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Quantum simulation with cold atoms in optical lattices is an attractive avenue for explorations of quantum many-body
physics. A principal challenge in the field is to increase the energy and length scales in current set-ups, thereby reducing
temperature and coherence-time requirements. Here, we present a new paradigm for high-density, two-dimensional optical
lattices in photonic crystal waveguides. Specially engineered two-dimensional photonic crystals provide a practical
platform to trap atoms and engineer their interactions in ways that surpass the limitations of current technologies and
enable investigations of novel quantum many-body matter. Our schemes remove the constraint on the lattice constant set
by the free-space optical wavelength in favour of deeply sub-wavelength atomic arrays. We further describe possibilities
for atom–atom interactions mediated by photons in two-dimensional photonic crystal waveguides with energy scales
several orders of magnitude larger than for exchange interactions in free-space lattices and with the capability to engineer
strongly long-range interactions.

O
bstacles to the exploration of quantum many-body physics
with cold atoms1,2 include the small energy scales
(∼103–104 Hz) and the restriction to nearest-neighbour

interactions in free-space optical lattices. Alternative approaches
for quantum simulation include dipolar molecules3 and Rydberg
atoms4,5, which give rise to weakly long-range interactions that
typically scale as 1/rα, where α = 3 and r is the distance between
the atoms (in standard notation6, weakly (strongly) long-range
interactions are for α >D (α <D) with D the dimensionality).
Other possibilities involve lattices with a period below that of a
free-space optical standing wave by using plasmonic7 or
superconducting systems8.

In this Article we show that the integration of ultra-cold atomic
physics with nanophotonics opens up new avenues for the creation
of quantummany-body matter. As illustrated in Fig. 1a, two-dimen-
sional arrays of atom traps can be generated by optical-dipole forces
from guided modes (GMs) of photonic crystal waveguides (PCWs)
whose refractive index n(r) is modulated with a period d < λ0/2,
where λ0 is the vacuum wavelength9. Atoms can also be trapped
in two-dimensional vacuum lattices arising from the spatial vari-
ation of Casimir–Polder (CP) forces10 near a PCW with lattice con-
stant d ≈ 50 nm. Such atom lattices with d < λ0/2 yield larger energy
scales for quantum simulation than is generally possible with con-
ventional free-space optical lattices.

We further show that PCWs provide a versatile means for creat-
ing atom–atom interactions mediated by photons within the GMs of
the PCW. These effective atomic interactions can be very large and
strongly long-range. By operating with a Raman transition either
within a bandgap or in a dispersive regime for the PCW, the
dynamics of atom–atom interactions can be predominantly conser-
vative or dissipative, with the possibility to make this choice in real
time. Finally, we analyse the prospects of this scheme to implement
spin models for quantum simulation.

Our analyses with two-dimensional structures are based on
early treatments of atom–photon interactions in general photonic
crystal structures11–14 and are motivated by recent experiments for

atom localization near nanoscopic dielectrics15–20 and related theor-
etical proposals (for example, self-organization21 and coherent
atom–atom interactions14,22). By advancing atomic lattices with
PCWs from one to two dimensions, we gain access to a richer set
of phenomena, including Hubbard physics with large interaction
energies, quantum magnetism with the capability to design
the strength and range of the interaction, and topological phases
for two-dimensional atom lattices with photon-mediated
interactions23–25.

Relevant to our work with two-dimensional structures is ref. 22
(for one-dimensional PCWs), which provides an initial elaboration
of the principles for achieving long-range coupling between atoms
in realistic structures18,19. Carefully crafted trapping schemes are
key to enabling experimental realizations, and such schemes for
two dimensions are presented here for the first time, including
deeply subwavelength vacuum lattices. We extend the atomic-level
schemes and mode-coupling strategies to achieve engineered long-
range interactions and dynamic tunability for two-dimensional
PCWs, and provide realistic analyses to quantify them. By extending
the ideas introduced in ref. 22 we include loss mechanisms from
free-space atomic emission and photon losses in the dielectric
structures by way of the universal parameter of cooperativity,
and thereby estimate the number of coherent cycles achievable for
quantum simulation.

Because of the wide range of physical phenomena, our Article is
structured to present first an overview of the parameter space that is
opened by our proposals. We then describe particular examples that
illuminate our strategies and analysis techniques. Details of the
physics underlying these calculations are provided in the
Supplementary Information.

Hubbard physics in optical lattices with d < λ0/2
Conventional investigations make use of free-space optical traps
with lattice constant d = λ0/2. By moving to two-dimensional
planar PCWs as in Fig. 1a, lattices with d < λ0/2 become possible
for quantum simulation with both fermonic and bosonic atoms.
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For definiteness, we consider bosonic atoms, for which the following
Bose–Hubbard Hamiltonian has been well established (ħ = 1)26:

HBH = −J
∑

〈i,j〉

b†i bj + U
∑

i

ni(ni − 1)/2 (1)

where bi(b
†
i ) annihilates (creates) a localized atom on site ri, and

ni = b†i bi. The tunnelling rate J and on-site interaction energy U
are both upper bounded by the so-called ‘recoil’ energy of the
lattice, ER = h2/8md2.

Figure 1b presents results for the scaling of the maximum tunnel-
ling rate Jmax for

87Rb atoms trapped in lattices with 50 nm ≲ d ≲

300 nm as compared to λ0/2 ≈ 385 nm for a free-space Rb lattice.
With only optical confinement in the GM region of Fig. 1b, the
upper limit for J,U could be increased by a factor of about 10 relative
to a free-space lattice. Further reductions in d are enabled by a
novel trap design that uses vacuum forces (CP) for lateral
confinement27,28 in the x–y plane and optical forces along z perpen-
dicular to a planar PCW, leading to the possibility for a 60-fold
increase in J,U for 87Rb.

Strong spin–spin interactions mediated by photons
Another exciting perspective for quantum simulation is the realization
of spin–spinHamiltonians for quantummagnetism of the general form

Hspin =
∑

β=x,y,z

∑

i,j

J
β
ijσ

β
i σ

β
j (2)

where σ
β
i are Pauli operators and J

β
ij are the spin–spin interaction

energies in the β direction for sites i,j. In free-space lattices,
|Jβij |/2π ≲ 103 Hz (ref. 29) and the range of interactions is restricted
to nearest neighbours. To extend the interaction range, dipolar mol-
ecules3 and Rydberg atoms4,5 yield a spatial decay of 1/r3ij. By using
GMs for photon-mediated atomic interactions, we demonstrate
schemes to simulate spin-models as in equation (2) with atoms
trapped within two-dimensional PCWs. The dynamics can be
made conservative or dissipative by varying the effective detuning
Δβ between the laser and band-edge frequencies. For the conserva-
tive regime with the atomic transition within a bandgap and Δβ < 0,

J
β
ij = hβΓ2dK0(|rij|/ξβ) (3)

where K0(|rij|/ξβ) is a modified Bessel function of the second kind

that dictates the spatial dependence of J
β
ij . This function decays as

K0(x) ∝ log (1/x) when x≪ 1 and as K0(x) ∝ e−x/
��

x
√

when x≫ 1,
where ξβ =

��������

|A/Δβ|
√

is a tunable length (Fig. 1c) that depends
both on the curvature of the bands A and effective detuning Δβ.
Real-time variation of Δβ can be used to switch between the different
scaling regimes. The interaction strength is hβΓ2d , where Γ2d
describes the atom–GM coupling (Fig. 1d) and hβ is fixed by the
Rabi frequency and detuning of an external laser in our two-photon
Raman coupling scheme (see below).

As shown in Fig. 1d, Γ2d/2π≈ 106–109 Hz (using Γa/2π = 6.07 MHz
for the D2 line of Rb in free space), depending on the geometrical and
material characteristics of the PCWs (for example, curvature A of the
band). The projected values for J

β
ij are several orders of magnitude

larger than found with state-of-the-art methods in free-space lattices.
The stronger and longer range of interactions favours frustrations and
foresees the observation of more stable supersolid phases30–32, long-
lived metastable states33 or the ‘instantaneous’ transmission of corre-
lations after local quenches34.

By contrast, operating outside the bandgap in a dispersive regime
leads to dissipative evolution described by a master equation. In this
case, our proposal leads to simulations of strongly long-range dissi-
pative interactions and thereby opens new opportunities for the dis-
sipative generation of entanglement7,35,36 and steady-state
topological phases24,25 for two-dimensional atom lattices.

Optical lattices with planar PCWs
The regime labelled ‘GMs’ in Fig. 1b can be studied by considering a
dielectric slab with a square lattice of circular holes of periodicity d
as in Fig. 1a. The evanescent fields of counter-propagating GMs
along x and y create a periodic far-off resonance optical trapping
(FORT) potential proportional to |ΩGM(r)|

2/δ, where δ is the detun-
ing between the GMs and atomic frequencies and |ΩGM(r)|

2 is pro-
portional to the field density |EGM(r)|

2. As a definite example, we
analyse the lowest-order transverse magnetic (TM) GMs with polar-
izations predominantly along z for kx,ky. To stabilize the lattice in
the vertical direction, a third pair of lasers counter-propagates
along z (side illumination, SI) with wavelength λSI and Rabi fre-
quency ΩSI. These z-beams have the same frequency but amplitudes
related by eiϕ, thereby localizing a minimum near the surface of the
PCW17. The vertical trapping minima, zt(x,y), must be near the
surface of the PCW to form an {x,y} lattice in the rapidly decaying
fields of the GMs (for example, zt = 65 nm for the dashed line (i) in
Fig. 1b, corresponding to a situation where d = 125 nm). In such
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Figure 1 | Nanophotonic atom lattices and parameter regimes opened for many-body simulations. a, General scheme for a nanophotonic lattice. The

dielectric slab has thickness W and refractive index n, with a lattice of holes of radius R and periodicity d. Optical trapping occurs by means of guided modes

(GM) and side illumination (SI). b, Scaling of the maximum tunnelling (J in equation (1)) as a function of lattice periodicity d for Rb. Vertical dashed lines

correspond to the examples explained in the main text. c, Spatial dependence of spin–spin interaction, J
β
ij /(hβΓ2d), as a function of distance rij/d for a

situation where the atomic frequency lies in the bandgap and ξβ = 100d. d, Scaling of Γ2d/Γa with guided-mode band curvature A using the geometrical

parameters of the TE mode of Figs 3 and 4 within the isotropic approximation.
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close proximity to the dielectric, surface forces from CP interactions
must be taken into account. The CP force acting on an atom
depends on the atomic polarizability and the electromagnetic
Green’s function at the atomic position and at all frequencies10.
As it is difficult to obtain effective models for geometries of such
complexity, we apply the techniques described in refs 37 and 38
to evaluate the CP force in a numerically exact way using finite-
difference time-domain (FDTD) calculations. A detailed analysis
of the trapping potentials for the example of line (i) in Fig. 1b is
provided in Supplementary Section II.

Optimization of the lattice potential formed fromGMs, SI andCP
is straightforward for periodicity λ0/2n < d < λ0/2, but becomes pro-
blematic for d ≲ λ0/2n. First note that in the limit of a uniform slab
(that is, n(r)�n), the lower bound for the periodicity in an optical
lattice with guided modes is dmin = λ0/2n, obtained for a thick slab.
Hence, dmin is reduced by a factor of n relative to d = λ0/2 for free-
space lattices. Reductions in d below dmin are possible for PCW
optical lattices. However, PCWs rapidly lose contrast for the GM
intensity and the resulting FORT potential VGM(x,y) as d decreases
below dmin.Moreover, decreasing d brings a requirement for trapping
at zt closer to the surface and a concomitant increase in CP forces.
These two factors result in a steep rise in the laser intensities required
for stable trapping (Supplementary Section II).

Two-dimensional lattices with vacuum forces
To create lattices with d < dmin , we introduce a new method for trap-
ping that uses CP interactions as a tool rather than a hindrance for
localization near a surface. In the spirit of ref. 38, we exploit that a
periodic modulation of refractive index n(x,y) creates a periodic x,y

modulation of the CP potential VCP(x,y,z)
27,28. Large transverse

wave vectors kx, ky associated with VCP(x,y,zt) for k0zt≪ 1
avoid fundamental constraints on contrast for VGM(x,y,zt) in
subwavelength structures.

A proof-of-principle example of our scheme is shown schemati-
cally in Fig. 2a and consists of a periodic array of cylindrical posts in
a deeply subwavelength regime with d = 50 nm. The lattice for trap-
ping in the x–y plane is predominantly due to the CP potential
VCP(x,y,z), while trapping along z is via VSI(x,y,z). We compute
VCP(x,y,z) numerically10,37,38 and in Fig. 2b display vertical cuts of
VCP(0,yv ,z) at yv = {0,d/2,d}, showing the z-dependence of
VCP(0,yv ,z) as the planar position moves from the axis of a rod at
{x,y} = 0. Although we focus on a unit cell, a two-dimensional
array of posts is included in our calculation. The total trapping
potential for the atomic lattice is Vtot(x,y,z) =VCP(x,y,z) +VSI(x,y,z),
with line cuts shown in Fig. 2c,d. For Fig. 2c, the trap minima are
chosen to be at a vertical distance of zt ≈ 32.5 nm to achieve the
required contrast in the x–y plane for the Bose–Hubbard physics
of equation (1). Figure 2d clearly demonstrates that the dominant
contribution to the variation of Vtot(x,y,zt) in the x–y plane is the
‘vacuum lattice’ from CP interactions and not VSI(x,y,zt).

The trap depth of the two-dimensional vacuum lattice can be
dynamically tuned over a wide range by adjusting the vertical trap
position zt. The trap depth Vd and frequencies ωt for Fig. 2 are
{Vd,xy,Vd,z}/2π ≈ {3.5,20.8} MHz and {ωt,xy,ωt,z}/2π ≈ {1.7,4.2} MHz.
In the x–y plane, the trapping depth of Fig. 2 is ∼15ER , which guar-
antees the possibility of having localized Wannier modes in the
lattice39. If we used only the SI FORT potential, the trap depth
would be ∼3ER , which does not lead to localization in a unit cell.
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Figure 2 | Subwavelength atomic lattices using vacuum forces. a, Schematic of a dielectric slab of thicknessW and refractive index nsubswith dielectric posts

of height h and refractive index n2. For illustration we use GaP for the post and substrate structure and choose
87Rb atoms. b, CP potential VCP(0, y, z) vertical cut

for three different horizontal positions in the unit cell (yv =0 (solid black), yv = d/4 (dashed red) and yv = d/2 (dotted blue)) for a structure with d = 50 nm and

R = 10 nm. c, Vertical cut of the total (solid black) and SI (dotted blue) potential above the post’s surface. Chirping the SI phase ϕmoves the ztminimum and

lattice depth. d, Horizontal cut of the total (solid black) and SI (dotted blue) potential at zt = 32.5 nm. Both c and d describe GaP with d = 50 nm, R =0.2d
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CP modulation.
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The associated scattering rate of the trap scales as VSIΓa/δ, yielding
scattering rates of ∼2π × 10 Hz for Rb. The results in Fig. 2, corre-
sponding to Fig. 1b,ii, and further analyses (Supplementary
Section III) suggest that vacuum lattices could provide significant
increases in the energy scale for Bose–Hubbard physics with
cold atoms.

Long-range interactions mediated by photons in PCWs
Our discussion thus far relates to the CP and GM regimes in Fig. 1b,
with an emphasis on a reduced lattice constant relative to free space.
However, PCWs also offer exciting opportunities for investigations
of many-body physics via photon-mediated interactions among
atoms trapped within a PCW11. Although one-dimensional PCWs
have predominantly been considered14,18,19,22,38,40, our schemes for
two-dimensional PCWs yield physics beyond the one-dimensional
case. Moreover, we provide full descriptions of the trapping con-
figuration, band design and photon-mediated couplings using
realistic parameters.

Figure 3a presents the band structure for a square lattice of holes in
a GaP slab41. Our interest is in the GMs shown in the area below the
light line, while the shaded area above the light line represents the
continuum of leaky modes. This structure supports a bandgap for
the transverse electric (TE-like) GMs (in red). To achieve photon-
mediated atomic interactions, we design the band structure to
provide a band of GMs suitable for atom trapping and for large
atom–field interactions. Off-resonant excitation with TE-guided
modes along {kx ,ky} near the M-point of the band diagram creates
a FORT lattice in the x–y plane that compensates the CP forces in
these directions. Atoms are trapped at zt = 0 using vertical confine-
ment provided by CP forces38. By further including two SI beams
counter-propagating along z, it is also possible to control the position
of the minima in z and load the trap. Line cuts of the total trap
potential Vtot are given in Fig. 3b,c, with the contributions from the

FORT (purple) and CP (red) potentials shown. The trap depth Vd

and frequencies ωt for the particular example in Fig. 3 are {Vd,xy,
Vd,z}/2π ≈ {18.7,1.3} MHz and {ωt,xy,ωt,z}/2π ≈ {0.67,0.16} MHz.

The Rb atoms trapped in the centres of the holes in Fig. 3b,c
interact with TE guided modes near the band edge at the X point,
with guided mode frequencies approaching that of the D2 line of
Rb. As shown in Fig. 4a we consider an atomic Λ scheme driven
by two off-resonant lasers with detunings Δl = (ωe − ωgl

) − ωL,l for
l = 1,2. The polarizations are chosen such that the transition g1↔e
interacts with the TE guided modes near the X point (which are
polarized predominantly along y,x for kx,ky). g2 ↔ e interacts
instead with TM-like modes (which are polarized principally
along the z-direction). Mode profile intensities are shown in
Fig. 4c,d, with large (small) coupling strength at the trap site for
the TE (TM) guided modes with energies close to ωa=ωe−ωg1

,
which lies within the bandgap.

Assuming that the coupling with the guided modes can be
treated perturbatively and in the limit where |Δl|≫Ωl (l = 1,2) for
the scheme of Fig. 4a, both the excited states and the guided
modes can be adiabatically eliminated, leading to interactions
betweeen the two-state spins { g1

∣

∣ 〉i, g2
∣

∣ 〉i}, which results in an
effective master equation42:

ρ̇ =
∑

i,j

∑

β=xy,z

[Γ
β
ij(O

β
i ρ(O

β
j )

†
− (Oβ

j )
†Oβ

i ρ) + h.c] (4)

where Γ
β
ij = γ

β
ij /2 + iJ

β
ij = hβΓ2dF

β(rij) and Oβ
i = g1

∣

∣ 〉i〈g2|, σzi for
β = xy,z, respectively. Here hβ = (Ωl/(2Δβ))

2, with l = 1(2) for
β = z(xy). Fβ(rij) is a function whose form depends on whether
{Δxy,Δz}≶ 0, where Δxy = ωg,2 – ωg,1 + ωL,2 – ωc and Δz = ωL,1 – ωc

(Supplementary Section IV). The imaginary contribution of the
collective coupling, J

β
ij , accounts for the coherent evolution, and the

real part, γ
β
ij, describes collective dissipation.

To find approximate expressions for these spin–spin interactions
we use a parabolic approximation of ω(k) as depicted in Fig. 4b and
assume that around the X point both the coupling and ω(k) behave
isotropically. We have also performed numerical integration with
the exact energy dispersion and coupling of the structure obtaining
similar scalings (Supplementary Section IV). When Δβ > 0, F

β(rij)
has both real and imaginary components given by

Γ
β
ij|Δβ>0

=
π

2
hβΓ2dH

(1)
0 [|rij|/ξβ] (5)

where H(1)
0 (x) = J0(x) + iY0(x) is a Hankel function of the first kind

and the length scale ξβ =
��������

|A/Δβ|
√

determines the range and
strength of the correlations that can be controlled independently
via the detuning Δβ (ref. 22). The Bessel function J0(x) ∝ 1 for
x≪ 1 and ∝ 1/

��

x
√

for x≫ 1.
By contrast, when Δβ < 0, Γ

β
ij are purely imaginary: Γ

β
ij|Δβ<0

= iJ
β
ij ,

with J
β
ij as defined in equation (3). Ultimately, the modified Bessel

function K0(x) is damped by an exponential factor controlled
by ξβ, which can be tuned dynamically through the detuning
Δβ and made large enough to guarantee that we reach the limit
x = rij/ξβ≪ 1, where J

β
ij is of strongly long-range character, as

depicted in Fig. 1c. In this regime, we then engineer the following
general class of XXZ spin Hamiltonians:

H =
∑

i,j

[Jzijσ
z
i σ

z
j + J

xy
ij σ

†
i σ j] (6)

where J
z(xy)
ij can be tuned independently by changing the laser

intensities, Ωl or effective detunings Δβ.
Although conceptually straightforward to place an atomic tran-

sition within a bandgap for interactions mediated by virtual
photons11,14,22, this is problematic in practice due to the difficulty
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of obtaining overlapping bandgaps for TE and TM modes in low-
loss dielectrics in the optical domain. Our configuration relies on
the existence of a bandgap for only a single polarization of the struc-
ture. It also allows for dynamical tuning of the interaction
parameters near the band edge22.

The strength of atom–atom interactions in the PCW is ultimately
determined by Γ2d and a logarithmic correction coming from K0 that
scales approximately as log(d/ξβ) and contains the dependence with
Δβ. For the regime Δβ < 0 (that is, to obtain purely coherent spin–
spin interactions), we find that (Supplementary Section IV)

Γ2d ≈ Γa
cσ

4πALm(ωc,ra)
(7)

where Γa is the free-space radiative decay rate, σ = (3/2π)ηλ2a is the
effective cross-section, η is a correction parameter that depends
on the atomic implementation and Lm(ω,ra) is the effective mode
length, which depends on both the atomic position and the electric
field density of the guided mode. In Fig. 1d we plot the scaling of Γ2d
against the curvature parameter A, using the effective length of
the structure in Figs 3 and 4 in the hole centre, Lm,TE ≈ 0.3 μm
and η = 1/2. The averaged band curvature of our structure in
Fig. 3 is A ≈ 1.8 × 1012 μm2 s–1. However, to obtain more accurate
estimates of J

β
ij we performed numerical calculations taking into

account the actual anisotropic band structure, as well as details of
the atomic implementation, thereby obtaining J

β
ij of the order

30–40 Γa for detunings such that ξβ ≈ 100d (Supplementary
Section IV).

Beyond the processes described by equations (4) to (7), there will
be a variety of mechanisms that lead to decoherence for photon-
mediated atomic interactions. Without a full three-dimensional
bandgap for our two-dimensional structures, trapped atoms will
radiatively decay into free-space and lossy modes within the
PCW. To estimate these losses, we performed FDTD simulations
for structures as in Figs 3 and 4 and found that the total atomic
decay rate to all channels except the designated guided modes is
Γ′ ≈ 0.4 Γa. The PCW itself will have imperfections that can be esti-
mated from the observed quality factors Q for state-of-the-art nano-
photonic structures43–45, which recently reported a Q of ∼106–107.

This finite Q translates into a finite photon lifetime, κ =ωc/Q, which
together with Γ′, leads to an effective rate of decoherence κeff = Γ′ +
κJij/Δβ (ref. 22). Intuitively, the number of spin-exchange cycles in
the presence of decoherence can be characterized by N = Jij/κeff.
Using our structure as in Figs 3 and 4 and taking Q = 107, N ≈ 35
is obtained for a detuning of Δβ ≈ 10 GHz, which yields Jij≈ 16 Γa
and ξβ ≈ 16d (Supplementary Section IV). Further improvements in
the material quality and alternative lattice geometries could provide
flatter bands (that is, reduced A) and better Q, thereby increasing
both N and the effective interaction strength and length.

Conclusion
We have shown how two-dimensional PCWs can be used to trap
atoms and realize new kinds of subwavelength optical lattices with
higher tunnelling rates for simulations of Bose–Hubbard physics.
Moreover, the possibility of combining atom trapping with
photon-mediated atom–atom interactions via two-dimensional
guided modes in PCWs enables realizations of spin models with
large, tunable and strong long-range interactions of both dissipative
and coherent character. Beyond the particular examples in Figs 1–4,
we have developed designs for a variety of other structures (for
example, dielectric posts instead of holes and triangular instead of
square lattices) and materials (for example, TiO2 , SiC and SiN)
with comparable performance to those described here. Our exten-
sive investigations with diverse structures and materials support
the applicability of our projections in Fig. 1b–d to a wide class of
problems as in equations (1) and (2).
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