
SubZero: A fine-grained lineage system for scientific databases

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Wu, Eugene, Samuel Madden, and Michael Stonebraker. “SubZero:
A Fine-Grained Lineage System for Scientific Databases.” 2013 IEEE
29th International Conference on Data Engineering (ICDE) (April
8-12, 2013). Brisbane, QLD. IEEE. p.865-876.

As Published http://dx.doi.org/10.1109/ICDE.2013.6544881

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/90854

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90854
http://creativecommons.org/licenses/by-nc-sa/4.0/

SubZero: A Fine-Grained Lineage System for
Scientific Databases

Eugene Wu, Samuel Madden, Michael Stonebraker

CSAIL, MIT
{sirrice, madden, stonebraker}@csail.mit.edu

Abstract— Data lineage is a key component of provenance
that helps scientists track and query relationships between input
and output data. While current systems readily support lineage
relationships at the file or data array level, finer-grained support
at an array-cell level is impractical due to the lack of support
for user defined operators and the high runtime and storage
overhead to store such lineage.

We interviewed scientists in several domains to identify a set
of common semantics that can be leveraged to efficiently store
fine-grained lineage. We use the insights to define lineage repre-
sentations that efficiently capture common locality properties in
the lineage data, and a set of APIs so operator developers can
easily export lineage information from user defined operators.
Finally, we introduce two benchmarks derived from astronomy
and genomics, and show that our techniques can reduce lineage
query costs by up to 10× while incuring substantially less impact
on workflow runtime and storage.

I. INTRODUCTION

Many scientific applications are naturally expressed as a
workflow that comprises a sequence of operations applied to
raw input data to produce an output dataset or visualization.
Like database queries, such workflows can be quite complex,
consisting up to hundreds of operations [1] whose parameters
or inputs vary from one run to another.

Scientists record and query provenance – metadata that de-
scribes the processes, environment and relationships between
input and output data arrays – to ascertain data quality, audit
and debug workflows, and more generally understand how the
output data came to be. A key component of provenance, data
lineage, identifies how input data elements are related to output
data elements and is integral to debugging workflows. For
example, scientists need to be able to work backward from
the output to identify the sources of an error given erroneous
or suspicious output results. Once the source of the error is
identified, the scientist will then often want to identify derived
downstream data elements that depend on the erroneous value
so he can inspect and possibly correct those outputs.

In this paper, we describe the design of a fine-grained
lineage tracking and querying system for array-oriented sci-
entific workflows. We assume a data and execution model
similar to SciDB [2]. We chose this because it provides
a closed execution environment that can capture all of the
lineage information, and because it is specifically designed for
scientific data processing (scientists typically use RDBMSes
to manage metadata and do data processing outside of the
database). The system allows scientists to perform exploratory
workflow debugging by executing a series of data lineage

queries that walk backward to identify the specific cells in
the input arrays on which a given output cell depends and that
walk forward to find the output cells that a particular input
cell influenced. Such a system must manage input to output
relationships at a fine-grained array-cell level.

Prior work in data lineage tracking systems has largely been
limited to coarse-grained metadata tracking [3], [4], which
stores relationships at the file or relational table level. Fine-
grained lineage tracks relationships at the array cell or tuple
level. The typical approach, popularized by Trio [5], which
we call cell-level lineage, eagerly materializes the identifiers
of the input data records (e.g., tuples or array cells) that
each output record depends on, and uses it to directly answer
backward lineage queries. An alternative, which we call black-
box lineage, simply records the input and output datasets and
runtime parameters of each operator as it is executed, and
materializes the lineage at lineage query time by re-running
relevant operators in a tracing mode.

Unfortunately, both techniques are insufficient in scientific
applications for two reasons. First, scientific applications make
heavy use of user defined functions (UDFs), whose semantics
are opaque to the lineage system. Existing approaches con-
servatively assume that every output cell of a UDF depends
on every input cell, which limits the utility of a fine-grained
lineage system because it tracks a large amount of information
without providing any insight into which inputs actually con-
tributed to a given output. This necessitates proper APIs so that
UDF designers can expose fine-grained lineage information
and operator semantics to the lineage system.

Second, neither black-box only nor cell-level only tech-
niques are sufficient for many applications. Scientific work-
flows consume data arrays that regularly contain millions of
cells, while generating complex relationships between groups
of input and output cells. Storing cell-level lineage can avoid
re-running some computationally intensive operators (e.g., an
image processing operator that detects a small number of stars
in telescope imagery), but needs enormous amounts of storage
if every output depends on every input (e.g., a matrix sum
operation) – it may be preferable to recompute the lineage
at query time. In addition, applications such as LSST1 are
often subject to limitations that only allow them to dedicate
a small percentage of storage to lineage operations. Ideally,
lineage systems would support a hybrid of the two approaches

1http://lsst.org

and take user constraints into account when deciding which
operators to store lineage for.

This paper seeks to address both challenges. We interviewed
scientists from several domains to understand their data pro-
cessing workflows and lineage needs and used the results to
design a science-oriented data lineage system. We introduce
Region Lineage, which exploits locality properties prevalent in
the scientific operators we encountered. It addresses common
relationships between regions of input and output cells by
storing grouped or summary information rather than individual
pairs of input and output cells. We developed a lineage API
that supports black-box lineage as well as Region Lineage,
which subsumes cell-level lineage. Programmers can also
specify forward/backward Mapping Functions for an operator
to directly compute the forward/backward lineage solely from
input/output cell coordinates and operator arguments; we im-
plemented these for many common matrix and statistical func-
tions. We also developed a hybrid lineage storage system that
allows users to explicitly trade-off storage space for lineage
query performance using an optimization framework. Finally,
we introduce two end-to-end scientific lineage benchmarks.

As mentioned earlier, the system prototype, SubZero, is
implemented in the context of the SciDB model. SciDB
stores multi-dimensional arrays and executes database queries
composed of built-in and user-defined operators (UDFs) that
are compiled into workflows. Given a set of user-specified
storage constraints, SubZero uses an optimization framework
to choose the optimal type of lineage (black box, or one of
several new types we propose) for each SciDB operator that
minimizes lineage query costs while respecting user storage
constraints.

A summary of our contributions include:
1) The notion of region lineage, which SubZero uses to

efficiently store and query lineage data from scientific
applications. We also introduce several efficient repre-
sentations and encoding schemes that each have different
overhead and query performance trade offs.

2) A lineage API that operator developers can use to expose
lineage from user defined operators, including the spec-
ification of mapping functions for many of the built in
SciDB operators.

3) A unified storage model for mapping functions, region
and cell-level lineage, and black-box lineage.

4) An optimization framework which picks an optimal mix-
ture of black-box and region lineage to maximize query
performance within user defined constraints.

5) A performance evaluation of our approach on end-to-
end astronomy and genomics benchmarks. The astronomy
benchmark, which is computationally intensive but ex-
hibits high locality, benefits from efficient representations.
Compared to cell-level and black-box lineage, SubZero
reduces storage overhead by nearly 70× and speeds query
performance by almost 255×. The genomics benchmark
highlights the need for, and benefits of, using an optimizer
to pick the storage layout, which improves query perfor-
mance by 2–3× while staying within user constraints.

The next section describes our motivating use cases in more
detail. It is followed by a high level system architecture and
details of the rest of the system.

II. USE CASES

We developed two benchmark applications after discussions
with environmental scientists, astronomists, and geneticists.
The first is an image processing benchmark developed with
scientists at the Large Synoptic Survey Telescope (LSST)
project. It is very similar to environmental science require-
ments, so they are combined together. The second was devel-
oped with geneticists at the Broad Institute2. Each benchmark
consists of a workflow description, a dataset, and lineage
queries. We used the benchmarks to design the optimizations
described in the paper. This section will briefly describe each
benchmark’s scientific application, the types of desired lineage
queries, and application-specific insights.

A. Astronomy

The Large Synaptic Survey Telescope (LSST) is a wide
angle telescope slated to begin operation in Fall 2015. A key
challenge in processing telescope images is filtering out high
energy particles (cosmic rays) that create abnormally bright
pixels in the resulting image, which can be mistaken for stars.
The telescope compensates by taking two consecutive pictures
of the same piece of the sky and removing the cosmic rays
in software. The LSST image processing workflow (Figure 1)
takes two images as input and outputs an annotated image
that labels each pixel with the celestial body it belongs to. It
first cleans and detects cosmic rays in each image separately,
then creates a single composite, cosmic-ray-free, image that
is used to detect celestial bodies. There are 22 SciDB built-
in operators (blue solid boxes) that perform common matrix
operations, such as convolution, and four UDFs (red dotted
boxes labeled A-D). The UDFs A and B output cosmic-ray
masks for each of the images. After the images are subse-
quently merged, C removes cosmic-rays from the composite
image, and D detects stars from the cleaned image.

The LSST scientists are interested in three types of queries.
The first picks a star in the output image and traces the lineage
back to the initial input image to detect bad input pixels. The
latter two queries select a region of output (or input) pixels and
trace the pixels backward (or forward) through a subset of the
workflow to identify a single faulty operator. As an example,
suppose the operator that computes the mean brightness of the
image generated an anomalously high value due to a few bad
pixel, which led to further mis-calculations. The astronomer
might work backward from those calculations, identify the
input pixels that contributed to them, and filter out those pixels
that appear excessively bright.

Both the LSST and environmental scientists described work-
loads where the majority of the data processing code computes
output pixels using input pixels within a small distance from
the corresponding coordinate of the output pixel. These regions

2http://www.broadinstitute.org/

may be constant, pre-defined values, or easily computed from
a small amount of additional metadata. For example, a pixel in
the mask produced by cosmic ray detection (CRD) is set if the
related input pixel is a cosmic ray, and depends on neighboring
input cells within 3 pixels. Otherwise, it only depends on the
related input pixel. They also felt that it is sufficient for lineage
queries to return a superset of the exact lineage. Although we
do not take advantage of this insight, this suggests future work
in lossy compression techniques.

A

B

C D

Fig. 1. Summary diagram of LSST workflow. Each solid rectangle is a
SciDB native operator while the red dotted rectangles are UDFs.

B. Genomics Prediction

We have also been working with researchers at the Broad
Institute on a genomics benchmark related to predicting recur-
rences of medulloblastoma in patients. Medulloblastoma is a
form of cancer that spawns brain tumors that spread through
the cerebrospinal fluid. Pablo et. al [6] have identified a set of
patient features that help predict relapse in medulloblastoma
patients that have been treated. The features include histology,
gene expression levels, and the existence of genetic abnormal-
ities. The workflow (Figure 2) is a two-step process that first
takes a training patient-feature matrix and outputs a Bayesian
model. Then it uses the model to predict relapse in a test
patient-feature matrix. The model computes how much each
feature value contributes to the likelihood of patient relapse.
The ten built-in operators (solid blue boxes) are simple matrix
transformations. The remaining UDFs extract a subset of the
input arrays (E,G), compute the model (F), and predict the
relapse probability (H).

The model is designed to be used by clinicians through a
visualization that generates lineage queries. The first query
picks a relapse prediction and traces its lineage back to the
training matrix to find supporting input data. The second query
picks a feature from the model and traces it back to the training
matrix to find the contributing input values. The third query
points at a set of training values and traces them forward to
the model, while the last query traces them to the end of the
workflow to find the predictions they affected.

The genomics benchmark can devote up-front storage and
runtime overhead to ensure fast query execution because it
is an interactive visualization. Although this is application
specific, it suggests that scientific applications have a wide
range of storage and runtime overhead constraints.

III. ARCHITECTURE

SubZero records and stores lineage data at workflow runtime
and uses it to efficiently execute lineage queries. The input to
SubZero is a workflow specification (the graph in Workflow

E

F# H

G

Training#
Matrix#

Test#
Matrix#

Modeling#phase# Tes6ng#phase#

Fig. 2. Simplified diagram of genomics workflow. Each solid rectangle is a
SciDB native operator while the red dotted rectangles are UDFs.

Workflow'Executor'

C

A D

A'

Op3mizer' Query'
Executor'

Array' Queries' Cells'

C' D'

Sta3s3cs'
Collector'

Array'

Encoder' Decoder'

IP'Solver'

ReCexecutor'
Run3me'

2'

Operator'
Specific'
Datastore'

1'

Constraints'

Fig. 3. The SubZero architecture.

Executor), constraints on the amount of storage that can
be devoted to lineage tracking, and a sample lineage query
workload that the user expects to run. SubZero optimally
decides the type of lineage that each operator in the workflow
will generate (the lineage strategy) in order to maximize the
performance of the query workload performance.

Figure 3 shows the system architecture. The solid and
dashed arrows indicate the control and data flow, respec-
tively. Users interact with SubZero by defining and executing
workflows (Workflow Executor), specifying constraints to the
Optimizer, and running lineage queries (Query Executor). The
operators in the workflow specify a list of the types of lineage
(described in Section V) that each operator can generate,
which defines the set of optimization possibilities.

Each operator initially generates black-box lineage (i.e., just
records the names of the inputs it processes) but over time
changes its strategy through optimization. As operators process
data, they send lineage to the Runtime, which uses the Encoder
to serialize the lineage before writing it to Operator Specific
Datastores. The Runtime may also send lineage and other
statistics to the Optimizer, which calculates statistics such as
the amount of lineage that each operator generates. SubZero
periodically runs the Optimizer, which uses an Integer Pro-
gramming Solver to compute the new lineage strategy. On
the right side, the Query Executor compiles lineage queries
into query plans that join the query with lineage data. The
Executor requests lineage from the Runtime, which reads and
decodes stored lineage, uses the Re-executor to re-run the
operators, and sends statistics (e.g., query fanout and fanin)
to the optimizer to refine future optimizations.

Given this overview, we now describe the data model and
structure of lineage queries (Section IV), the different types of
lineage the system can record (Section V), the functionality of

the Runtime, Encoder, and Query Executor (Section VI), and
finally the optimizer in Section VII.

IV. DATA, LINEAGE AND QUERY MODEL

In this section, we describe the representation and notation
of lineage data and queries in SubZero.

SubZero is designed to work with a workflow executor
system that applies a fixed sequence of operators to some set of
inputs. Each operator operates on one or more input objects
(e.g., tables or arrays), and produces a single output object.
Formally, we say an operator P takes as input n objects,
I1
P , ..., In

P , and outputs a single object, OP .
Multiple operators are composed together to form a work-

flow, described by a workflow specification, which is a directed
acyclic graph W = (N,E), where N is the set of operators,
and e = (OP , IP ′

i) ∈ E specifies that the output of P forms
the i’th input to the operator P ′. An instance of W , Wj ,
executes the workflow on a specific dataset. Each operator
runs when all of its inputs are available.

The data follows the SciDB data model, which processes
multi-dimensional arrays. A combination of values along each
dimension, termed a coordinate, uniquely identifies a cell.
Each cell in an array has the same schema, and consists of
one or more named, typed fields. SciDB is “no overwrite,”
meaning that intermediate results produced as the output of an
operator are always stored persistently, and each update to an
object creates a new, persistent version. SubZero stores lineage
information with each version to speed up lineage queries.

Our notion of backward lineage is defined as a subset of the
inputs that will reproduce the same output value if the operator
is re-run on its lineage. For example, the lineage of an output
cell of Matrix Multiply are all cells of the corresponding row
and column in the input arrays – even if some are empty.
Forward lineage is defined as a subset, C, of the outputs such
that the backward lineage of C contains the input cells. The
exact semantics for UDFs are ulitmately controlled by the
developer.

SubZero supports three types of lineage: black box, cell-
level, and region lineage. As a workflow executes, lineage is
generated on an operator-by-operator basis, depending on the
types of lineage that each operator is instrumented to support
and the materialization decisions made by the optimizer.
We have instrumented SciDB’s built-in operators to generate
lineage mappings from inputs to outputs and provide an API
for UDF designers to expose these relationships. If the API
is not used, then SubZero assumes an all-to-all relationship
between the cells of the input arrays and cells of the output
array.

a) Black-box lineage: SubZero does not require ad-
ditional resources to store black-box lineage because, like
SciDB, our workflow executor records intermediate results as
well as input and output array versions as peristent, named
objects. These are sufficient to re-run any previously executed
operator from any point in the workflow.

b) Cell-level lineage: Cell-level lineage models the re-
lationships between an output cell and each input cell that
generated it 3 as a set of pairs of input and output cells:

{(out, in)|out ∈ OP ∧ in ∈ ∪i∈[1,n]I
i
P }

Here, out ∈ OP means that out is a single cell contained in
the output array OP . in refers to a single cell in one of the
input arrays.

c) Region lineage: Region lineage models lineage as a
set of region pairs. Each region pair describes an all-to-all
lineage relationship between a set of output cells, outcells,
and a set of input cells, incellsi, in each input array, Ii

P :

{(outcells, incells1, ..., incellsn)|outcells ⊆ OP ∧ incellsi ⊆ Ii
P }

Region lineage is more than a short hand; scientific applica-
tions often exhibit locality and generate multiple output cells
from the same set of input cells, which can be represented
by a single region pair. For example, the LSST star detection
operator finds clusters of adjacent bright pixels and generates
an array that labels each pixel with the star that it belongs
to. Every output pixel labeled Star X depends on all of the
input pixels in the Star X region. Automatically tracking such
relationships at the cell level is particularly expensive, so
region lineage is a generalization of cell-level lineage that
makes this relationship explicit. For this reason, later sections
will exclusively discuss region pairs.

Users execute a lineage query by specifying the coordinates
of an initial set of query cells, C, in a starting array, and a
path of operators (P1 . . . Pm) to trace through the workflow:

R = execute query(C, ((P1, idx1), ..., (Pm, idxm)))

Here, the indexes (idx1 . . . idxm) are used to disambiguate
which input of a multi-input operator that the query path
traverses.

Depending on the order of operators in the query path,
SubZero recognizes the query as a forward lineage query
or backward lineage query. A forward lineage query defines
a path from some ancestor operator P1 to some descendent
operator Pm. The output of an operator Pi−1 is the idxi’th
input of the next operator, Pi. The query cells C are a subset
of P1’s idx1’th input array, C ⊆ Iidx1

P1
.

A backward lineage query reverses this process, defining
a path from some descendent operator, P1 that terminates at
some ancestor operator, Pm. The output of an operator, Pi+1

is the idxi’th input of the previous operator, Pi, and the query
cells C are a subset of P1’s output array, C ⊆ OP1 . The
query results are the coordinates of the cells R ⊆ OPm or
R ⊆ Iidxm

Pm
, for forward and backward queries, respectively.

V. LINEAGE API AND STORAGE MODEL

SubZero allows developers to write operators that efficiently
represent and store lineage. This section describes several
modes of region lineage, and an API that UDF developers
can use to generate lineage from within the operators. We
also introduce a mechanism to control the modes of lineage

3Although we model and refer to lineage as a mapping between input
and output cells, in the SubZero implementation we store these mappings as
references to physical cell coordinates.

API Method Description
System API Calls

lwrite(outcells, incells1, ...,incellsn) API to store lineage relationship.
lwrite(outcells, payload) API to store small binary payload

instead of input cells. Called by
payload operators.

Operator Methods
run(input-1,...,input-n,cur modes) Execute the operator, generating

lineage types in cur modes ⊆ {Full,
Map, Pay, Comp, Blackbox}

mapb(outcell, i) Computes the input cells in inputi
that contribute to outcell.

mapf (incell, i) Computes the output cells that depend
on incell ∈ inputi.

mapp(outcell, payload, i) Computes the input cells in inputi
that contribute to outcell, has access
to payload.

supported modes() Returns the lineage modes C ⊆ {Full,
Map, Pay, Comp, Blackbox}
that the operator can generate.

TABLE I
RUNTIME AND OPERATOR METHODS

that an operator generates. Finally, we describe how SubZero
re-executes black-box operators during a lineage query. Table
I summarizes the API calls and operator methods that are
introduced in this section.

Before describing the different lineage storage methods, we
illustrate the basic structure of an operator:
class OpName:

def run(input-1,...,input-n,cur_modes):
/* Process the inputs, emit the output */
/* Record lineage modes specified

in cur_modes */
def supported_modes():

/* Return the lineage modes the
operator supports */

Each operator implements a run() method, which is called
when inputs are available to be processed. It is passed a list
of lineage modes it should output in the cur modes argument;
it writes out lineage data using the lwrite() method described
below. The developer specifies the modes that the operator
supports (and that the runtime will consider) by overriding
the supported modes() method. If the developer does not
override supported modes(), SubZero assumes an all-to-all
relationship between the inputs and outputs. Otherwise, the
operator automatically supports black-box lineage.

For ease of explanation, this section is described in the
context of the LSST operator CRD (cosmic ray detection,
depicted as A and B in Figure 1) that finds pixels containing
cosmic rays in a single image, and outputs an array of the
same size. If a pixel contains a cosmic ray, the corresponding
cell in the output is set to 1, and the output cell depends on the
49 neighboring pixels within a 3 pixel radius. Otherwise the
output cell is set to 0, and only depends on the corresponding
input pixel. A region pair is denoted (outcells, incells).

A. Lineage Modes

SubZero supports four modes of region lineage (Full, Map,
Pay, Comp), and one mode of black-box lineage (Blackbox).
cur modes is set to Blackbox when the operator does not need
to generate any pairs (because black box lineage is always
in use). Full lineage explicitly stores all region pairs, and the

other lineage modes reduce the amount of lineage that is stored
by partially computing lineage at query time using developer
defined mapping functions. The following sections describe
the modes in more detail.

1) Full Lineage: Full lineage (Full) explicitly represents
and stores all region pairs. It is straightforward to instrument
any operator to generate full lineage. The developer simply
writes code that generates region pairs and uses lwrite() to
store the pairs. For example, in the following CRD pseu-
docode, if cur modes contains Full, the code iterates through
each cell in the output, calculates the lineage, and calls
lwrite() with lists of cell coordinates. Note that if Full is not
specified, the operator can avoid running the lineage related
code.

def run(image, cur_modes):
...
if Full ∈ cur_modes:

for each cell in output:
if cell == 1:

neighs = get_neighbor_coords(cell)
lwrite([cell.coord], neighs)

else:
lwrite([cell.coord], [cell.coord])

Although this lineage mode accurately records the lineage
data, it is potentially very expensive to both generate and
store. We have identified several widely applicable operator
properties that allow the operators to generate more efficient
modes of lineage, which we describe next.

2) Mapping Lineage: Mapping lineage (Map) compactly
represents an operator’s lineage using a pair of mapping
functions. Many operators such as matrix transpose exhibit
a fixed execution structure that does not depend on the input
cell values. These operators, called mapping operators, can
compute forward and backward lineage from a cell’s coordi-
nates and metadata (e.g., input and output array sizes) and
do not need to access array data values. This is a valuable
property because mapping operators do not incur runtime and
storage overhead. For example, one-to-one operators, such
as matrix addition, are mapping operators because an output
cell only depends on the input cell at the same coordinate,
regardless of the value. Developers implement a pair of
mapping functions, mapf (cell, i)/mapb(cell, i), that calculate
the forward/backward lineage of an input/output cell’s coordi-
nates, with respect to the i’th input array. For example, a 2D
transpose operator would implement the following functions:

def map_b((x,y), i): def map_f((x,y), i):
return [(y,x)] return [(y,x)]

Most SciDB operators (e.g., matrix multiply, join, transpose,
convolution) are mapping operators, and we have implemented
their forward and backward mapping functions. Mapping oper-
ators in the astronomy and genomics benchmarks are depicted
as solid boxes (Figures 1 and 2).

3) Payload Lineage: Rather than storing the input cells
in each region pair, payload lineage (Pay) stores a small
amount of data (a payload), and recomputes the lineage
using a payload-aware mapping function (mapp()). Unlike
mapping lineage, the mapping function has access to the

user-stored binary payload. This mode is particularly useful
when the operator has high fanin and the payload is very
small. For example, suppose that the radius of neighboring
pixels that a cosmic ray pixel depends on increases with
brightness, then payload lineage only stores the brightness
insteall of the input cell coordinates. (Payload operators)
call lwrite(outcells, payload) to pass in a list of output
cell coordinates and a binary blob, and define a payload
function, mapp(outcell, payload, i), that directly computes
the backward lineage of outcell ∈ outcells from the outcell
coordinate and the payload. The result are input cells in the
i’th input array. As with mapping functions, payload lineage
does not need to access array data values. The following
pseudocode stores radius values instead of input cells:

def run(image,cur_modes):
...
if PAY ∈ cur_modes:

for each cell in output:
if cell == 1:

lwrite([cell.coord], ’3’)
else:

lwrite([cell.coord], ’0’)

def map_p((x,y), payload, i):
return get_neighbors((x,y), int(payload))

In the above implementation, each region pair stores the
output cells and an additional argument that represents the
radius, as opposed to the neighboring input cells. When a back-
ward lineage query is executed, SubZero retrieves the (outcells,
payload) pairs that intersect with the query and executes mapp

on each pair. This approach is particularly powerful because
the payload can store arbitrary data – anything from array data
values to lineage predicates [7]. Operators D to G in the two
benchmarks (Figures 1 and 2) are payload operators.

Note that payload functions are designed to optimize exe-
cution of backward lineage queries. While SubZero can index
the input cells in full lineage, the payload is a binary blob that
cannot be easily indexed. A forward query must iterate through
each (outcells, payload) pair and compute the input cells using
mapp before it can be compared to the query coordinates.

4) Composite Lineage: Composite lineage (Comp) com-
bines mapping and payload lineage. The mapping function
defines the default relationship between input and output cells,
and results of the payload function overwrite the default lin-
eage if specified. For example, CRD can represent the default
relationship – each output cell depends on the corresponding
input cell in the same coordinate – using a mapping function,
and write payload lineage for the cosmic ray pixels:

def run(image,cur_modes):
...
if COMP ∈ cur_modes):

for each cell in output:
if cell == 1:
lwrite([cell.coord], 3)

// else map_b defines default behavior

def map_p((x,y), radius, i):
return get_neighbors((x,y), radius)

def map_b((x,y), i):

return [(x,y)]

Composite operators can avoid storing lineage for a sig-
nificant fraction of the output cells. Although it is similar
to payload lineage in that the payload cannot be indexed to
optimize forward queries, the amount of payload lineage that
is stored may be small enough that iterating through the small
number of (outcells, payload) pairs is efficient. Operators A,B
and C in the astronomy benchmark (Figure 1) are composite
operators.

B. Supporting Operator Re-execution

An operator stores black-box lineage when cur modes
equals Blackbox. When SubZero executes a lineage query
on an operator that stored black-box lineage, the operator
is re-executed in tracing mode. When the operator is re-run
at lineage query time, SubZero passes cur modes = Full,
which causes the operator to perform lwrite() calls. The
arguments to these calls are sent to the query executor.

Rather than re-executing the operator on the full input
arrays, SubZero could also reduce the size of the inputs by
applying bounding box predicates prior to re-execution. The
predicates would reduce both the amount of lineage that needs
to be stored and the amount of data that the operator needs
to re-process. Although we extended both mapping and full
operators to compute and store bounding box predicates, we
did not find it to be a widely useful optimization. During query
execution, SubZero must retrieve the bounding boxes for every
query cell, and either re-execute the operator for each box, or
merge the bounding boxes and re-run the operator using the
merged predicate. Unfortunately, the former approach incurs
an overhead on each execution (to read the input arrays and
apply the predicates) that quickly becomes a significant cost.
In the latter approach, the merged bounding box quickly ex-
pands to encompass the full input array, which is equivalent to
completely re-executing the operator, but incurs the additional
cost to retrieve the predicates. For these reasons, we do not
further consider them here.

VI. IMPLEMENTATION

This section describes the Runtime, Encoder, and Query
Executor components in greater detail.

A. Runtime

In SciDB (and our prototype), we automatically store black-
box lineage by using write-ahead logging, which guarantees
that black-box lineage is written before the array data, and
is “no overwrite” on updates. Region lineage is stored in a
collection of BerkeleyDB hashtable instances. We use Berke-
leyDB to store region lineage to avoid the client-server com-
munication overhead of interacting with traditional DBMSes.
We turn off fsync, logging and concurrency control to avoid
recovery and locking overhead. This is safe because the region
lineage is treated as a cache, and can always be recovered by
re-running operators.

The runtime allocates a new BerkeleyDB database for each
operator instance that stores region lineage. Blocks of region

pairs are buffered in memory, and bulk encoded using the
Encoder. The data in each region pair is stored as a unit
(SubZero does not optimize across region pairs), and the
output and input cells use separate encoding schemes. The
layout can be optimized for backward or forward queries by
respectively storing the output or input cells as the hash key.
On a key collision, the runtime decodes, merges, and re-
encodes the two hash values. The next subsection describes
how the Encoder serializes the region pairs.

B. Encoder

While Section V presented efficient ways to represent region
lineage, SubZero still needs to store cell coordinates, which
can easily be larger than the original data arrays. The Encoder
stores the input and output cells of a region pair (generated by
calls to lwrite()) into one or more hash table entries, specified
by an encoding strategy. We say the encoding strategy is
backward optimized if the output cells are stored in the hash
key, and forward optimized if the hash key contains input cells.

We found that four basic strategies work well for the
operators we encountered. – FullOne and FullMany are
the two strategies to encode full lineage, and PayOne and
PayMany encode payload lineage4.

(0,1),&(2,3)&

#1234&

Hash%Value% Hash%Key%

1. FullMany strategy!

payload&

3. PayMany strategy!

2. FullOne strategy!

4. PayOne strategy!

(4,5),(6,7)&

(0,1)&
(2,3)&

(4,5),(6,7)&

(0,1)&
(2,3)&

Hash%Value% Hash%Key%

#1234&

#1234&

payload&(0,1),&(2,3)&payload&

Index&

Index&

Fig. 4. Four examples of encoding strategies

Figure 4 depicts how the backward-optimied implemen-
tation of these strategies encode two output cells with co-
ordinates (0, 1) and (2, 3) that depend on input cells with
coordinates (4, 5) and (6, 7). FullMany uses a single hash
entry with the set of serialized output cells as the key and the
set of input cells as the value (Figure 4.1). Each coordinate is
bitpacked into a single integer if the array is small enough. We
also create an R Tree on the cells in the hash key to quickly
find the entries that intersect with the query. This index uses
the dimensions of the array as its keys and identifies the hash
table entries that contain cells in particular regions. The figure
shows the unserialized versions of the cells for simplicity.
FullMany is most appropriate when the lineage has high
fanout because it only needs to store the output cells once.

If the fanout is low, FullOne more efficiently serializes
and stores each output cell as the hash key of a separate

4We tried a large number of possible strategies and found that complex
encodings (e.g., compute and store the bounding box of a set of cells, C,
along with cells in the bounding box but not in C) incur high encoding costs
without noticeably reduced storage costs. Many are also readily implemented
as payload or composite lineage

hash entry. The hash value stores a reference to a single entry
containing the input cells (Figure 4.2). This implementation
doesn’t need to compute and store bounding box information
and doesn’t need the spatial index because each input cell is
stored separately, so queries execute using direct hash lookups.

For payload lineage, PayMany stores the lineage in a
similar manner as FullMany, but stores the payload as the
hash value (Figure 4.3). PayOne creates a hash entry for
every output cell and stores a duplicate of the payload in each
hash value (Figure 4.4).

The Optimizer picks a lineage strategy that spans the entire
workflow. It picks one or more storage strategies for each
operator. Each storage strategy is fully specified by a lineage
mode (Full, Map, Payload, Composite, or Black-box), encod-
ing strategy, and whether it is forward or backward optimized
(→ or ←). SubZero can use multiple storage strategies to
optimize for different query types.

C. Query Execution

The Query Executor iteratively executes each step in the
lineage query path by joining the lineage with the coordinates
of the query cells, or the intermediate cells generated from
the previous step. The output at each step is a set of cell
coordinates that is compactly stored in an in-memory boolean
array with the same dimensions as the input (backward query)
or output (forward query) array. A bit is set if the intermediate
result contains the corresponding cell. For example, suppose
we have an operator P that takes as input a 1 × 4 array.
Consider a backwards query asking for the lineage of some
output cell C of P . If the result of the query is 1001, this
means that C depends on the first and fourth cell in P ’s input.

We chose the in-memory array because many operators
have large fanin or fanout, and can easily generate several
times more results (due to duplicates) than are unique. De-
duplication avoids wasting storage and saves work. Similarly,
the executor can close an operator early if it detects that all
of the possible cells have been generated.

We also implement an entire array optimization to speed up
queries where all of the bits in the boolean array are set. For
example, this can happen if a backward query traverses several
high-fanin operators or an all-to-all operator such as matrix
inversion. In these cases, calculating the lineage of every query
cell is very expensive and often unnecessary. Many operators
(e.g., matrix multiply or inverse) can safely assume that the
forward (backward) lineage of an entire input (output) array
is the entire output (input) array. This optimization is valuable
when it can be applied – it improved the query performance
of a forward query in the astronomy benchmark that traverses
an all-to-all-operator by 83×.

In general, it is difficult to automatically identify when
the optimization’s assumptions hold. Consider a concatenate
operator that takes two 2D arrays A, B with shapes (1, n) and
(1, m), and produces an (1, n+m) output by concatenating B to
A. The optimization would produce different results, because
A’s forward lineage is only a subset of the output. We currently

rely on the programmer to manually annotate operators where
the optimization can be applied.

VII. LINEAGE STRATEGY OPTIMIZER

Having described the basic storage strategies implemented
in SubZero, we now describe our lineage storage optimizer.
The optimizer’s objective is to choose a set of storage strate-
gies that minimize the cost of executing the workflow while
keeping storage overhead within user-defined constraints. We
formulate the task as an integer programming problem, where
the inputs are a list of operators, strategy pairs, disk overheads,
query cost estimates, and a sample workload that is used to
derive the frequency with which each operator is invoked in
the lineage workload. Additionally, users can manually specify
operator specific strategies prior to running the optimizer.

The formal problem description is stated as:

minx
P

i pi ∗
“
minj|xij=1 qij

”
+ ε ∗

P
ij(diskij + β ∗ runij) ∗ xij

s.t.
P

ij diskij ∗ xij ≤ MaxDISKP
ij runij ∗ xij ≤ MaxRUNTIME

∀i

“P
0≤j<M xij

”
≥ 1

∀i,jxij ∈ {0, 1}

user specified strategies
xij = 1 ∀i,jxij ∈ U

Here, xij = 1 if operator i stores lineage using strategy
j, and 0 otherwise. MaxDISK is the maximum storage
overhead specified by the user; qij , runij , and diskij , are the
average query cost, runtime overhead, and storage overhead
costs for operator i using strategy j as computed by the
cost model. pij is the probability that a lineage query in
the workload accesses operator i, and is computed from the
sample workload. A single operator may store its lineage data
using multiple strategies.

The goal of the objective function is to minimize the cost
of executing the lineage workload, preferring strategies that
use less storage. When an operator uses multiple strategies to
store its lineage, the query processor picks the strategy that
minimizes the query cost. The min statement in the left hand
term picks the best query performance from the strategies that
have been picked (j|xij = 1). The right hand term penalizes
strategies that take excessive disk space or cause runtime
slowdown. β weights runtime against disk overhead, and ε
is set to a very small value to break ties. A large ε is similar
to reducing MaxDISK or MaxRUNTIME.

We heuristically remove configurations that are clearly
non-optimal, such as strategies that exceed user constraints,
or are not properly indexed for any of the queries in the
workload (e.g., forward optimized when the workload only
contains backward queries). The optimizer also picks mapping
functions over all other classes of lineage.

We solve the ILP problem using the simplex method in
GNU Linear Programming Kit. The solver takes about 1ms to
solve the problem for the benchmarks.

Strategy Description
Astronomy Benchmark

BlackBox All operators store black-box lineage
BlackBoxOpt Like BlackBox, uses mapping lineage for built-in-operators.
FullOne Like BlackBoxOpt, but uses FullOne for UDFs.
FullMany Like FullOne, but uses FullMany for UDFs.
Subzero Like FullOne, but stores composite lineage

using PayOne for UDFs.
Genomics Benchmark

BlackBox UDFs store black-box lineage
FullOne UDFs store backward optimized FullOne
FullMany UDFs store backward optimized FullMany
FullForw UDFs store forward optimized FullOne
FullBoth UDFs store FullForw and FullOne
PayOne UDFs store PayOne
PayMany UDFs store PayMany
PayBoth UDFs store PayOne and FullForw

TABLE II
LINEAGE STRATEGIES FOR EXPERIMENTS.

A. Query-time Optimizer

While the lineage strategy optimizer picks the optimal
lineage strategy, the executor must still pick between accessing
the lineage stored by one of the lineage strategies, or re-
running the operator. The query-time optimizer consults the
cost model using statistics gathered during query execution
and the size of the query result so far to pick the best execution
method. In addition, the optimizer monitors the time to access
the materialized lineage. If it exceeds the cost of re-executing
the operator, SubZero dynamically switches to re-running the
operator. This bounds the worst case performance to 2× the
black-box approach.

VIII. EXPERIMENTS

In the following subsections, we first describe how SubZero
optimizes the storage strategies for the real-world benchmarks
described in Section II, then compare several of our lin-
eage storage techniques with black-box level only techniques.
The astronomy benchmark shows how our region lineage
techniques improve over cell-level and black-box strategies
on an image processing workflow. The genomics benchmark
illustrates the complexity in determining an optimal lineage
strategy and that the the optimizer is able to choose an effective
strategy within user constraints.

Overall, our findings are that:
• An optimal strategy heavily relies on operator properties

such as fanin, and fanout, the specific lineage queries,
and query execution-time optimizations. The difference
between a sub-optimal and optimal strategy can be so
large that an optimizer-based approach is crucial.

• Payload, composite, and mapping lineage are extremely
effective and low overhead techniques that greatly im-
prove query performance, and are applicable across a
number of scientific domains.

• SubZero can improve the LSST benchmark queries by
up to 10× compared to naively storing the region lineage
(similar to what cell-level approaches would do) and up
to 255× faster than black-box lineage. The runtime and
storage overhead of the optimal scheme is up to 30 and

70× lower than cell-level lineage, respectively, and only
1.49 and 1.95× higher than executing the workflow.

• Even though the genomics benchmark executes operators
very quickly, SubZero can find the optimal mix of black-
box and region lineage that scales to the amount of
available storage. SubZero uses a black-box only strategy
when the available storage is small, and switches from
space-efficient to query-optimized encodings with looser
constraints. When the storage constraints are unbounded,
SubZero improves forward queries by over 500× and
backward queries by 2-3×.

The current prototype is written in Python and uses Berke-
leyDB for the persistent store, and libspatialindex for the
spatial index. The microbenchmarks are run on a 2.3 GHz
linux server with 24 GB of RAM, running Ubuntu 2.6.38-13-
server. The benchmarks are run on a 2.3 GHz MacBook Pro
with 8 GB of RAM, a 5400 RPM hard disk, running OS X
10.7.2.

A. Astronomy Benchmark

0
500

1000
1500

0
500

1000
1500

15 15 1051847 30

37 37 10301666 55

D
isk C

ost
R

untim
e

BlackBox BlackBoxOpt FullMany FullOne SubZero
Storage Strategies

R
un

tim
e

D
is

k
 (

se
c)

 (
M

B
)

Strategy BlackBox
BlackBoxOpt

FullMany
FullOne

SubZero

(a) Disk and runtime overhead

1

10

100

BlackBox BlackBoxOpt FullMany FullOne SubZero
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0
BQ 1

BQ 2
BQ 3

BQ 4
FQ 0

FQ 0 Slow

(b) Query costs. Y-axes are log scale

Fig. 5. Astronomy Benchmark

In this experiment, we run the Astronomy workflow with
five backward queries and one forward query as described
in Section II-A. The 22 built-in operators are all expressed
as mapping operators and the UDFs consist of one payload
operator that detects celestial bodies and three composite
operators that detect and remove cosmic rays. This workflow
exhibits considerable locality (stars only depend on neighbor-
ing pixels), sparsity (stars are rare and small), and the queries
are primarily backward queries. Each workflow execution
consumes two 512×2000 pixel (8MB) images (provided by
LSST) as input, and we compare the strategies in Table II.

Figure 5(a) plots the disk and runtime overhead for each
of the strategies. BlackBox and BlackBoxOpt show the
base cost to execute the workflow and the size of the input

arrays – the goal is to be as close to these bars as possible.
FullOne and FullMany both require considerable storage
space (66×, 53×) because the three cosmic ray operators
generate a region pair for every input and output pixel at the
same coordinates. Similarly, both approaches incur 6× and
44× runtime overhead to serialize and store them. FullMany
must also construct the spatial index on the output cells. The
SubZero optimizer instead picks composite lineage that only
stores payload lineage for the small number of cosmic rays
and stars. This reduces the runtime and disk overheads to
1.49× and 1.95× the workflow inputs. By comparison, this
storage overhead is negligible compared to the cost of storing
the intermediate and final results (which amount to 11.5× the
input size).

Figure 5(b) compares lineage query execution costs. BQ x
and FQ x respectively stand for backward and forward query
x. All of the queries use the entire array optimization described
in Section VI-C whereas FQ0Slow does not. BlackBox must
re-run each operator and takes up to 100 secs per query.
BlackBoxOpt can avoid rerunning the mapping operators,
but still re-runs the computationally intensive UDFs. Storing
region lineage reduces the cost of executing the backward
queries by 34× (FullMany) and 45× (FullOne) on average.
SubZero benefits from executing mapping functions and read-
ing a small amount of lineage data and executes 255× faster on
average. FQ 0 Slow illustrates how the all-to-all optimization
improves the query performance by 83× by avoiding fine-
grained lineage all-together.

B. Genomics Benchmark

In this experiment, we run the genomics workflow and
execute a lineage workload with an equal mix of forward
and backward lineage queries (Section II-B). There are 10
built-in mapping operators, and the 4 UDFs are all payload
operators. In contrast to the astronomy workflow, these UDFs
do not exhibit significant locality, and perform data shuffling
and extraction operations that are not amenable to mapping
functions. In addition, the operators perform simple calcula-
tions, and execute quickly, so there is a less pronounced trade
off between re-executing the workflow and accessing region
lineage. In fact, there are cases where storing lineage actually
degrades the query performance. We were provided a 56×100
matrix of 96 patients and 55 health and genetic features.
Although the dataset is small, future datasets are expected to
come from a larger group of patients, so we constructed larger
datasets by replicating the patient data. The query performance
and overheads scaled linearly with the size of the dataset and
so we report results for the dataset scaled by 100×.

We first show the high variability between different static
strategies (Table II) and how the query-time optimizer (Sec-
tion VII-A) avoids sub-optimal query execution. We then show
how the SubZero cost based optimizer can identify the optimal
strategy within varying user constraints.

1) Query-Time Optimizer: This experiment compares the
strategies in Table II with and without the query-time op-
timization described in Section VII-A. Each operator uses

0

50

100

150

0

50

100

150

8 897364161 186073

2 31452754 51632

D
isk C

ost
R

untim
e

BlackBox FullBoth FullForw FullMany FullOne PayBoth PayMany PayOne
Storage Strategies

R
un

tim
e

D
is

k
 (

se
c)

 (
M

B
)

Strategy BlackBox
FullBoth

FullForw
FullMany

FullOne
PayBoth

PayMany
PayOne

(a) Disk and runtime overhead

1e−02

1e+00

1e+02

BlackBox FullBoth FullForw FullMany FullOne PayBoth PayMany PayOne
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

(b) Query costs (static) Y-axes are log scale.

0.1

10.0

BlackBox FullBoth FullForw FullMany FullOne PayBoth PayMany PayOne
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

(c) Query costs (dynamic) Y-axes are log scale.

Fig. 6. Genomics benchmark. Querys run with (dynamic) and without (static)
the query-time optimizer described in Section VII-A.

mapping lineage if possible, and otherwise stores lineage using
the specified strategy. The majority of the UDFs generate
region pairs that contain a single output cell. As mentioned in
previous experiments, payload lineage stores very little binary
data, and incurs less overhead than the full lineage approaches
(Figure 6(a)). Storing both forward and backward-optimized
lineage (PayBoth and FullBoth) requires significantly more
overhead – 8 and 18.5× more space than the input arrays, and
2.8 and 26× runtime slowdown.

Figure 6(b) highlights how query performance can degrade
if the executor blindly joins queries with mismatched in-
dexed lineage (e.g., backward-optimized lineage with forward
queries)5. For example, FullForw degraded backward query
performance by 520×. Interestingly, the BQ1 ran slower
because the query path contains several operators with very
large fanins. This generates so many intermediate results that
performing index lookups on each one is slower than re-
running the operators. Note however, that the forward opti-
mized strategies improved the performance of FQ0 and FQ2
because the fanout is low.

Figure 6(c) shows that the query-time optimizer executes
the queries as fast as, or faster than, BlackBox. In general,
this requires accurate statistics and cost estimation, the op-
timizer limits the query performance degradation to 2× by

5All comparisons are relative to BlackBox

0
20
40
60
80

0
20
40
60
80

8 8 8 28 7712

2 2 2 16 426

D
isk C

ost
R

untim
e

BlackBox SubZero1 SubZero10 SubZero20 SubZero50 SubZero100
Storage Strategies

R
un

tim
e

D
is

k
 (

se
c)

 (
M

B
)

Strategy BlackBox
SubZero1

SubZero10
SubZero20

SubZero50
SubZero100

(a) Disk and runtime overhead

0.1

10.0

BlackBox SubZero1 SubZero10 SubZero100 SubZero20 SubZero50
Storage Strategies

Q
ue

ry
 C

os
t

(s
ec

, l
og

)

Query BQ 0 BQ 1 FQ 0 FQ 1

(b) Query costs. Y-axes are log scale.

Fig. 7. Genomics benchmark. SubZeroX has a storage constraint of X MB

dynamically switching to the BlackBox strategy. Overall, the
backward and forward queries improved by up to 2 and 25×,
respectively.

2) Lineage Strategy Optimizer: The previous section com-
pared many strategies, each with different performance charac-
teristics depending on the operator and query. We now evaluate
the SubZero strategy optimizer on the genomics benchmark.
Figure 7 illustrates that when the user increases storage con-
straints from 1 to 100MB (with unbounded runtime constraint),
the optimizer picks more storage intensive strategies that
are predicted to improve the benchmark queries. SubZero
chooses BlackBox when the constraint is too small, and
stores forward and backward-optimized lineage that benefits
all of the queries when the minimum amount of storage is
available (20MB). Materializing further lineage has dimin-
ishing storage-to-query benefits. SubZero100 uses 50MB to
forward-optimize the UDFs using (MANY,ONE), which
reduces the forward query costs to sub-second costs. This
is because the UDFs have low fanout, so each join in the
query path is a small number of hash lookups. Due to space
constraints, we simply mention that specifying and varying the
runtime overhead constraints achieves similar results.

C. Microbenchmark

The previous experiments compared several end-to-end
strategies, however it can be difficult to distinguish the sources
of the benefits. This subsections summarizes the key differ-
ences between the prevailing strategies in terms of overhead
and query performance. The comparisons use an operator that
generates synthetic lineage data with tunable parameters. Due
to space constraints we show results from varying the fanin,
fanout and payload size (for payload lineage).

Each experiment processes and outputs a 1000x1000 array,
and generates lineage for 10% of the output cells. The re-
sults scaled close to linearly as the number of output cells
with lineage varies. A region pair is randomly generated by

selecting a cluster of output cells with a radius defined by
fanout, and selecting fanin cells in the same area from the
input array. We generate region pairs until the total number
of output cells is equal to 10% of the output array. The
payload strategy uses a payload size of fanin×4 bytes (the
payload is expected to be very small). We compare several
backward optimized strategies (← FullMany, ← FullOne,
← PayMany, ← PayOne), one forward lineage strategy
(→ FullOne), and black-box (BlackBox). We first discuss
the overhead to store and index the lineage, then comment on
the query costs.

Figure 8 compares the runtime and disk overhead of the
different strategies. For referenc, the size of the input array
is 3.8MB. The best full lineage strategy differs based on
the operator fanout. FullOne is superior when fanout ≤ 5
because it doesn’t need to create and store the spatial index.
The crossover point to FullMany occurs when the cost
of duplicating hash entries for each output cell in a region
pair exceeds that of the spatial index. The overhead of both
approaches increases with fanin. In contrast, payload lineage
has a much lower overhead than the full lineage approaches
and is independent of the fanin because the payload is typically
small and does not need to be encoded. When the fanout
increases to 50 or 100, PayMany and FullMany require less
than 3MB and 1 second of overhead. The forward optimized
FullOne is comparable to the other approaches when the
fanin is low. However, when the fanin increases it can require
up to fanin× more hash entries because it creates an entry
for every distinct input cell in the lineage. It converges to the
backward optimized FullOne when the fanout and fanin are
high. Finally, BlackBox has nearly no overhead.

Figure 9 shows that the query performance for queries
that access the backward/forward lineage of 1000 output/input
cells. The performance scales mostly linearly with the query
size. There is a clear difference between FullMany or
PayMany, and FullOne or PayOne, due to the additional
cost of accessing the spatial index (Figure 9). Payload lineage
performs similar to, but not significantly faster than full
provenance, although the query performance remains constant
as the fanin increases. In comparison (not shown), BlackBox
takes between 2 to 20 seconds to execute a query where
fanin=1 and around 0.7 seconds when fanin=100. Using a
mis-matched index (e.g, using forward-optimized lineage for
backward queries) takes up to two orders of magnitude longer
than BlackBox to execute the same queries. The forward
queries using → FullOne execute similarly to ← FullOne
in Figure 9 so we do not include the plots.

D. Discussion

The experiments show that the best strategy is tied to
the operator’s lineage properties, and that there are orders
of magnitude differences between different lineage strategies.
Science-oriented lineage systems should seek to identify and
exploit operator fanin, fanout, and redundancy properties.

Many scientific applications – particularly sensor-based or
image processing applications like environmental monitoring

Fanout: 1 Fanout: 100

0

10

20

30

0

10

20

30

●●●●●●

●●●●●●

●●●●●● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

D
isk

R
untim

e

0 20 40 60 80 100 0 20 40 60 80 100
Fanin

R
un

tim
e

(s
ec

)

D
is

k
(M

B
)

Strategy
● <− PayMany

<− PayOne
<− FullMany
<− FullOne

−> FullOne
BlackBox

Fig. 8. Disk and runtime overhead
Fanout: 1 Fanout: 100

0.025

0.050

0.075

0.100
● ● ●

● ● ●

0 20 40 60 80 100 0 20 40 60 80 100
Fanin

Q
ue

ry
 C

os
t (

se
c)

Strategy ● <− PayMany <− PayOne <− FullMany <− FullOne

Fig. 9. Backward Lineage Queries, only backward-optimized strategies

or astronomy – exhibit substantial locality (e.g., average tem-
perature readings within an area) that can be used to define
payload, mapping or composite operators. As the experiments
show, SubZero can record their lineage with less overhead than
from operators that only support full lineage. When locality
is not present, as in the genomics benchmark, the optimizer
may still be able to find opportunities to record lineage
if the constraints are relaxed. A very promising alternative
is to simplify the process of writing payload and mapping
functions by supporting variable granularities of lineage. This
lets developers define coarser relationships between input and
outputs (e.g., specify lineage as a bounding box that may
contain inputs that didn’t contribute to the output). This also
allows the lineage system perform lossy compression.

IX. RELATED WORK

There is a long history of provenance and lineage research
both in database systems and in more general workflow
systems. There are several excellent surveys that characterize
provenance in databases [8] and scientific workflows [9],
[10]. As noted in the introduction, the primary differences
from prior work are that SubZero uses a mix of black-box
and region provenance, exploits the semantics of scientific
operators (making using of mapping functions) and uses a
number of provenance encodings.

Most workflow systems support custom operators contain-
ing user-designed code that is opaque to the runtime. This
presents a difficulty when trying to manage cell-level (e.g.,
array cells or database tuples) provenance. Some systems [4],
[11] model operators as black-boxes where all outputs depend
on all inputs, and track the dependencies between input and
output datasets. Efficient methods to expose, store and query
cell-level provenance is an area of on-going research.

Several projects exploit workflow systems that use high
level programming constructs with well defined semantics.

RAMP [12] extends MapReduce to automatically generate
lineage capturing wrappers around Map and Reduce operators.
Similarly, Amsterdamer et al [13] instrument the PIG [14]
framework to track the lineage of PIG operators. However,
user defined operators are treated as black-boxes, which limits
their ability to track lineage.

Other workflow systems (e.g., Taverna [3] and Kepler [15]),
process nested collections of data, where data items may be
imagees or DNA sequences. Operators process data items in a
collection, and these systems automatically track which sub-
sets of the collections were modified, added, or removed [16],
[17]. Chapman et. al [18] attach to each data item a provenance
tree of the transformations resulting in the data item, and
propose efficient compression methods to reduce the tree size.
However, these systems model operators as black-boxes and
data items are typically files, not records.

Database systems execute queries that process structured
tuples using well defined relational operators, and are a natural
target for a lineage system. Cui et. al [19] identified efficient
tracing procedures for a number of operator properties. These
procedures are then used to execute backward lineage queries.
However, the model does not allow arbitrary operators to
generate lineage, and models them as black-boxes. Section V
describes several mechanisms (e.g., payload functions) that
can implement many of these procedures.

Trio [5] was the first database implementation of cell-level
lineage, and unified uncertainty and provenance under a single
data and query model. Trio explicitly stores relationships
between input and output tuples, and is analogous to the full
provenance approach described in Section V.

The SubZero runtime API is inspired by the PASS [20],
[21] provenance API. PASS is a file system that automat-
ically stores provenance information of files and processes.
Applications can use the libpass library to create abstract
provenance objects and relationships between them, analagous
to producing cell-level lineage. SubZero extends this API
to support the semantics of common scientific provenance
relationships.

X. CONCLUSION

This paper introduced SubZero, a scientific-oriented lineage
storage and query system that stores a mix of black-box and
fine-grained lineage. SubZero uses an optimization framework
that picks the lineage representation on a per-operator ba-
sis that maximizes lineage query performance while staying
within user constraints. In addition, we presented region lin-
eage, which explicitly represents lineage relationships between
sets of input and output data elements, along with a number
of efficient encoding schemes. SubZero is heavily optimized
for operators that can deterministically compute lineage from
array cell coordinates and small amounts of operator-generated
metadata. UDF developers expose lineage relationships and
semantics by calling the runtime API and/or implementing
mapping functions.

Our experiments show that many scientific operators can
use our techniques to dramatically reduce the amount of

redundant lineage that is generated and stored to improve
query performance by up to 10× while using up to 70× less
storage space as compared to existing cell-based strategies.
The optimizer successfully scales the amount of lineage stored
based on application constraints, and can improve the query
performance of the genomics benchmark, which is amenable
to black-box only strategies.. In conclusion, SubZero is an
important initial step to make interactively querying fine-
grained lineage a reality for scientific applications.

REFERENCES

[1] Z. Ivezi, J. Tyson, E. Acosta, R. Allsman, S. Anderson, et al., “LSST:
From science drivers to reference design and anticipated data products.”
[Online]. Available: http://lsst.org/files/docs/overviewV2.0.pdf

[2] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier, O. Ratzes-
berger, and S. B. Zdonik, “Requirements for science data bases and
SciDB,” in CIDR, 2009.

[3] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Taverna: lessons in
creating a workflow environment for the life sciences,” in Concurrency
and Computation: Practice and Experience, 2006.

[4] H. Kuehn, A. Liberzon, M. Reich, and J. P. Mesirov, “Using genepattern
for gene expression analysis,” Curr. Protoc. Bioinform., Jun 2008.

[5] J. Widom, “Trio: A system for integrated management of data, accuracy,
and lineage,” Tech. Rep., 2004.

[6] P. Tamayo, Y.-J. Cho, A. Tsherniak, H. Greulich, et al., “Predict-
ing relapse in patients with medulloblastoma by integrating evidence
from clinical and genomic features.” Journal of Clinical Oncology, p.
29:14151423, 2011.

[7] R. Ikeda and J. Widom, “Panda: A system for provenance and
data,” in IEEE Data Engineering Bulletin, 2010. [Online]. Available:
http://ilpubs.stanford.edu:8090/972/

[8] J. Cheney, L. Chiticariu, and W. C. Tan., “Provenance in databases: Why,
how, and where,” in Foundations and Trends in Databases, 2009.

[9] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludscher, T. McPhillips,
S. Bowers, M. K. Anand, and J. Freire, “Provenance in scientific
workflow systems.”

[10] R. BOSE and J. FREW, “Lineage retrieval for scientific data processing:
A survey,” in ACM Computing Surveys, 2005.

[11] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences.” in Genome
Biology, 2010.

[12] R. Ikeda, H. Park, and J. Widom, “Provenance for generalized
map and reduce workflows,” in CIDR, 2011. [Online]. Available:
http://ilpubs.stanford.edu:8090/985/

[13] Y. Amsterdamer, S. Davidson, D. Deutch, T. Milo, J. Stoyanovich, and
V. Tannen, “Putting lipstick on pig: Enabling database-style workflow
provenance,” in PVLDB, 2012.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
A not-so-foreign language for data processing,” in SIGMOD, 2008.

[15] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific
workflows,” in SSDM, 2004.

[16] M. K. Anand, S. Bowers, T. McPhillips, and B. Ludscher, “Efficient
provenance storage over nested data collections,” in EDBT, 2009.

[17] P. Missier, N. Paton, and K. Belhajjame, “Fine-grained and efficient
lineage querying of collection-based workflow provenance,” in EDBT,
2010.

[18] A. P. Chapman, H. Jagadish, and P. Ramanan, “Efficient provenance
storage,” in SIGMOD, 2008.

[19] Y. Cui, J. Widom, and J. L. Viener, “Tracing the lineage of view data in a
warehousing environment,” in ACM Transactions on Database Systems,
1997.

[20] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in NetDB, 2005.

[21] K.-K. Muniswamy-Reddy, J. Barillariy, U. Braun, D. A. Holland,
D. Maclean, M. Seltzer, and S. D. Holland, “Layering in provenance-
aware storage systems,” Tech. Rep., 2008.

