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1. Introduction 

The purpose of this paper is to 
survey some of the highlights of 
computational fluid dynamics as an 
emerging branch of aeronautical science, 
and to identify several remaining 

unsurmounted challenges. Prior to the 
advent of the computer there was already 
in place a rather comprehensive 
mathematical formulation of fluid 
mechanics. This had been developed by 
elegant mathetical analysis, frequently 
guided by brilliant insights. Well 
known examples include the airfoil 

theory of Kutta and Joukowski, Prandtl's 
wing and boundary layer theories, von 
Karman's analysis of the vortex street, 
and more recently Jones' slender wing 
theory [I], and Hayes' theory of 
linearized supersonic flow [ Z ] .  These 
methods required simplifying assumptions 
of various kinds, and could not be used 
to make quantitative predictions of 
complex flows dominated by nonlinear 
effects. The computer opens up new 
possibilities for attacking these 
problems by direct calculation of 
solutions to more complete mathematical 
models. 

The main uses of computational fluid 
dynamics in aeronautical science fall 
into two broad categories. First there 
is the objective of providing reliable 
aerodynamic predictions, which will 
enable designers to produce better 
airplanes. Second there is the 
possibility of using computational fluid 
dynamics for purely scientific 
investigations. It seems possible that 
numerical simulation of complex flows 
not readily accessible to experimental 
measurements can provide new insights 
into the underlying physical processes. 
In particular, computational methods 
offer a new tool for the study of 
structures in turbulent flow, and the 
mechanisms of transition from laminar to 
turbulent flow. 

Most of this paper is devoted to the 
use of computational methods for 
aerodynamic prediction. This is a 
comparatively recent development. Prior 
to 1965 computational methods were 
hardly used in aerodynamic analysis, 

although they were already widely used 

for structural analysis. The primary 
tool for the development of aerodynamic 
configurations was the wind tunnel. 
Experimental aerodynamicists could 
arrive at efficient shapes through 
testing guided by good physical insight. 
Notable examples of the power of this 
method include Whitcomb's discovery of 
the area rule for transonic flow, and 
his subsequent development of aft-loaded 
supercritcal airfoils [3,4]. By the 
sixties it began to be recognized that 
computers had become powerful enough to 
make it worthwhile to attempt 
calculations of aerodynamic properties 
of at least isolated components of 
aircraft. It was also apparent that 
depending on the intended application, 
useful simulations might be achieved 
with a range of mathematical models of 
varying complexity. Commercial aircraft 
fly largely with attached flows, in 
which the viscous effects are confined 
to the boundary layer. Consequently 
they have a relatively small effect on 
the global flow pattern, other than 
their role in establishing circulatory 
flows through the shedding of start up 
vortices off the trailing edges of 
lifting surfaces. Inviscid flow 
predictions then serve a useful role and 
can take advantage of irrotationality to 
simplify the equations through the 
introduction of a velocity potential. 
This reduction led to the first major 
advance, the introduction of panel 
methods to solve the linearized 
potential flow equation. The initial 
demonstration of this approach by Hess 
and Smith [5], was soon followed by its 
extension to lifting flows [6], and to 
linearized supersonic flow [7]. 

The seventies saw widespread efforts 
to develop methods of predicting 
transonic flows with shock waves, which 
required the use of a nonlinear 
mathematical model. The first major 
breakthrough was the scheme of Murman 
and Cole [8,9] for treating the 
transonic small disturbance equation. 
This was the catalyst for widespread 
development of methods for calculating 
transonic potential flows in two and 

three dimensions using either the small 
disturbance equation or the full 
potential flow equation. 
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In parallel there commenced efforts 
to devise efficient algorithms for 
solving the Euler and Navier Stokes 
equations. Following the pioneering 
efforts of Magnus and Yoshihara [lo], 
MacCormack introduced his famous 
explicit difference scheme in 1970 [ll]. 
Efforts to improve efficiency led to the 
implicit scheme of Beam and Warming 
[12], which was adopted to general 
curvilinear coordinates by Steger [131. 
The need to find a better shock 
capturing method was also apparent, and 
stimulated the introduction of flux 

splitting [14]. By 1979, however, Euler 
met.hods remained very expensive, and had 
not attained levels of accuracy which 
justified their routine use for 
engineering design. The GAMM Workshop 
of 1979 served to highlight t,he 
deficiencies of the methods then 
available [15]. Nevertheless, it was 
already evident that advances in the 
available computing power would soon 
make it entirely feasible to solve the 
three dimensional Euler equations, and 
the eighties have seen widespread 
efforts to realize this objective. The 
alternating direction method has been 
systematically developed into an 
effective tool, and the current state of 
the art is represented by ARC2D and 

ARC3D [16]. Implicit schemes using LU 
decomposition [17] and relaxation have 
also proved successful. A parallel path 
of development that has also led to 
efficient programs has been the use of 
multistage explicit time stepping 
schemes [18]. The author's FL052 and 
FL057 programs using this concept have 
been widely used. Stemming from the 
mathematical theory of shock waves, 
procedures have also been developed for 
the design of effective shock capturing 
schemes. There have been intensive 

efforts to find more rapidly convergent 
methods to find steady state solutions. 
In particular, the use of multiple 
grids, first introduced by Federenko 
[19], and subsequently developed by 

Brandt [20], has been extended to the 
treatment of hyperbolic systems [21-231 
and has proved to be extremely 
effective. 

We are now at a point where a 
variety of efficient algorithms for the 
solution of the Euler and Navier Stokes 
equations have been developed, and the 
principles underlying their construction 
are quite well understood. Their 
application to date has largely been 
limited to relatively simple 
configurations because of the difficulty 
of generating meshes around complex 
shapes. Viscous effects in attached 
flows can be fairly well predicted by 
making boundary layer corrections. 
Military aircraft frequently fly in 

conditions of separated flow. The 
appropriate mathematical model is then 
the Navier Stokes equations. At 
Reynolds numbers typical of full scale 
flight, however, the flow becomes 
turbulent, and the disparity of scales 
in a turbulent flow is so large that 
direct simulation is not likely to 
feasible without radical developments in 
computer technology. Therefore, it 
becomes necessary to resort to Reynolds 
averaging, and the equations must be 
c.losed by a turbulence model. Progress 
~n simulating separated viscous flows 
may now be more dependent on improvement 
in turbulence modeling than it is on 

algorithm development. 

Computational aerodynamics has now 
reached a point of maturity where it may 
be worthwhile to take stock of the 
present situation, and to consider which 
directions of future efforts ore likely 
to be most profitable. In this paper I 
will try to identify some of the 
algorithmic concepts which I believe 
will continue to provide a foundation 
for future developments, and to 
highlight some remaining areas of 
difficulty. 

It seems useful for this purpose 
first to consider the objectives of 
computational aerodynamics. Three 
levels of desirable performance can be 
identified 

(1) Capability to predict the flow 
past airplanes in different 
flight regimes (take off, 
cruise at transonic speed, 
flutter). 

(2) Interactive calculations to 
allow immediate improvement of 
the design. 

(3) Integration of the predictive 
capability into an automatic 
design method using computer 
optimization and artificial 
intelligence. 

To date not even the first level has 
been fully realized for all regimes of 
flight. Some methods are fast enough 
that the second level is already 
feasible, say, for airfoil evaluation. 
Some pioneering attempts have been made 
at the third level, and it is clear that 
advances in computational power and 
algorithmic efficiency will make this 
feasible for useful applications within 
the coming decade. 

It is also important to understand 
what kind of information the designer 
may be seeking. For the final design he 
may need accurate quantitative predic- 
tions of design parameters such as the 
lift and drag coefficients. In the 



early stages he may be more interested 
in acquiring a qualitative understanding 
of the nature of the flow field, and the 
impact of design changes on the onset of 
separation, for example, or the location 
of the regions of separated flow. 

The requirements to be met b y  an 
effective method include: 

(1) capability to simulate the main 
features of the flow, such as 
shock waves and vortex sheets 

(2) prediction of viscous effects 

(3) ability to handle geometrically 
complex configurations 

(4) efficiency in both computa- 
tional and human effort. 

In any case it is clear that the 
value of the information provided must 
be measured against the cost of 
producing it. In the application of 
computer simulations to engineering 
design we can therefore anticipate that 
simplified mathematical models will 
continue to be useful for preliminary 

estimations and trade-off studies for 
which full details of the flow field are 

not essential. On the other hand, there 
is a pervasive need to predict flows 
over exceedingly complex configurations, 
and future computational methods must be 
designed to address this requirement. 

The remaining sections review some 
of the main algorithmic developments of 
the past two decades in this context. 
Section 2 reviews the mathematical 
models. Section 3 covers potential flow 
methods, and Sections 4 and 5 methods 
for the full inviscid and viscous 
equations. In the conclusion, I try to 
identify what I believe to be the 
principal remaining problems, including 
algorithmic issues such as the 
construction of schemes with a higher 

order of accuracy, convergence 
acceleration, and shock capturing or 
front tracking schemes, and also 
computer science issues such as 
concurrent calculation on vector, 

pipelined or parallel processors, 
optimization and design techniques, and 
expert systems. 

2. Mathematical Models of Fluid Flow 

The equations for flow of a gas in 
thermodynamic equilibrium are the Navier 
Stokes equations. Let p, u, v, E and p 
be the density, Cartesian velocity 
components, total energy and pressure, 

and let x and y be Cartesian Coordi- 
nates. Then for a two dimensional flow 
these equations can be written as 

where w is the vector of dependent 
variables, and f and g are the convec- - 
tive flux vectors 

Here H is the enthalpy, 

H = E + P  
P 

and the pressure is obtained from the 

equation of state 

The flux vectors for the viscous terms 

nre 

R = 

Here the viscous stresses are 

where p is the coefficient of viscosity. 
The computational requirements for the 
simulation of turbulent flow have been 
estimated by Chapman [24]. They are 
clearly beyond the reach of current 
computers. 

The first level of approximation is 
to resort to time averaging of rapidly 
fluctuating components. This yields the 
Reynolds equations, which require a 
turbulence model for closure. Since a 
universally satisfactory turbulence 
model has yet to be found, current 

turbulence models have to be tailored to 
the particular flow. The Reynolds 
equations can be solved with computers 
of the class of the Cray 1 or Cyber 205, 

at least for two dimensional flows, such 
as flows over airfoils. 

The next level of approximation is 
to eliminate viscosity. Equations (2.1) 



then reduce to the Euler equations 

It is quite feasible to solve complex 
three dimensional flows with this model, 
as will be discussed. 

If we assume the flow to be irrota- 
tional we can introduce a velocity 
potential 0 ,  and set 

The Euler equations (2.5) now reduce to 
the potential flow equation 

or in quasilinear form 

where c is the speed of sound. This is 
given by 

where v is the ratio of specific heats. 
According to Croccoss theorem, vorticity 
in a steady flow is associated with 
entropy production through the relation 

where q and are the velocity and 
& - 

vorticity vectors, T is the temperature 
and S is the entropy. Thus the intro- 
duction of a potential is consistent 
with the assumption of isentropic flow. 
Then if Ma is the free stream Mach 

number 

Because shock waves generate 
entropy, they cannot be exactly modeled 
by the potential flow equation. Weak 
solutions admitting isentropic jumps 
which conserve mass but not momentum are 
a good approximation to shock waves, 
however, as long as the shock waves are 
quite weak (with a Mach number < 1.3 for 
the normal velocity component upstream 
of the shockwave). Stronger shock waves 
tend to separate the flow, with the 
result that the inviscid approximation 
is no longer adequate. Thus this model 
is well balanced, and it has proved 
extremely useful for estimating the 
cruising performance of transport 
aircraft . 

If one assumes small disturbances 
and a Mach number close to unity, the 
potential equation can be reduced to the 
transonic small disturbance equation. A 
typical form is 

Finally, if the free stream Mach number 
is not close to unity, the potential 
flow equation can be linearized as 

(1-~:)+~~ + o = 0 (2.11) 
Y Y 

This hierarchy of models is illustrated 
Figure 2.1. 

(TURBULENT) NAVIER STOKES 

EULER 

TRANSONIC POTENTIAL FLOW 

TRANSONIC SMALL DISTURBANCE 

LINEARIZED POTENTIAL FLOW 

a ) SUBSONIC (PRANOTL GLAUERT) 

b) SUPERSONIC 

Figure 2.1 
Hierarchy of mathematical models 

3. Algorithms for Potential Flow 

Overview 

While the Euler and Revnolds aver- 
aged Navier Stokes equations can now be 
solved with quite moderate computational 
costs, algorithms for potential flow 
remain useful because they can provide 
extremely inexpensive quick estimates. 
Also certain ideas for shock capturing 
and convergence acceleration which were 
first developed for potential flow 
calculations have proved transferable to 
more complex flow models such as the 
Euler equations. 

b) Upwind differencing 

When the potential flow equation 
(2.6) is uses to predict transonic 
flows, the difficulty arises that the 
solution is invariant under a reversal 
of the velocity vector (u= v= -+ ) .  

v 
Consider a transonic flow past an 
ellipse with a compression shock wave. 

Then there is a corresponding solution 
with an expansion shock wave (see 
Figures 3.1 (a,b)). In fact a central 
difference scheme would preserve for the 
aft symmetry, leading to a solution of 
the type illustrated in Figure 3.1 (c). 



( a )  (b) 

Comprcaaion Shock Lxpancion Shock 

wise direction. The scheme amounted to 
a combination of a relaxation method for 

the subsonic zone, in which the equation 
is elliptic, with an implicit scheme for 
the wave equation in the supersonic 

__--__ zone. A result from the original paper 

is displayed in Figure 3.3. 

(Cl 

Symnetric Shock 

Figure 3.1 

Alternative solutions for an ellipse 

In 1970 there appeared the landmark 
paper of Murman and Cole [8]. This 
demonstrated a simple way to obtain 
physically relevant solutions of the 
transonic small disturbance equation 
(2.10). Writing this equation as 

where A is the nonlinear coefficient in 
(2.10): they proposed the use of central 
differencing if A > 0 (subsonic flow), 
but upwind differencing for O x x  if A < 0 

.-.. 

(supersonic flow), as illustrated in 
Figure 3.2. The equations were then 
solved by a line relaxation scheme, in 
which the unknowns were determined 
simultaneously on each successive 
vertical line, marching in the stream- 

Central 
Differencing 

Figure 3.2 
Murman - Cole difference scheme 

Mesh Points Acrurocy of 

on Airfal l  Hyperbolic System 

40 2nd Order ------ 40 1st Order 
80 1st Order 

Figure 3.3 

Results obtained by Murman and Cole 
Bicircular arc airfoil 

This work was extremely important 
both because it pointed the way to 
reasonably inexpensive simulations of 
transonic flows, and also because it 

demonstrated for the first time the 
possibility of an effective shock 
capturing scheme with a sharp and non- 
oscillatory discrete shock structure. 
Within the next few years the concept of 
Murman and Cole was generalized to the 
full transonic potential flow equation 
and applied to a wide variety of flow 

simulations. 

In order to treat the full quasi- 
linear potential flow equation (2.7) one 
may rewrite it in a coordinate system 

locally aligned with the flow. Equation 
(2.7) then becomes 

where 

and 
2 

2uv 
2 

+ 
"nn = > *xx - 7 "xy 7 *yy 

Upwind differencing is now used for all 
second dirivatives contributing to o 

s s 
whenever q > c. This leads to Jameson's 
rotated difference scheme [25], (see 
also Albone [26]). A convergent 

iterative scheme can be derived by 



regarding the iterations as time steps 
in an artificial time c0ordinat.e. The 

principal part of the equivalent time 
dependent equation has the form 

Introducing a new time coordinate 

this becomes 

If the flow is locally supersonic, T is 
spacelike and either s or n is timelike. 
Since s is the timelike direction in the 
steady state problem, the time dependent 
problem is compatible with the steady 
state problem only if 

This generally requires the explicit 
addition of a term in 0 

st* 

In his paper of 1973, Murman 
recognized that the switch in the 
difference scheme could violate the 
conservation form of the equations, 

leading to shock jumps which violated 
the conservation of mass [9]. This 
difficulty can be corrected by 
reformulating the switch to upwind 
differencing by the introduction of 
artifical viscosity. The dominant 
discretization error in the upwind 
difference formula for Oxx is -AX o 

xxx' 
and terms of this nature can be added 
explicitly in conservation form, leading 
to special transition operators across 
the sonic line. An appropriate form of 
artificial viscosity for the potential 
flow equation (2.6) is a difference 
approximation to 

where Ax and Ay are the mesh widths, and 
p is a switch function 

1 
p = max {O, 1- 

which cuts off the viscosity in the 
subsonic zone [27]. It was realized by 
several authors that a term of this kind 
can be added simply by biasing the 
density in an upwind direction [28-30). 
This has facilitated the development of 
discretizations on arbitrary subdivi- 
sions of the domain into hexahedra or 
tetrahedra. 

c) Convergence acceleration 

Transonic flow calculations by 
relaxation methods generally require a 
very large number of iterations to 
converge (of the order of 500-2000). 
This inhibited the more widespread use 
of these methods, particularly for three 
dimensional calculations, and stimulated 
numerous efforts to find more rapidly 
convergent methods. The two most 
effective approaches have been approxi- 
mate factorization of the difference 
operator, and acceleration by the use of 
multiple grids. 

Let the difference equations be 

written as 

where L is a nonlinear difference 
operator and 9 is the solution vector. 
Then a typical iterative scheme can be 
written as 

where 60 is the correction, and N is a 
Linear operator which can be inverted 
relatively cheaply, and should approxi- 

mate L (in the linear case the error is 

reduced at each cycle by I - N-l~). In 

an approximate factorization method N is 
formed as a product 

of easily invertible operators. 
Ballhaus, Jameson and Albert found [31] 
that a good choice for the small 
disturbance equation (3.1) is 

+ 
where D and D; are forward and backward 

X 
difference operators, and 

Very efficient schemes of this type have 
been developed for the transonic 
potential flow equation by Holst 1321. 

The multigrid method was first 
proposed by Fedorenko [19], and some 
promising results for the small 

disturbance equation were obtained by 
Brandt and South [33]. The idea is to 
use corrections calculated on a sequence 
of successively coarser grids to improve 
the solution on a fine grid. Consider a 
linear problem and let 



be the discrete equations for a mesh 
with a spacing proportional to h. Let 
uh be an estimate of eh, and let vh be R 

correction which should reduce I, h h h  (u +v ) 

to zero. Then instead one can write an 
equation for v on a mesh with twice as 

large a spacing: 

where QZh is a collection operator which 

forms a weighted average of the 

residuals on the fine grid in the 
neighborhood of each mesh point of the 
coarse grid. The correction is finally 
interpolated back to the fine grid: 

new - 2h 
Uh - Uh + Ph V2h (3.6) 

where pZh is an interpolation operator. 
h 

Corrections to the solution of equation 
(3.5) can in turn he calculated on a 
still coarser grid, and so on. The same 
basic iterative scheme can be used on 
all the grids in the sequence. It has 
been proved that solutions to elliptic 
problems with N unknowns can be obt~ined 
in O(N) operations by the use of 
multiple grids 1341. A condition for 
the successful use of multiple grids is 
that before passing to a coarser grid, 
the high frequency error modes should be 
reduced to the point that the remaining 

error can be properly resolved on the 
coarser grid. 

The method can be reformulated for a 
nonlinear problem by explicitly intro- 
ducing the solution vector u2h on the 

coarse grid. An updated solution vector 
- 
u~~ is then calculated from the equation 

Here the difference between the 
collected residuals from neighboring 
points on the fine grid and the residual 

calculated on the coarse grid appears as 
a forcing function. The correction 
- 
u 2h - u~~ is then interpolated back to 

the fine grid. 

Figure (3.4) shows the result of a 
calculation in which a generalized 
alternating direction method was used to 
drive the multigrid iteration [35]. The 
AD1 scheme differs from the standard AD1 

scheme in replacing the scalar parameter 
by a difference operator (which also 
operates on the residuals). The purpose 
of this is to retain a well posed 
problem in the supersonic zone. An 
efficient strategy is to use a simple V 
cycle in which 1 AD1 iteration is 

performed on each grid until the 
coarsest grid is reached, and then 1 AD1 
iteration on each grid on the way back 
up to the fine grid. A solution on a 
192x32 grid accurate to 4 figures was 
obtained by 3 V cycles on a 48x8 grid, 
followed by 3 V cycles on a 96x16 grid 
and 3 V cycles on the 192x32 grid. The 
total calculation is equivalent to 4 V 
cycles on the 192x32 grid. It seems 
likely that this must be close to the 
lower bound for the number of operations 
required to solve 6144 similtaneous 
non-linear equations. 

Figure 3.4 
Transonic potential flow solution 

calculated with 3 multigrid V cycles 
NACA 64A410 

Mach .720 a 0' 
CL .6640 CD .0031 

192x32 grid Residual .580 

d) Treatment of complex geometry 

An effective approach to the 
treatment of two dimensional flows over 

complex profiles is to map the exterior 
domain conformally onto the unit disk 

[25]. Equation (2.6) is then written in 
polar coordinates as 



where the modulus h of the mapping 
function enters only in the calculation 
of the density from the velocity 

This procedure is very accurate. 

Applications to complex three 
dimensional configurations require a 
more flexible method of discretization, 
such as that provided by the finite 
element method. Jameson and Caughey 
proposed a scheme using isoparametric 
bilinear or trilinear elements [ 3 6 ] .  
The discrete equations can most con- 
veniently be derived from the Bateman 
variational principle. This states that 
the integral 

I = f J  p dxdy 

is stationary in two dimensional 
potential flow. T t  follows from 
equations (2.9) that 

- ap - aP = p u ,  av 
a u -P" 

whence in potential flow 

and equation (2.6) is recovered on 
integrating by parts and allowing 
arbitrary variation 6 0 .  In the scheme 
of Jameson and Caughey I is approximated 
as 

where pk is the pressure at the center 

of the kth cell and Vk is its area (or 

volume), and the discrete equations are 
obtained by setting the derivative of I 
with respect to the nodal values of 
potential to zero. Artificial viscosity 
is added to give an upwind bias in the 
supersonic zone, and an iterative scheme 
is derived by embedding the steady state 
equation in an artificial time dependent 

equation. Several widely used codes 
(FLO 27, FLO 28, FLO 30) have been 
developed using this scheme. 

An alternative approach to the 
treatment of complex configurations has 
been developed by Bristeau, Pironneau, 
Glowinski, Periaux, Perrier and Poirier 
[37]. Their method uses a least square 

formulation of the problem, together 
with an iterative scheme derived with 
the aid of optimal control theory. The 
method could be used in conjunction with 
a subdivision into either quadrilaterals 
or triangles, but in practice triangula- 
tions have been used. The least squares 
method in its basic form allows expan- 
sion shocks. In early formulations 
these were eliminated by penalty 

functions. Subsequently it was found 
best to use upwind biasing of the 
density. The method has been extended 
at Avions Marcel Dassault to the 
treatment of extremely complex three 
dimensional configurations, using a 
subdivision of the domain into 
tetrahedra. A striking success was 
achieved in 1982 with the first 
simulation of transonic flow by a 
solution of the full quasilinear 
potent.ia1 flow equation, as illustrated 
~n Figure 3.5. 

(a) Surface mesh 

(b) Surface Mach contours 

Figure 3.5 
Transonic potential flow 

over a Falcon 50 
Mach .85  a 1.00 

Calculated at Avions Marcel Dassault 

4. Algorithms for the Euler Equations 

a) Overview: time dependent 
formulation 

In parallel with the development of 
effective algorithms for potential flow 
there were ongoing efforts to derive 
fast, accurate and reliable methods for 
solving the Euler equations. Steady 
state solutions are typically needed for 
design applications. The introduction 
of a space discretization procedure then 



reduces the problem to the solution of CI 

large number of coupled nonlinear 
equations. These equations might be 
solved by a variety of iterative 
methods. Two possibilities in particu- 

lar are the least squares method [37] 
and the Newton iteration [38]. It has 
generally been found expedient, however, 
to use the time dependent equations as n 

vehlcle for reaching the steady state. 
Some advantages of this strategy are 

1) Simplicity. 

2) The possibility of using the 
same computer program to 

calculate steady and unsteady 
flows. 

3) The time dependent problem 
provides a natural frame work 
for the design of non- 
oscillatory shock capturing 
schemes which reflect the 
physics of wave propagation. 

4) Algorithms can be devised for 
concurrent computation on 
vector, pipelined or parallel 
processors either through the 
use of an explicit time 
stepping scheme, or else 
through the use of an iterative 
procedure at each time step of 
an implicit. scheme. 

It has also been found that satisfactory 
schemes ought to be designed to conform 

to some general guidelines. Some of 
these are: 

The conservation laws of gas 
dynamics should be satisfied in 
discrete form by the numerical 
approximation. 

Shock waves and contact dis- 
continuties should be automat- 
ically captured by the differ- 
ence scheme. 

In steady flow calculations the 
final steady state ought to be 
independent of the time 
stepping scheme. 

Invariant quantities in the 
flow field, such as entropy 
upstream of a shock wave, or 
total enthalpy in a steady 
flow, ought also to be 
invariant in the numerical 
solution. 

Uniform flow should be an exact 
solution of the difference 
equations on an arbitrary mesh. 

An alternative to 2) is automatic 
detection of shock waves in conjunction 
with front tracking. In this case l), 

which is needed to assure the satisfac- 
tion of correct jump conditions by a 
shock capturing scheme [39], is no 
longer strictly necessary, but it 
remains desirable since it assures 
global conservation of mass, momentum 
and energy. 

The early standard for time stepping 
methods was set by the two stage scheme 
of MacCormack [ll], which has been very 
widely used. To solve the one 
dimensional system 

aw a + - f (w) = 0 
ax 

the scheme advances from time level n to 

time level n+l by 

- 
W = w n -  

and 

W 
n+l . wn _ At + 

2- D x [  

setting 

At D: f(wn) 

Here the superscripts denote the time 

level, and D+ and D; are forward 

backward difference operators 
a 

approximating -: 
ax 

The value at the end of the time step is 
first predicted using forward 
differences, and then the predicted 
value is used in the calculation of the 

final corrected value wn+l by a formula 
which is centered about the middle of 
the time step. 

This is the simplest known two level 

scheme which is both stable and second 
order accurate. Additional dissipative 
terms have to be introduced to eliminate 
oscillations in the vicinity of shock 
waves. The scheme also does not satisfy 
principle 3 ) ,  since it yields a steady 
state which depends on the time step At. 

Nor is the enthalpy constant in discrete 
steady solutions. The algorithm 
performs well, however, in the absence 
of discontinuities in the flow. 

A convenient way to meet requirement 
3) is to separate the space marching 
procedure entirely from the time 
marching procedure by applying first a 
semi-discretization. This has the 
advantage of allowing the problems of 
spatial discretization error, artificial 
dissipation and shock modeling to be 
studied independently of the problems of 
time marching stability and convergence 
acceleration. 



b) Space discretization of the Euler 
equations 

Following the lead of MacCormack aad 
Paullay [40], the space discretization 
of the Euler equations (2.5) can be 
derived in a very natural way from the 
integral form 

for a domain S with boundary dS. 

If we divide the domain into a large 
number of small subdomains, we can use 
equation (4.3) to estimate the average 
rate of change of w in each subdomain. 
This is an effective method to obtain 
discrete approximations lo equations 
(2.5) which prescrve their conservation 
form. In general thc subdomains could 
be arbitrary, but i t  is convenient to 
use either quadrilateral or triangular 
cells. Correspondingly, it is con- 
venient to use either distorted cubic or 
tetrahedral cells in three dimensional 
calculations. Alternative discretiza- 
tions may be obtained by storing sample 

values of the flow variables at either 
the cell centers or the cell corners. 
These variations are illustrated in 
Figure 4.1 for a two-dimensional case. 

fl 
X X X  

( a )  ( b )  

CELL CENTERED RECTILINEAR CELL CENTERED TRIANGULAR 

( c )  (d 

VERTEX RECTILINEAR VERTEX TRIANGULAR 

Figure 4.1 
Alternative discretization schemes 

Figures 4.l(a) and 4.l(b) show cell 
centered schemes on rec:tilinear and 
triangular meshes [18,41]. In either 
case equation (4.3) is written for the 
cell labeled 0 as 

where S is the cell area and Q is the 
net flux out of the cell. This can be 

approximated as 

where the sum is over the edges of cell 

0, dxOk and dyOk are measured along the 

edge separating cell 0 from cell k, and 

I he flux vectors fOk and g 
Ok "re 

..valuated by taking the average of their 
values in cell 0 and cell k. 

An alternative averaging procedure is 1.0  

multiply the average value of the 
convected quantity, pOk in the case of 

the continuity equat.ion, for example, by 
the transport vector 

obtained by taking the inner product of 
the mean of the velocity vector q with - 
the normal multiplied by the edge 
length. 

Figures 4.l(c) and 4.l(d) show 
corresponding schemes on rectilinear and 
triangular meshes in which the flow 
variables are stored at the vertices 
[42]. We can now form a control volume 
for each vertex by taking the union of 
the cells meeting at that vertex. 
Equation (4.4) then takes the form 

where V k  and Qk are the area and flux 

balance for the kth cell in the control 
volume. The flux balance for a given 
cell is now approximated as 

where Axe and Aye are measured along the 

eth edge, and fe  and ge are estimates of 

the mean flux vectors across that edge. 
Fluxes across internal edges cancel when 



iangle 012, for example, 
the sum I Q, is taken in equation (4.7:). 

k 
so that. only the extcrnal edges of' the 
control volume contribute to its flux 
ba1;rnc.e. The mean flux vector across t r n  

edge can be conveniently approximated as 
the average of t.he values at its two end 
points, 

in Figure 4.l(c) or 4.l(d), for example. 
The sum ZQk in equation (4.7), which 

then amounts to a trapezoidal integra- 
tion rule around the boundary of the 
contro 1 area, shou-Id remain fairly 
accurate even when the mcsh is 
irregu Iar. 

The vertex scheme is essentially 
equivalent to a Galerkin method. 
Conslder t.hc! inviscid equations in the 
differential form (2.5). Multiplying b ?  
a test function and integrating by part:; 
over space leads to 

Suppose that we take 6 to be the 
piecewise llnear function with the value 
unity at one node (denoted by 0 in 
Flgure 4.2), and zero at all other 
nodes. Then the last term vanishes at 
interior nodes. Also ex and + are 

Y 

constant in every triangle and differ 
from zero only in the triangles with a 
common vertex at node 0. 

Figure 4.2 
Control volume for Galerkin formulation 

where dy12 is the outer edge and S 012 is 
- - 

the area of the triangle. In cell 012, 

we take the average values of f and g to 
b t3 

Since Zdx and Zdy vanish around the 
boundary of the control volume, the 
contributions of fo and go also vanish, 

and equation (4.9) finally reduces to 

ihere So is 1 / 6  the sum of the areas of 

he triangles with a common vertex at 0 
~ n d  S k  is 1/6 the area of the kth 

triangle. The finite volume equation 
(4.7) corresponds to lumping the time 
derival ives at the central vertex. 

c) Dissipation, upwinding and total 
variation diminishing schemes 

Equations (4.4) and (4.7) represent 
nondissipative approximations to the 
Euler equations. Dissipative terms may 
be needed for two reasons. First there 
is the possibility of undamped 
oscillatory modes. For example, when 
either a cell centered or a vertex 
formulation is used to represent a 
conservation law on a rectilinear mesh, 

a mode with values +l alternately at odd 
and even points lends to a numerically 
evaluated flux balance of zero in every 
interior control volume. Athough the 
boundary conditions may suppress such a 
mode in the steady state solution, the 
absence of damping at interior points 
may have an adverse effect on the rate 

of convergence to the steady state. 

The second reason for introducing 
dissipative terms is to allow the clean 
capture of shock waves and contact 
discontinuities without undesirable 
oscillations. Following the pioneering 
work of Godunov [43], a variety of 
dissipative and upwind schemes designed 
to have good shock capturing properties 
have been developed during the past 
decade [44-531. The one-dimensional 
scalar conservation law 



provides a useful model for the analysis 
of these schemes. The total variation 

of a solution of (4.11) does not 
increase, provided t,hat any 
discontinuity appearing in the solution 
satisfies an entropy condition [55]. 
The concept of total variation diminish- 
ing (TVD) difference schemes, introduced 
by Harten [49], provides a unifying 
framework for the study of shock 
capturing methods. These are schemes 
with the property that the total 
variation of the discrete solution 

cannot increase. The general conditions 

for a multipoint one-dimensional scheme 
to be TVD have been stated and proved by 
Jameson and Lax [56]. For a semi- 
discrete scheme expressed in the form 

these conditions are 

and 

Specialized to a three point scheme 

these conditions imply that the scheme 

is TVD if c .  c .  > 0. 
J+1/2 ' O J  J-1/2 - 

A conservative semi-discrete 
approximation to equation (4.11) can be 
derived by subdividing the line into 

cells. Then the evolution of the value 
v. in the jth cell is given by 
J 

where h. 
~ + 1 / 2  

is the estimate of the flux 

between cells j and j+l. Conditions 
(4.13) are satisfied by the upwind 
scheme 

where a .  J+1/2 is a numerical estimate of 

the wave speed a = af/au, 

More generally, if one sets 

where a .  
J+ 1 /2 

is a dissipative 

coefficient, the scheme is TVD if 

since one can write 

and 

Thus the use of a dissipative 
coefficient with a magnitude of at least 
half the wave speed produces a TVD 
scheme, while the minimum sufficient 
value produces the upwind scheme. 

TVD schemes preserve the 
monotonicity of an initially monotone 
profile, because the total variation 
would increase if the profile ceased to 
be monotone. Consequently, they prevent 
the formation of supurious oscillations. 
In this simple form, however, they are 
at best first order accurate. Harten 
devised a second order accurate TVD 
scheme by introducing antidifusive terms 
and flux limiters to improve shock 
resolution can be traced to the work of 
Boris and Book [44]. The concept of the 
flux limiting was independently advanced 



by Van Leer [45]. A particularly simple 
way to introduce a second order accurate 
TVD scheme is to introduce flux limiters 
directly into a higher order dissipative 
term [53]. 

There are difficulties in extending 
these ideas to systems of equations, and 
also to equations in more than one space 
dimension. Firstly the total variation 
of the solution of a system of hyper- 
bolic equations may increase. Secondly 
it has been shown by Goodman and Leveque 
that a TVD scheme in two space dimen- 
sions is no better than first order 
accurate [57]. One might add dissipa- 
tive terms by applying the same 
construction to the complete system of 
equations, using for ai+1/2 the 

magnitude of the largest eigenvalue of 
the Jacobian matrix df/du, evaluated for 
an average value u 

i+1/2' 
This leads to 

an excessively dissipative scheme. 

If one wishes to use one sided 
differencing one must allow for the fact 
that the general one-dimensional system 
defined by equation (4.1) produces 

signals traveling in both directions. 
One way of generalizing one sided 
differencing to a system of equations is 
the flux vector splitting method 
proposed by Steger and Warming [14]. 
Considering the system (4.1), let the 

+ 
flux f be divided in two parts f and 

df' 
f-, such that all the eigenvalues of - 

aw 
are non-negative, and the eigenvalues of 

af - - are non-positive. Then equation 
a w 
(4.1) is replaced by 

w = wn - ~lt[D;f+ (w) + ~:f-(w)] (4.19) 

+ 
where Dx and D; are forward and backward 

a 
difference operators approximating -. 

ax 
The splitting is not unique. The flux 
vector f(w) of the Euler equations has 
the property that 

a f 
where A = -. A can be represented as 

d W 

TAT-', where the columns of T are the 
eigenvectors of A, and A is a diagonal 
matrix containing its eigenvalues. 
Steger and Warming proposed the 
splitting 

where 

+ 
and A and A- contain the positive and 
negatives eigenvalues of A. This 
splitting is discontinuous across the 
sonic line. Van Leer has proposed an 
alternative splitting which preserves 
the smoothness of the flux vectors [46] 

Another approach to the discretiza- 
tion of hyperbolic systems was 
originally proposed by Godunov [431. 
Suppose that (4.1) is approximated by 

where the numerical flux function Fi+1/2 

= F(wi, W. ) is an approximation to the 
1+1 

flux across the cell boundary 

This function must satisfy the 
c:onsistency condition F(w,w) = F(w). In 
the Godunov scheme Fi+1/2 is taken to be 

the flux value arising at in the 

exact solution of the initial value 
problem defined by piecewise constant 
data between each cell boundary. This 
simulates the motion of both shocks and 
expansion fans, but it is expensive. 

Various simpler schemes designed to 
distinguish between the influence of 
forward and backward moving waves have 
recently been developed, based on the 
concept of flux difference splitting 
introduced by Roe [47]. Roe's idea was 
to split the flux difference Fi+l/Z - 

Fi-1/2 
into characteristic fields 

through the introduction of a matrix 

A(wi+l/2' Wi-1/2 ) with the property that 

Roe has also given a method of 
constructing such a matrix. After 

- 
Fi+1/2 Fi-1/2 

has been decomposed into 

components in the basis defined by the 
eigenvectors of A(w. 1+1/2, wi-1/2) ' 

dissipative terms are separately defined 
for each field to produce a scheme with 
the TVD property by taking for a 

i+1/2 
the eigenvalues of A ( W ~ + ~ / ~ ,  W. 

1-1/21 - 
These correspond to the characteristic 
speeds q ,  q, q+c and q-c. The dissipa- 
tive terms are finally recombined to 
form dissipative fluxes corresponding to 
the original variables. One consequence 
of the property (4.21) is that it allows 
the construction of schemes which 
resolve a stationary shockwave with a 
single interior point. This is achieved 
by using the minimum value of the 
dissipative coefficient consistent with 
the TVD property, ai+1/2 = 1/2 ai+1,2s 

corresponding to an upwind scheme. 



Otherwise a non--oscillatory scheme will 
produce a smeared out shock wave with an 
extended tail. 

These properties are not obtained 
without a cost. Firstly there is a 
large increase in the number of 
arithmetic operations required in the 
realization of the numerical approxima- 
tion. Secondly it is nlonger possible 
to satisfy exactly the condition that 
the total enthalpy of the steady state 
solution should be constant. Because 
the dissipative terms entering the mass 
energy equations are independently 
constructed, these two equations are not 
consistent with each other in the steady 
state when the total enthalpy is 
constant. 

The use of flux splitting allows 

precise matching of the dissipative 
terms to introduce the minimum amount of 
dissipation needed to prevent oscilla- 
tions. This in turn reduces t.he 
thickness of the numerical shock layer 
to the minimum attainable, one or two 
cells for a normal shock. In practice, 
however, it turns out that shock waves 
can be quite cleanly captured without 

flux splitting by using adaptive 
coefficients. The dissipation then has 
a low background level which is 
increased in the neighborhood of shock 
waves to a peak value proportional to 
the maximum local wave speed. The 
second difference of the pressure has 
been found to be an effective measure 
for this purpose. The dissipative terms 
are constructed in a similar manner for 
each dependent variable by introducing 
dissipative fluxes which preserve the 
conservation form. 

For a two dimensional rectilinear 
mesh the added terms have the form 

These fluxes are constructed by blending 
first and third differences of the 
dependent variables. For example, the 

dissipative flux in the i direction for 
the mass equation is 

where e2 is the second difference 

operator, e(2) and d4) are the adaptive 
coefficients, and R is a scaling factor 
proportional to an estimate of the 
maximum local wave speed normal to the 

cell boundary. The coefficient 6 
(4) 

provides the background dissipation in 
smooth parts of the flow, and can be 
used to improve the capability of the 

scheme to damp high frequency modes. 
Shock capturing is controlled by the 

coefficient L(~), which is made 
proportional to the normalized second 
difference of the pressure 

in the adjacent cells 

Schemes constructed along these 
lines combine the advantages of 
simplicity and economy of computat.ion, 
at the expense of an increase in thick- 

ness of the numerical shock layer to 
three or four cells. They have also 
proved robust in calculations over a 
wide range of Mach numbers (extending up 
to 20 in recent studies [58]). They can 
also be quite easily modified for cal- 

culations on triangular or tetrahedral 
meshes 1421. 

d) Time stepping schemes 

The discretization procedures of 
Section 2 lead to a set of coupled 
ordinary differential equations, which 
can be written in the form 

where w is the vector of the flow 

variables at the mesh points, and R(w) 
is the vector of the residuals, 
consisting of the flux balances defined 
by equations (4.4) or (4.7), together 
with the added dissipative terms. These 
are to be integrated to a steady state. 
Since the objective is simply to reach 
the steady state and details of the 

transient solution are immaterial, the 
time stepping scheme may be designed 
solely to maximize the rate of 
convergence without having to meet any 
constraints imposed by the need to 
achieve a specified level of accuracy, 
provided that it does not interfere with 
the definition of the residual R(w). 
Figure 4.3 indicates some of the 
principal time stepping schemes which 
might be considered. The first major 
choice is whether to use an explicit or 

an implicit scheme. 

Explicit schemes which might be 

considered include linear multistep 
methads such as the leap frog and 
Adams-Bashforth schemes, and one step 
multistage methods such as the classical 
Runge-Kutta schemes. The one step 
multistage schemes have the advantages 
that they require no special start up 
procedure, and that they can readily be 
tailored to give a desired stability 
region. They have proved extremely 
effective in practice as a method of 
solving the Ruler equations. 
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Figure 4.3 
Time stepping schemes 

Let wn be the result after n steps. 
The general form of an m stage scheme is 

The residual in the q+lst stage is 

evaluated as 

where 

In the simplest case 

It is then known how to choose the 

coefficients a to maximize the 
Q 

stability interval along the imaginary 
axis, and consequently the time step 
1591. Since only the steady state 
solution is needed, it pays to separate 
the residual R(w) into its convective 
and dissipative parts Q(w) and D(w). 
The residual in the (q+l)st stage is now 
evaluated as 

where 

Blended multistage schemes of this type, 

which have been analyzed in reference 
1601, can be tailored to give large 
stability intervals along both the 
imaginary and negative real axis. 

The properties of multistage schemes 
can be further enhanced by residual 
averaging [60]. Here the residual at a 
mesh point is replaced by a weighted 
average of neighboring residuals. The 
average is calculated implicitly. In a 
one dimensional case R(w) is replaced by 

R(w), where at the jth mesh point 

It can easily be shown that the scheme 
can be stabilized for an arbitrarily 
large time step by choosing a 
sufficiently large value for r. In a 
nondissipative one dimensional case one 

needs 

where At* is the maximum stable time 
step of the basic scheme, and At is the 

actual time step. The method can be 
extended to three dimensions by using 

smoothing in product form 

where a2 a2 and 63 are second 
X' Y 

difference bperato 
directions, and r 

corresponding smoo 
Residual averaging 
triangular meshes 
equations are then 
iteration. 

s in the coordinate 
c and rZ are the 
Y 

hing coefficients. 
can also be used on 
411. The implicit 
solved by a Jacobi 



One can anticipate that implicit 
schemes will yield convergence in a 
smaller number of time steps, since the 
time step is no longer constrained by a 
stability limit. This will only pay, 
however, if the decrease in the number 
of time steps outweighs the increase in 
the computational effort per time step 
consequent upon the need to solve 
coupled equations. The prototype 
implicit scheme can be formulated by 
estimating dw/dt at t + pAt as a linear 

n+l 
combination of R(wn) and R(w . The 
resulting equation 

can be linearized as 

Equation (4.7) reduces to the Newton 
iteration if one sets p = 1 and lets Ar 
+ . In a three dimensional case with 

an NxNxN mesh its bandwidth is of order 
2 

N . Direct inversion requires a number 
of operations proportional to the number 
of unknowns multiplied by the square of - 
the bandwidth, that is o(N"). This is 
prohibitive, and forces recourse to 
either an approximate factorization 
method or an iterative solution method 

The main possibilities for approxi- 
mate factorization are the alternating 
direction method and the LU decomposi- 
tion method. The alternating direction 
method, which may be traced back to the 
work of Gourlay and Mitchell [61], was 
given an elegant formulation for non- 
linear problems by Beam and Warming 
[12]. In a two dimensional case 
equation (4.32) is replaced by 

where D and D are difference operators 
Y 

approximating d/dx and d/dy, and A and B 
are the Jacobian matrices, 

This may be solved in two steps: 

Each step requires block tridiagonal 

inversions, and may be performed in 

o(N~) operations on an NxN mesh. The 
algorithm is amenable to vectorization 
by simultaneous solution of the 

tridiagonal equations along parallel 
coordinate lines. The method has been 
refined to a high level of efficiency by 
I'ulliam and Steger 1161, and Yee has 
extended it to incorporate a TVD scheme 
1541. Its main disadvantage is that. its 
extension to three dimensions is 
inherently unstable according a Von 
Neumann analysis. 

The idea of the L U  decomposj tion 
method [17] is to replace the operator 
in equation (4.3) by the product of 
lower and upper block triangular factors 
L and U, 

Two factors are used independent of the 
number of dimensions, and the inversion 
of each can be accomplished by inversion 
of its diagonal blocks. The method can 
be conveniently illustrated by consider- 
ing a one dimensional example. Let the 
Jacobian matrix A = af/aw be split as 

+ 
where the eigenvalues of A and A- are 
positive and negative, respectively. 
Then we can take 

where D+ and D: denote forward and 

backward difference operators approxi- 
mating d/dx. The reason for splitting A 
is to ensure the diagonal dominance of L 
and U, independent of At. Otherwise 
stable inversion of both factors will 
only be possible for a limited range of 
~ t .  A crude choice is 

where p is at least equal to the 
spectral radius of A .  If flux splitting 
is used in the calculation of the 
residual, it is natural to use the 
corresponding splitting for L and U. An 
interesting variation is to combine an 

alternating direction scheme with LU 
decomposition in the different 
coordinate directions [62,63]. 

If one chooses to adopt the 
iterative solution technique, the 
principal alternatives are variants of 
the Gauss-Seidel and Jacobi methods. 
These may be applied to either the 
nonlinear equation (4.31) or the 
linearized equation (4.32). A Jacobi 
method of solving (4.31) can be 
formulated by regarding it as an 
equation 



to be solved for w. Here w (O) is a 
fixed value obtained as the result of 
the previous time step. Such a 
procedure is a variant of the multistage 
time stepping scheme described by 
equations (4.28) and (4.29). It has the 
advantage that i t  permits simultaneous 
or overlapped calculation of the 
corrections at every mesh point, and is 
readily amenable to parallel and vector 
processing. 

A symmetric Gauss-Seidel scheme has 
been successfully employed in several 
recent works [64]. Consider the case of 
a flux split scheme in one dimension, 
for which 

where the flux is split so that the 
Jacobian matrices 

df+ - af- A +  = - and A = - 
d w d w 

have positive and negative eigenvalues, 
respectively. Now equation (4.32) 
becomes 

At the jth mesh point this is 

+ 
- a A .  6wj-l + AtR = 0 

J - 1 j 

where 

Set 6w!O) = 0. A two sweep symmetric 
J 

Gauss-Seidel scheme is then 

Subtracting (1) from (2) we find that 

Define the lower triangular, upper 
t.riangular and diagonal operators L, U 
and D as 

It follows that the scheme can be 

written as 

Commonly the iteration is terminated 
after one double sweep. The scheme is 
then a variation of an L U  implicit 

scheme. 

Some of these interconnections are 
illustrated in Figure 4.3. Schemes in 
three main classes appear to be the most 

appealing: 

1) Variations of multistage time 
stepping, including the appli- 
cation of a Jacobi iterat.ive 
method to the implicit scheme, 
(indicated by a single 
asterisk). 

2) Variations of LU decomposition, 
including the application of a 
Gauss-Seidel iterative method 

to the implicit scheme (indi- 
cated by a double asterisk). 

3) Alternating direction schemes, 
including schemes in which an 
LU decomposition is separately 
used in each coordinate direc- 
tion (indicated by a triple 

asterisk). 

The optimal choice may finally depend on 
the computer architecture. One might 
anticipate that the Gauss-Seidel method 
of iteration could yield a faster rate 
of convergence than a Jacobi method, and 

it appears to be a particularly natural 
choice in conjunction with a flux split 
scheme which yields diagonal dominance. 
This class of schemes, however, re- 
stricts the use of vector or parallel 

processing. Multistage time stepping, 
or Jacobi iteration of the implicit 

scheme, allow maximal use of vector or 
parallel processing. The alternating 
direction formulation removes any 
restriction on the time step (at least 
in the two dimensional case), while 
permitting vect~rization along 
coordinate lines. The ADI-LU scheme is 
an interesting compromise. 



e) Acceleration methods: multigrid 
technique 

Clearly one can anticipate more 
rapid convergence to a steady state as 
the time step is increased. Accordingly, 
the rate of convergence of an explicit 
scheme can generally be substantially 
improved by using a variable time step 
close to the local stability limit 
throughout the flow field. Assuming 
that the mesh cells are clustered near 

the body and expand as one moves away 
from the body, this effectively 
increases the rate at which disturbances 
are propagated through the outer part of 

the mesh. A similar strategy also pays 
with implicit schemes. In this case the 

terms in ~t~ or *t3 resulting from 
factorization become dominant if At is 
too large, and the optimum rate of 
convergence is typically realized with a 
time step corresponding to a Courant 
number of the order of 10. 

Radical further improvements in the 
convergence rate can be realized by the 
multigrid time stepping technique, which 
extends the multigrid concept to the 
treatment of hyperbolic systems. 
Whereas relaxation methods for elliptic 
equations typically force the solution 
towards equilibrium by repeated 
smoothing, the transient behavior of 
hyperbolic systems is generally 
dominated by wave propagation. 
Accordingly it seems that it ought to be 
possible to accelerate the evolution of 
the system to a steady state by using 
large time steps on coarse grids, so 
that disturbances are more rapidly 
expelled through the outer boundaries. 
This is a quite different mechanism for 
convergence from smoothing. The 
interpolation of corrections back to the 
fine mesh will introduce errors, 
however, which cannot be rapidly 
expelled from the fine mesh, and ought 
to be locally damped if a fast rate of 
convergence is to be attained. Thus it 
remains important that the driving 
scheme should have the property of 
rapidly damping out high frequency 
modes. A relatively simple way to 
analyze the behavior of multigrid time 
stepping schemes is proposed in 
Reference [23]. 

A novel multigrid time stepping 
scheme was proposed by Ni [21] in 1981. 
In his scheme the flow variables are 

stored at the mesh nodes, and the rates 
of change of mass, momentum and energy 
in each mesh cell are estimated from the 
flux integral appearing in equation 
(4.3). The corresponding change 8wo 

associated with the cell is then 
distributed unequally between the nodes 
at its four corners by the rule 

wherc 6wc is the correction at a corner, 

and A and B are the Jacobian matrices. 
The signs are varied in such a way that 
the accumulated corrections at each node 
correspond to the first two terms of a 
Taylor series in time, like a Lax 
Wendroff scheme. When several grid 
levels are used, the distribution rule 
is applied once on each level down to 
the coarsest grid, and the corrections 
are then interpolated back to the fine 
grid. Distributed correction schemes of 

this type have been further developed by 
Hall, with very good results [65]. They 
have also been extended to the Navier 
Stokes equations by Johnson [66]. 

An alternative formulation of 
multigrid time stepping schemes was 
proposed by the present author [22]. 
This formulation, which can be combined 
with a variety of time stepping schemes, 
corresponds to the full approximation 
scheme of Brandt [20]. It is most 
easily described by using subscripts 
indicate the grid level. Several 
transfer operations need to be defined. 
First the solution vector on grid k must 

be initialized as 

where w is the current value on grid 
k-1 

k--1, and Tk,k-l is a transfer operator. 

Next, it is necessary to transfer a 
residual forcing function such that the 
solution on grid k is driven by the 
residuals calculated on grid k-1. This 
can be accomplished by setting 

where Qk,k-1 is another transfer 

operator. Then Rk(wk) is replaced by 

Rk(wk) + Pk in the time stepping scheme. 

For example, the multistage scheme 
defined by equation (4.28) is 
reformulated as 

The result wLm) then provides the 

initial data for grid k+l. Finally, the 
accumulated correction on grid k has to 

+ 
be transferred back to grid k-1. Let w 

k 
be the final value of wk resulting from 

both the correction calculated in the 
time step on grid k and the correction 



transferred from grid k+l. Then one 
sets 

where w ~ - - ~  is the solution on grid k--1 

after the time step on grid k-1 and 
before the transfer to grid k, and 

Ik-1, k 
is an interpolation operator. A 

W cycle of the type illustrated in 
Figure 4.4 proves to be a particularly 
effective strategy for managing the wor-k 
split between the meshes. 
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Figure 4.4 
W cycle 

@ Calculate one time step 

0 Transfer data without 
updatingthe solution 

Both cell centered and vertex based 
schemes can be devised along these lines 
[22,23,67], and they seem to work about 
equally well. With properly optimized 
coefficients the multistage time 
stepping scheme is a very efficient 
driver of the multigrid process. Some 
results are presented in Figures 4.5 - 
4.7. Figure 4.5 shows a result for the 
RAE 2822 airfoil computed on an 0 mesh 
with 160 cells around the profile and 32 
cells in the normal direction. This was 
obtained with a five stage time stepping 
scheme in which the dissipative terms 
were evaluated three times in each step. 

A cell centered formulation was used for 
the space discretization, with adaptive 
dissipation of the type defined by 
equations (4.22) and (4.23). The 
average residual measured by the rate of 
lhange of the density was reduced from 

.124 to . ~ L Y  l K 1 °  in 100 w cycles. 
This corresponds to an average reduction 
of .797 per cycle. The solution after 
10 cycles is also displayed, and it can 
he seen that the solution is virtually 
identical. The lift coefficient is 

1.1258 after 10 cycles and 1.1256 after 

100 cycles. The program also has an 
option t.o use flux difference splitting 
with flux limited dissipation. Figure 
4.6 shows the result with this option. 
The shock wave is sharper, but the 
lnading edge section peak is 
underestimated, with the result that a 
lower lift coefficient of 1.1155 is 
predicted. This seems to be a 
consequence of greater production of 
spacious entropy at the front stagnation 
point. The convergence rate is also 
slower, with a mean reduction of .9156 
per cycle. Figure 4.7 shows a three 
dimensional calculation for a swept wing 
using a vertex scheme on a 144x24~24 
mesh. In this case the mean convergence 
rate over 100 cycles is .8079, and a 
fully converged result is obtained in 15 
cycles. Computer times for these 
calculations are small enough their use 
in an that interactive design method 
could be contemplated. A two dimen- 
sional calculation with 10 cycles on a 
160x32 mesh can be performed on a Cray 
in several seconds. A three dimensional 

calculation with 15 cycles on a 96x16~16 
mesh requires about 25 seconds using one 
processor of a Cray XMP. 

Alternating direction and LU 
implicit time stepping schemes, and also 
symmetric relaxation schemes have been 
explored as alternatives to the 
multistage time stepping procedure as a 
driver of the multigrid scheme [68-711. 
They are also effective. Very good 
results have been obtained by Anderson, 
Thomas and Walters using an AD1 scheme 
with Van Leer flux splitting [72], and 
by Hemker and Spekreijse using relaxa- 
tion with Osher flux splitting [73]. 
Multigrid methods have also been 
extended to unstructured triangular 
meshes [74-751. 
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Figure 4.5 

Euler solution for RAE 2822 airfoil 

160x32 grid Mach .750 a 3.0' 

Adaptive dissipation 



(a) Solution after 300 cycles 
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(c) Solution after 15 cycles 

CL .3181 CD .0164 

Figure 4.6 
Euler solution for RAE 2822 airfoil 

160x32 grid Mach .750 a3.0' 
Flux difference split TVD scheme 

Figure 4.7 

Euler solution for ONERA M6 wing 

144x24~24 grid Mach .84 a 3.06' 



f) Grid generation and complex deometry 

If computational methods are to be 
really useful to airplane designers, 
they must be able to treat extremely 
complex configurations, ultimate1 y 
extending up to a complete aircraft. A 
major pacing item in the effort to 
attain this goal has been the problem of 
mesh generation. For simple wing body 
combinations it is possible to generate 
rectilinear meshes without much 
difficulty 1761. For more complicated 
configurations containing, for example, 
pylon mounted engines, it becomes 
increasingly difficult to produce a 

structured mesh which is aligned with 
the body surface. 

A wide variety of grid generation 
techniques have been explored by 

numerous invest igators. Algebraic 
transformations can be used to generatc 
grids for quite complex shapes [77,78]. 
A popular alternative, pioneered by 

Thompson [79], is to generate grid 
surfaces as solutions of elliptic 

equations. Hyperbolic marching methods 
have also proved successful in some 
applications [80]. 

The algebraic and elliptic methods 

can be extended to treat more complex 
configurations by dividing the flow 
field into subdomains and generating the 
mesh in separate blocks. The mesh 
blocks may be required to match at the 
interfaces [81], or they may be allowed 
to overlap each other [ 8 2 ] .  A striking 
example of what can be achieved by these 
methods is exhibited in the work of 
Sawada and Takanasha [ R 3 ] ,  who have 
calculated the flow over a four engined 
short take-off aircraft. with overwing 
nacelles, using a flux difference split 
upwind discretization of the Euler 
equations. One of their results is 

displayed in Figure 4.8. 

An alternative procedure is to use 
trtr~hedral cells in an unstructured 
mr.sh which can be adapted to conform to 
I tie complex surface of an aircraft. 
H~mferences [84] and [R5] present a 
mc:thod based on such an approach. 
S1:parate overlapping meshes are gener- 
ated around the individual components to 
create a cluster of points surrounding 
I he whole aj rcraft. The swarm of mesh 

r~oints is then connected together to 
f'orm tetrahedral cells which provide the 
basis for a single finite element 
approximation for the entire domain. 
This use of triangulation to unify 
separately generated meshes bypasses the 
need to devise interpolation procedures 
for transferring information between 
overlapping meshes. The triangulation 
, ~ f  a set of points is in gencral 
tionunique. The method adopted in this 
.iork -is to generate the Ilelaunay 
triangulation [86], which is dual to the 
Voronoi diagram [87] that results from a 
rlivision of the domain into polyhedral 
r~eighborhoods, each cons i sting of'  the 
subdomain of points nearer to a given 
mesh point than to any other mesh point. 
The Euler equations are discretized by 
establishing conservation of mass, 
momentum and energy in polyhedral 
c:ontrol volumes with a three dimensional 
generalization of equation (4.7), and 
solved by a multistage time stepping 
scheme. Figure 4.9 shows the result of 
a transonic flow calculation for a 
Boeing 747-200 flying at Mach .84 and an 
angle of attack of 2.73 degrees. The 

result is displayed by computed pressure 
contours on the surface of the aircraft. 
Flow is allowed through the engine 
nacelles, which are modeled as open 
tubes. The mesh contained 35370 points 
and 181952 tetrahedra. The calculation 
was performed on a Cray XMP 2-16 using 

only one of the processors. The mesh 
generation and triangulation took 1100 
seconds, and the flow solution was 
calculated with 400 time steps in a 
further 3300 seconds, giving a total 
computation time of about 1 1/4 hours. 
The significant flow features are 
predicted, including the supersonic 
regions on the wing upper surface and 
fuselage, and interference effects 

between the components. Eventually, in 
order to provide a detailed representa- 
tion of the flow, the number of mesh 
points ought to be increased by a factor 
of five or more. This will require 
access to machines with a much larger 
memory, such as the Cray 2. 

Figure 4.8 
Pressure contours of an Euler 
solution for a STOL aircraft 

Calculated by Sawada and Takanashi 



(a) Views of the mesh 

I I 

(b) Surface pressure contour 

Figure 4.9 
Euler solution for Boeing 747--200 

Mach .84 a 2.73' 



5. Viscous Flow Calculations 

a) Boundary layer corrections 

While it is true that the viscous 
effects are relatively unimportant 
outside the boundary layer, the presence 
of the boundary layer can have a drastic 
influence on the pattern of the global 
flow. This will be the case, for 
example, in the event that the flow 
separates. The boundary layer can also 

cause global changes in a lifting flow 
by changing the circulation. These 
effects are particularly pronounced in 

transonic flows. The presence of a 
boundary layer can cause the location of 
the shock wave on the upper surface of 
the wing to shift 20% of the chord. 

While we must generally account for 
the presence of the boundary layer, the 
accuracy attainable in solutions of the 
Navier Stokes equations for complete 
flow fields is severely limited by the 
extreme disparity between the length 
scales of the viscous effects and those 

of the gross patterns of the global 
flow. This has encouraged the use of 
methods in which the equations of 
viscous flow are solved only in the 
boundary layer, and the external flow is 
treated as inviscid. These zonal 
methods can give very accurate results 
in many cases of practical concern to 
the aircraft designer. The underlying 
ideas have been comprehensively reviewed 
in papers by Lock and Firmin [88], 
LeBalleur [89], and Melnik [go]. 

In the outer region the real viscous 
flow is approximated by an equivalent 
inviscid flow, which has to be matched 
to the inner viscous flow by en 
appropriate selection of boundary 
conditions. In most of the boundary 
layer the viscous flow equations may 
consistently be approximated by the 

boundary layer equations. This is 
sufficient in regions of weak inter- 
action, in which the viscous effect on 
the pressure is small. There are, 
however, regions of strong interaction 

in which the classical boundary layer 
formulation fails, because of the 
appearance of strong normal pressure 
gradients across the boundary layer. 
Coupling conditions for the interaction 
between the inner viscous flow and the 
outer inviscid flow can be derived from 
an asymptotic analysis in which the 
Reynolds number is assumed to become 
very large. The coupled viscous and 
inviscid equations are solved 
iteratively. Semi-inverse methods in 
which transpiration boundary conditions 
are prescribed for both the inviscid 
flow calculation and the boundary layer 
analysis have allowed these methods to 
be extended to treat flows with 
separated regions [91,92]. 

The method of Bauer, Garabedian, 
Horn and Jameson was the first to 
incorporate boundary layer corrections 
into the calculation of transonic 
potential flow [93]. This method only 
accounted for displacement effects on 
the airfoil, and modeled the wake as a 
parallel semi--infinite strip. Neverthe- 
less, this simple model substantially 
improved the agreement with experiment 
data. Several more complete theoretical 
models including effects due to the wake 
thickness and curvature have been 
developed [94-961. Figure 5.1 shows the 
result of a calculation using GRUMFOIL 

1961. It can be seen that the inclusion 
of the boundary layer correction shifts 
the inviscid result into close agreemeni 
wlth the experimental data. 

Figure 5.1 
Comparisons between the viscous and 

inviscid solutions and experimental data 
RAE 2822 airfoil Mach .725 CL .743 

The simulation of attached flows by 
zonal methods now rests on a firm 
theoretical foundation, and has reached 
a high level of sophistication in 
practice. The treatment of three- 
dimensional flows is presently limited 
by a lack of available boundary layer 
codes for general configurations. Zonal 
methods have the disadvantage that 
extensions to more general configura- 
tions require a separate asymptotic 
analysis of each component region, such 
as the corner between a wing and a 
nacelle pylon, with the result that they 
can become unmanageable as the 
complexity of the configuration is 
increased. 



b) The Reynolds averaged Navier Stokes 
equations 

Advances in algorithms and also in 
the speed and memory of currently 
availabe computers have brought us to a 
point where solutions of the Reynolds 
averaged Navier Stokes equations are 
entirely feasable for both two and three 
dimensional flows. The hope is that it 
will be possible to develop a fairly 
universal method which will be able to 
predict separated flows where present 
zonal methods fail. The principal 
requirements for a satisfactory solution 
of the Reynolds averaged Navier Stokes 
equations are: 

1) The reduction of the discreti- 
zation errors to a level such 
that any numerically introduced 
dissipative terms are much 
smaller than the real viscous 
terms. 

2) The closure of the equations by 
a turbulence model which accur- 
ately represents the turbulent 
stresses. 

The development of the necessary 
numerical methods is already quite 
advanced. The methods described in the 
previous section can generally be 
carried over to the Navier Stokes 
equations. The viscous terms can be 
discretized by standard techniques for 
numerical approximation. In the case of 
a vertex based scheme on a triangular 
mesh, the Galerkin method can be applied 
with linear elements because the 
integration by parts in equation (4.9) 
eliminates the need to approximate 
second derivatives directly. 

The principal difficulty in 
producing an adequate numerical approxi- 
mation is the need to use a mesh with 
very fine spacing in the direction 
normal to the wall to resolve the 
extreme gradients in the boundary layer. 
Typically it has been found that there 
should be of the order of 32 intervals 
inside the boundary layer, and another 
32 intervals between the boundary layer 
and the far field. Meshes of this type 
generally contain cells with a very high 
aspect ratio, of the order of 1000, 
adjacent to the wall and in the wake 
region. When the aspect ratio of the 
cells becomes so large, discretization 
schemes are prone to suffer both loss of 
accuracy and attrition of their rate of 
convergence to a steady state. These 
difficulties can be remedied by very 
careful control of the numerical 
dissipation introduced by the discreti- 
zation, and improvements in the itera- 
tive scheme. 

The recent Viscous Transonic Airfoil 
Workshop at the 25th AIAA Aerospace 
Sciences Meeting provided an opportunity 
to assess the current state of the art. 
Results were presented for a variety of 
different numerical methods and turbu- 
lence models. Among the more highly 
developed methods were those of Coakley 
[ 9 7 ] ,  using an upwind flux split scheme 
with a variety of turbulence models, 
Rumsey et al. [98], using an upwind 
scheme with Van Leer splitting and a 
Haldwin-Lomax turbulence model, and 
Maksymiuk and Pulliam [99], using the 
ARC2D program with central differencing 

and a Baldwin-Lomax turbulence model. 
All three of these methods use alter- 
nating direction time stepping schemes. 
King showed the results of substituting 
alternative turbulence models in ARC2D, 
including the recently developed Johnson 
and King model [loo]. Results obtained 
by the rational Runge-Kutta method with 
a Baldwin-Lomax turbulence model were 
presented by Morinishi and Satofuka 
[loll. A comparison of these results 
indicates that simulations using quite 
different numerical methods were in 
excellent agreement with each other as 
long as they used the same turbulence 
model, but that a change in the turbu- 
lence model could produce a drastic 
change in the solution, particularly in 
the case of a strong shock induced 
separation. Predictions using the 
Baldwin-Lomax model agree quite well 
with experimental data when the flow is 
attached or only slightly separated, but 
an examination of the velocity profiles 
in the boundary layer indicates that the 
model does not correctly represent the 
shock wave boundary layer interaction. 
The two-equation models tested by 
Coakley showed no substantial 
improvement. The new Johnson and King 
model produced a better simulation of 
strongly separated flows, but seemed to 
be less accurate in the regions of 
attached flow. These trends are 
illustrated by Figures 5.2 and 5.3, 
which show predictions by Coakley and by 
Maksymiuk and Pulliam for the RAE 2822 
airfoil. This airfoil has been the 
subject of extensive experimental 
investigations [102]. Coakley's results 
show the effect of changing the turbu- 
lence model for cases 6, 9 and 10 of 
Reference 102. The labels C-S, B-L and 
J-K refer to the Cebeci-Smith, Baldwin- 
Lomax and Johnson-King models, while q-w 
denotes Coakley's two-equation model. 
Maksymiuk and Pulliam's results are for 
cases 6 and 10 with the Baldwin-Lomax 
model. For case 10 the Baldwin-Lomax 
model predicts a shock location much too 
far downstream with both numerical 
methods. 
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An extension of the multigrid 
multistage scheme to treat the Navier 
Stokes equations was presented in 
Reference 103. This method is the 
subject of ongoing research to improve 
its accuracy and efficiency [104], and 
some recently obtained results are 
presented in Figures 5.4-5.7. The first 
two figures show a verification of the 
ability of the method to produce 
accurate Euler solutions on meshes with 
very high aspect ratio cells, designed 
to resolve the boundary layer in Navier 
Stokes calculations. Figure 5.4 shows a 
shock free Euler solution for the Korn 
airfoil [93] on a 320x64 Navier Stokes 
mesh, obtained in 50 multigrid cycles. 
Figure 5.5 shows an Euler solution for 
the RAE 2822 airfoil on a 512x64 Navier 
Stokes mesh. This is case 9 from 
Reference 102, and the experimental data 
is also displayed. Figure 5.6 shows the 
prediction obtained for the same case 
using the Raldwin-Lomax turbulence 
model. This result also agrees well 
with the result obtained by Coakley for 
this case using the Baldwin-Lomax model. 
Figure 5.7 shows the same calculation 
with the lower order artificial 

dissipation defined by c(2) in equation 
(4.23) deleted. It can be seen that 
essentially the same result is obtained. 
Apparently the high order dissipative 
terms ore sufficient for numerical 
stability, and the shock wave is 
captured without oscillations with the 
aid of the eddy viscosity. These 
calculations exhibit a less rapid rate 
of convergence to a steady state than 
Euler calculations on less highly 
bunched meshes. Nevertheless, 100-200 
cycles have consistently proved 
sufficient for convergence in numerous 
calculations. 

Usefully accurate three dimensional 
Navier Stokes simulations are now also 
within the range of existing super- 
computers. This has been demonstrated 
by the calculations of Shang and Scherr 
[105], and Fujii and Obayashi [106]. 
MacCormack has recently developed an 
effective relaxation method for the 
Navier Stokes equations [107]. 

(a) Inner part of mesh 

(b) Result after 50 cycles 
CL .6270 CD .0001 

Figure 5.4 
Euler solution for Korn airfoil 

on Navier Stokes mesh 

256x64 grid Mach ,750 a o0 



(a) Inner part of mesh 
Figure 5.6 

Navier Stokes solution for RAE 2822 

512x64 grid Mach .730 a 2.7g0 
Baldwin-Lomax turbulence model 

Result after 200 cycles 
C L  .8424 CD .0122 

(b) Result after 200 cycles 
C L  1.0302 CD .0203 

Figure 5.5 

Euler solution for RAE 2822 
on Navier Stokes mesh 

512x64 grid Mach ,730 a 2.79' 

Figure 5.7 
Navier Stokes solution for RAE 2822 

512x64 grid Mach .730 a 2.7g0 
Baldwin-Lomax turbulence model 

Artificial dissipation from fourth 
difference only 

Result after 200 cycles 
C L  .8424 CD .0122 



6. Conclusion 

Computational aerodynamics has come 
of age during the last two decades, and 
in several of its branches it is now a 
mnture discipline. Some of the more 
striking successes, which I have re- 
ferred to in this necessarily incomplete 
survey, point the way to its future 
acceptance as a primary tool for aero- 
dynamic analysis and design. Basic 
numerical algorithms for the treatment 
of viscous and compressible flows with 
shock waves are now in hand, and rapidly 
convergent solution methods are well 
established. The concepts of total 
variation diminishing difference schemes 
and multigrid acceleration methods, in 
particular, provide examples that 
mathematical elegance can be just as 
important in the development of computa- 
tional methods as it has been for 
analytical methods. 

Some areas o f  likely concentration 
for future research can be identified. 
These include: 

I )  The quest for numerical approx 
imation schemes with a higher 
order of accuracy: the power 
of the spectral method 
[108,109] for numerical approx 
imation of smooth solutions 
beckons efforts to extend i t  to 
treat discontinuous solutions. 
It is already used as an 
effect.ive tool in simulations 
of turbulence [110]. The 
recently proposed concept of 
essentially nonoscillatory 
(ENO) schemes [lll] is another 
interesting direction of 
research. 

Front tracking: ultimately it 
should be possible to attain 
improved representation of 
shock waves and contact discon- 
tinuities by treating them as 
internal boundaries [112]. The 
use of triangular meshes offers 
new opportunities to represent 
more complex features such as 
triple points. 

3) Adaptive mesh redistribution 
and refinement: it is clear 
that greatly improved accuracy 
can be attained for a given 
computational cost by adapting 
the mesh to the solution as it 
develops during the calcula- 
tion. This can be a key to 
obtaining adequate resolutions 
of all the important features 
of really complex flows, and it 
may be an effective alternative 
to front tracking for the re- 
presentation of discontin- 
uities. Widespread research on 

the realization of adaptive 
methods is in progress 
1113--1171. Repeated local 
subdivision ultimately destroys 
any coherence of the structure 
of the mesh, and unstructured 
triangular meshes provide a 
natural basis for the use of 
such a procedure [74-75, \ 

116-1171. \ 

Concurrent computation: the - - 
best opportunity for further 
increases in computing speed 
lies in the use of concurrent 
computation, which may be 
realized through the introduc- 
tion of vector, pipelined and 
parallel arithmetic processors. 
Algorithms of the future must 
be designed to take full advan- 
tage of these architectures. 

Optimization and design: an - 
aerodynamic analysis may warn 
designer that his proposed 
configuration is unsatisfac- .. 
tory, but it is not very 
helpful to him if it provides 
no indication of how to make an 
improvement. Ultimately com- 
putational methods for aero- 
dynamic analysis ought to be 
incorporated in automatic 

design procedures, which will 
use computer optimization 
methods, and perhaps expert 
systems to refine and improve 
the configuration. Some early 
efforts have already demon- 
strated the feasability of 
automatic design [118,119]. 

Turbulence modeling: improved 
simulation$ of separated 
viscous flows will require 
advances in turbulence 
modeling. More complex multi- 
equation formulations may be 
necessary for the realization 
of more universally applicable 
models. Renormalization group 
theory offers another avenue 
towards the construction of a 
rational turbulence model 
[ 1201. 

Once these various challenges have 
been surmounted, the simulation of both 
external and internal flows will become 
a routine practice. Methods of the 
future must be capable of treating 
arbitrary configurations, including 
complete aircraft, and flows in complex 
propulsive systems. Simulations for 
hypersonic aircraft will require the 
inclusion of real gas effects and 
chemical reactions at high temperatures. 
New ideas will surely be brought to beor 
on some of these problems. 
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