels, confirms the overall ideal operation at point A, for which 

0.3 dBIL =  and 20 dBP = − , to be compared with 3 dBIL =  and 12 dBP = −  for point B. This 

study highlights the importance of tailoring both modulation depth and frequency, and the 

tendency of faster modulations to lead to better matching, lower insertion loss and parasitic 

signals. Note that the considered values for the modulation frequency are more than an order of 

magnitude below the working frequency, which makes this design very attractive since many 

actuating solutions are available at such low frequencies, as we will further discuss in section IV. 

b. A numerical experiment 

To confirm the predictions of our analytical model, we performed full-wave simulations of the 

optimal device using a finite element method and a custom-made frequency domain solver. To 

model the structure in a full-wave fashion, we need to implement numerically the modulation 

0/C Cδ  of the cavity capacitance  

 0 0 0C V β= , (34) 

where 0V  is the volume of any cavity and 0β  the compressibility of the acoustic medium that is 

filling it (here silicon rubber). From Eq. (34), we see that in order to realize the capacitance 

modulation, we can keep the bulk modulus constant and change the cavity volume. This is the 

most convenient way to obtain modulation in practice, and it is what we propose here as an 

experimental solution. By physically compressing the cavity, we would change its volume, but 

not the bulk modulus (as long as linearity holds, i.e. for small displacements for which Hook's 

law remains valid,), and the change in density would not affect the capacitance, which obviously 

does not depend on such an inertial quantity. However, this practical way of modulating the 



19 

 

capacitance is not the easiest implementation in finite-element simulations, as it involves a 

dynamically changing geometry and a moving mesh. Instead, we see that we can induce exactly 

the same effect on the capacitance by keeping the volume constant but modulating the 

compressibility according to 

 
0 0

C
C
δ δβ

β
= . (35) 

This is what is implemented in our custom-made finite element solver, and it is strictly 

equivalent to the practical case of a volume variation with 0β  constant. To implement our code, 

we start from the general acoustic equations 

 
( )

( )

0( , ) ( , )

( , ) ( , ) ( , )

dp t t
dt

dt t p t
dt

ρ

β

⎧∇ = −⎪⎪
⎨
⎪∇ ⋅ = −
⎪⎩

r u r

u r r r
, (36) 

where ( , )p tr  is the acoustic pressure, ( , )tu r  is the particle velocity, 0ρ  is the time independent 

density of the medium, and  

 0( , ) ( ) ( ) cos( ( ))mt tβ β δβ ω ϕ= + −r r r r  (37) 

is the dynamically modulated compressibility of the structure. By taking the divergence of the 

top equation in (36), and using the bottom equation, we get the wave equation 

 ( )
2

0 2( , ) ( , ) ( , )dp t t p t
dt

ρ βΔ =r r r , (38) 
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which is the starting point of our numerical model. Next, since the modulation is periodic in 

time, we can use Floquet-Bloch theorem and write 

 ( , ) ( , ) i tp t f t e ω=r r , (39) 

where the function f is periodic in time with period equal to the modulation period, 

 2( , ) ( , )
m

f t f tπ
ω

+ =r r . (40) 

After a Fourier transform, we have the following expansion for the acoustic pressure 

 ( )( , ) ( ) mi n t
n

n
p t f e ω ω+=∑r r , (41) 

i.e. the solution of (38) is in general a superposition of a field at ω  and an infinite number of 

harmonics at mnω ω± . By plugging (41) into (38), we transform the initial differential equation 

with time-dependent coefficient (38) into an infinite linear set of coupled time-independent 

differential equations, one for each harmonic. We obtain, after some algebra, for an arbitrary 

harmonic of order n , 

 ( )2 2 ( ) ( )
0 0 0 1 1

1( ) ( )( ) ( ) ( )( ) ( ) ( )
2

i i
n m n m n nf n f n f e f eϕ ϕρ β ω ω ρ δβ ω ω −

− +Δ + + = − + +r rr r r r r r . (42) 

If the modulation frequency is small, it is reasonable to truncate this infinite system to 

{ }1,0,1n = − . Then, we obtain three coupled differential equations 
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( )2 2 ( ) ( )
0 0 0 0 0 1 1

2 2 ( )
1 0 1 0 0 0

2 2 ( )
1 0 1 0 0 0

1( ) ( ) ( ) ( ) ( ) ( )
2

1( ) ( )( ) ( ) ( )( ) ( )
2

1( ) ( )( ) ( ) ( )( ) ( )
2

i i

i
m m

i
m m

f f f e f e

f f f e

f f f e

ϕ ϕ

ϕ

ϕ

ρ β ω ρ δβ ω

ρ β ω ω ρ δβ ω ω

ρ β ω ω ρ δβ ω ω

−

− −

−

⎧Δ + = − +⎪
⎪
⎪Δ + − = − −⎨
⎪
⎪Δ + + = − +⎪⎩

r r

r

r

r r r r r r

r r r r r

r r r r r

. (43) 

The equations (43) are put in weak form and solved simultaneously in our frequency domain 

solver. We use scattering boundary conditions at the ports that also include the incident field. 

The result of our simulation is the field profiles at ω  and mω ω± at any excitation frequency ω , 

from which we can determine all the scattering parameters and compare the results to the ones of 

the couple-mode theory analysis [Eqs. (31)-(33)]. 

Figure 4 shows a comparison between the scattering parameters Sω  obtained using our coupled 

mode analytical model and the ones obtained directly from our numerical solver. The agreement 

between the two methods is excellent. At the resonance frequency 18628 Hzf± = , both methods 

predict an isolation 40dBIS = , excellent matching ( 40 dBR = − ), small intermodulation 

products ( 20 dBP = − ), and low insertion loss, comparable to the best commercially available 

radio-frequency circulators ( 0.3 dBIL = ). We stress that this is obtained for acoustic waves, 

without requiring any magnetic bias, and in a fully linear, parametric (noise-free) device. The 

only difference between the curves in the Figure is the small asymmetry of the full-wave curves 

around the design frequency, with slightly higher transmission values at low frequencies, an 

effect attributed to the presence of the common mode of the resonator at zero frequency, which 

we have neglected in our analytical calculations. 
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Fig. 4. Scattering parameters of the device, for modulation at point A in Fig. 2, versus signal 

frequency. The analytical results obtained from coupled-mode theory (top) are in excellent 

agreement with full-wave simulations based on the finite element method (bottom). 
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Fig. 5. Acoustic pressure field for excitation from port 1. When the modulation is turned off 

(panel a), the acoustic signal is evenly split between the output ports 2 and 3. When the spatio-

temporal modulation with tailored strength and frequency is turned on (panel b), it induces 

strong nonreciprocity by completely routing the acoustic signal to port 3, enabling ultrasonic 

circulation. 

 

Fig. 5. shows the acoustic pressure field at the resonance frequency, obtained from our numerical 

simulations, comparing the non-modulated case (panel a) with the modulated one (panel b), 

again assuming operation at point A in Fig. 3a. We assume an ultrasound signal to be incident 

from port 1: in the case of the unbiased resonator, the wave splits evenly between the two output 

ports, with 4/9 of the power transmitted to waveguide 2, 4/9 to waveguide 3, and 1/9 reflected 

back, due to the 120°  rotation symmetry. Due to the reciprocal nature of the unbiased resonator, 

such a splitting also occurs when the device is excited from port 2 or 3, yielding a symmetric 

scattering matrix. When the modulation is switched on with the right frequency and depth, the 
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device routes essentially all the impinging power to the port at the left of the input, inducing 

clockwise non-reciprocal circulation of ultrasound signals, with very small reflection and 

insertion loss. From port 1, the power goes exclusively to port 3, from port 3 it goes to port 2, 

and from 2 to port 1, with a handedness that is opposite to the one of the modulation. The 

coupling between substates +  and − , induced by the modulation, generates an intra-cavity 

acoustic state that possesses a null of acoustic pressure in cavity 2, preventing any leakage of 

acoustic energy into the corresponding port. By loading one of the ports with a matched load, it 

is also possible to turn the circulator into a unique two-port ultrasound isolator. 

IV. Discussion 

An important feature of our device is that high levels of isolation are obtained for a signal at 18.5 

kHz employing a modulation at a much lower frequency, i.e., 1.2 kHz. According to Fig. 2, even 

lower modulation frequencies are possible, trading off a bit of insertion loss. For the geometry 

discussed here, a total displacement of 150 mμ  is required to obtain the targeted volume 

variation of 5%, which is easily achievable at 1200 Hz using conventional actuators. In this 

frequency range, for instance, piezoelectric ceramics can provide the necessary compression. 

Considering that the acoustic properties of materials can be modulated much more effectively 

than the electromagnetic ones (the acoustic index modulation can reach tens of percents in 

magneto-acoustic crystals [16]), the proposed approach to acoustic non-reciprocity appears 

particularly attractive for sound and ultrasound applications. In addition, this solution opens 

exciting opportunities for high-power applications when translated back to the electromagnetic 

domain, for which conventional magnetic-based circulators cannot be applied, and the electronic 

modulation considered in recent papers [13,17] would fail.  
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Our design enables compact and large non-reciprocity with low modulation frequencies and 

depth, by using a resonant system to boost the interaction between the external acoustic wave 

and the modulated medium. Therefore, as shown by our coupled-mode theory analysis, the 

higher the quality factor Q factor of the quality, the lower the required modulation depth and 

frequency for a given performance. In the presence of absorption losses, the Q factor is 

decreased with respect to the ideal case considered here: on top of radiation losses, we now also 

have dissipation losses. However, the isolation level of the device can be maintained either by 

increasing the modulation depth and frequency, or by decreasing the radiation losses by 

engineering the coupling to the outside waveguides. The level of isolation, which is due to the 

presence of a destructive interference in front of the output port, does not depend on the presence 

of losses, however the modulation requirements to obtain this destructive interference do depend 

on it. Nevertheless, we would like to underline that the RTV-602 Silicon Rubber material 

assumed here is almost lossless from d.c. to 1 MHz [15], and we have checked that the results of 

the full-wave simulations are unaffected by the presence of the small imaginary part in the 

acoustic index of the medium. 

We would like to highlight important differences between this work and the cited work and ref 

[13], in which a radio-frequency electromagnetic circulator based on parametrically modulated 

resonant cavity is reported. In particular, the resonant properties of the acoustic structure 

considered here are rather different, due to the difference in wave-matter interactions in acoustic 

resonators. The electromagnetic resonator presented in [13] is obtained by coupling three 

resonators together, obtaining three different modes by hybridization. Two of them are 

degenerate and counter-propagating, and are used to create the non-reciprocal effect, while the 

other one is a pulsing common mode, which can be suppressed by increasing the coupling 
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between the resonant circuits to a very large value (the resonators are indeed connected with 

short circuits). We then operate near the resonance frequency of the three resonators. In 

acoustics, it is not possible to create short circuits without affecting irreparably the resonators 

themselves, and therefore the resonating structure must be completely different. In fact, here the 

device is operated well below the resonance frequency of the three cavities, which are coupled to 

each other only weakly. We are working with a lumped resonance mode of the entire loop, and 

the pulsing mode is forced by nature to resonate at 0 Hz. We use this to our advantage by setting 

the lumped resonance frequency of the cavity to be far from d.c. and minimize the effect of the 

d.c. mode. In both the electromagnetic and acoustic cases, the design constraints and the 

associated solutions are directly dictated by the physical nature of the system, which is evidently 

very different. Therefore, the analytical and numerical modeling of the device are in turn 

different, as evident by comparing the coupled-mode equations used here with the ones in [13].  

While the proposed device does require an external bias, we stress that, from the acoustical 

standpoint, its functionality is totally passive and the incident acoustic energy is conserved 

through scattering, i.e., no power is extracted from or absorbed by the modulation. This implies 

that no energy needs to be provided to the modulation network for the effect to arise, other than 

the parasitic energy dissipated in the practical implementation of the modulation. In addition, 

although it supports frequency generation due to time-dependency, our system is fully linear and 

does not violate the superposition principle, as a non-linear device would, which is largely 

interesting to avoid signal distortions. With a size below 2.5 cm, our device is as small as / 6λ , 

which makes it a compact and integrable, noise-free solution for ultrasonic circulation and 

isolation. It can be tuned in real time to modify the value of isolation, insertion loss, reflection, 

and even handedness, by simply modifying the modulation depth, frequency or phase of the 
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modulation signals. Finally, we stress that the proposed concept is very general, and it may be 

implemented for other types of mechanical waves and in many frequency ranges, from audible 

sound to thermal phonon frequencies. A broad range of applications can benefit from the 

concept, spanning acoustic imaging and sonar systems, underwater acoustic communications, 

vibrational energy concentration and harvesting, signal processing, noise control, heat 

management via thermal phonon engineering, or telecommunications where our strategy may be 

used to build isolated delay lines based on surface acoustic waves (SAW) or other types of  non-

reciprocal SAW devices. 

V. Conclusions 

We have put forward a general concept to achieve isolation and circulation of acoustic signals, 

relying on rotation imparted by spatio-temporal modulation of the acoustical properties of a 

composite lumped resonator. We have shown that isolation levels as high as 40 dB can be 

obtained with an insertion loss as low as 0.3 dB, in a matched ultrasonic device operating at 18.5 

kHz, and modulated only by a 5% amplitude at the frequency of 1200 Hz. This work may enable 

the realization of efficient acoustic or mechanical circulators with industrial applications in 

transducer technology, acoustic imaging, energy concentration, thermal management, acoustic 

communication systems and noise control. This work has been supported by the AFOSR grant 

No. FA9550-13-1-0204, AFOSR grant No. FA9550-14-1-0105, and the DTRA grant No. 

HDTRA1-12-1-0022. The authors would like to acknowledge Prof. A.B. Khanikaev for useful 

discussions regarding the numerical methods used in this work. 
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