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Abstract. Program analysis is on the brink of mainstream usage in embedded
systems development. Formal verification of behavioural requirements, finding
runtime errors and automated test case generation are some of the most common
applications of automated verification tools based on Bounded Model Check-
ing (BMC). Existing industrial tools for embedded software use an off-the-shelf
Bounded Model Checker and apply it iteratively to verify the program with an in-
creasing number of unwindings. This approach unnecessarily wastes time repeat-
ing work that has already been done and fails to exploit the power of incremental
SAT solving. This paper reports on the extension of the software model checker
CBMC to support incremental BMC and its successful integration with the indus-
trial embedded software verification tool BTC EMBEDDEDTESTER. We present
an extensive evaluation over large industrial embedded programs, mainly from
automotive industry. We show that incremental BMC cuts runtimes by one order
of magnitude in comparison to the standard non-incremental approach, enabling
the application of formal verification to large and complex embedded software.

1 Introduction

Recent trend estimation [14] in automotive embedded systems revealed ever growing
complexity of computer systems, providing increased safety, efficiency and entertain-
ment satisfaction. Hence, automated design tools are vital for managing this complexity
and supporting the verification processes in order to satisfy the high safety requirements
stipulated by safety standards and regulations. Similar to the developments in hardware
verification in the 1990s, verification tools for embedded software are becoming in-
dispensable in industrial practice for hunting runtime bugs, checking functional prop-
erties and test suite generation [13]. For example, the automotive safety standard ISO
26262 [22] requires the test suite to satisfy modified condition/decision coverage [18]
– a goal that is laborious to achieve without support by a model checker that identifies
unreachable test goals and suggests test vectors for difficult-to-reach test goals.

In this paper, we focus on the application of Bounded Model Checking (BMC) to
this problem. The technique is highly accurate (no false alarms) and is furthermore able
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M. Núñez and M. Güdemann (Eds.): FMICS 2015, LNCS 9128, pp. 62–77, 2015.
DOI: 10.1007/978-3-319-19458-5_5

http://vetess.eu/


Successful Use of Incremental BMC in the Automotive Industry 63

to generate counterexamples that aid debugging and serve as test vectors. The spiralling
power of SAT solvers has made this technique scale to reasonably large programs and
has enabled industrial application.

In BMC, the property of interest is checked for traces that execute loops up to a
given number of times k. Since the value of k that is required to find a bug is not known
a-priori, one has to try increasingly larger values of k until a bug is found. The analysis
is aborted when memory and runtime limits are exceeded.1

Industrial verification tools based on BMC, such as BTC EMBEDDEDTESTER, use
an off-the-shelf Bounded Model Checker and, without additional information about the
program to be checked, apply it in an iterative fashion:

k=0
while true do

i f BMC( program , k ) f a i l s then
return counterexample

f i
k++

od

This basic procedure offers scope for improvement. In particular, note that the Boun-
ded Model Checker has to redo the work of generating and solving the SAT formula for
time frames 0 to k when called to check time frame k + 1. It is desirable to perform
the verification incrementally for iteration k + 1 by building upon the work done for
iteration k.

Incremental BMC has been applied successfully to the verification of hardware de-
signs, and has been reported to yield substantial speedups [33,11]. Fortunately, the typ-
ical control-loop structure of embedded software resembles the monolithic transition
relation of hardware designs, and thus strongly suggests incremental verification of suc-
cessive loop unwindings. However – to our knowledge – none of the software model
checkers for C programs that have competed in the TACAS 2014 Software Verifica-
tion Competition implement such a technique that ultimately exploits the full power of
incremental SAT solving [35,10].

Contributions. The primary contribution of this paper is experimental. We quantify
the benefit of incremental BMC in the context of the verification of industrial embedded
software. To this end,

(1) we survey the requirements for state-of-the-art embedded software verification tools,
briefly summarise the underlying theory of the used techniques, and highlight the
challenges faced when applying them to industrial code;

(2) we present the first industrial-strength implementation of incremental BMC in a
software model checker for ANSI-C programs combining symbolic execution, slic-
ing and incremental SAT solving;

(3) we report on the successful integration of our incremental Bounded Model Checker
in the industrial embedded software verification tools BTC EMBEDDEDTESTER

1 One can stop unwinding when the completeness threshold [24] of the system is reached, but
this threshold is often impractically large.
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and EMBEDDEDVALIDATOR where it is used by several hundred industrial users
since version 3.4 and 4.3, respectively; and

(4) we give a comprehensive experimental evaluation over a large set of industrial em-
bedded benchmarks, from mainly automotive origin, that quantify the performance
gain due to the incremental approach in a BMC-based tool: incremental BMC out-
performs the winner of the TACAS 2014 Software Verification Competition [25]
by one order of magnitude.

2 Verification of Model-Based Embedded Software

Recent safety standards, e.g. ISO-26262 [22]), cover model-based development and
testing techniques for early simulation, testing and verification, and recommend back-
to-back testing for showing simulation equivalence between a high-level model and
corresponding production code. In the automotive industry, model-based development
including automatic code generation is well-established. In particular, SIMULINK for
functional modelling and TARGETLINK2 for automatic code generation from these
models are prominent representatives. SIMULINK DESIGNVERIFIER,3 BTC EMBED-
DEDTESTER,4 REACTIS,5 and RT-TESTER6 are examples of tools that complement the
software development tool chain for formal verification of safety requirements against
design models. These tools are also used for testing, namely, requirement-based and
back-to-back testing, including automatic test vector generation for structural coverage
criteria.

2.1 Requirements and Challenges

In the above setting, embedded software verification tools have two main applications:
(1) proving/disproving safety properties, and (2) covering test goals or proving their
unreachability. BMC-based verification engines are a perfect fit for both applications
because they can be used to find counterexamples and prove properties by k-induction.

Embedded C code has to meet many conflicting requirements like real-time con-
straints, low memory footprint and low energy consumption. Code generators offer op-
tions to perform certain optimisations towards these goals, often to the detriment of
code size (and also readability for humans). The observer instrumentation7 to encode
properties and identify the test goals corresponding to code-coverage criteria such as
MC/DC [18] produces a non-negligible overhead in the size of the code but introduces
little semantic complexity. When using BMC, the size of the SAT formula built from
a program further increases whenever internal loops need to be unwound. File sizes
of 10 MB and more are common, which poses difficulties to many tools already when

2 http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
3 http://uk.mathworks.com/products/sldesignverifier
4 http://www.btc-es.de/index.php?lang=2
5 http://www.reactive-systems.com
6 https://www.verified.de/products/rt-tester
7 The observer instrumentation consists of adding a series of flags to the original source code

that enables the analysis tool to determine exactly what parts of the code are exercised.

http://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm
http://uk.mathworks.com/products/sldesignverifier
http://www.btc-es.de/index.php?lang=2
http://www.reactive-systems.com
https://www.verified.de/products/rt-tester
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parsing the source code and encoding the program into a SAT formula, mostly due
to inefficient data structures. Incremental BMC helps reducing formula sizes and peak
memory consumption (see Sec. 4.2) by incremental formula generation and solving.

In practice, many loop unwindings may be needed to detect errors and reach certain
tests goals (more than 100 for some of our industrial benchmarks, see Sec. 4.2). Non-
incremental bounded model checking repeats work such as file parsing, loop unwinding,
SAT formula encoding and discards information learnt in the SAT solver every time it is
called and so gives away an enormous amount of performance. This effect exacerbates
the cost of large unwinding limits that may be needed.

The main challenge addressed by this paper is to exploit all the benefits of incre-
mentality in BMC and to significantly enhance performance of its integration with an
industrial-strength embedded verification and test-vector generation tool, namely BTC
EMBEDDEDVALIDATOR and EMBEDDEDTESTER. The impact of this successful tech-
nology transfer is demonstrated on original industrial embedded software.

2.2 Case Study: Fault-Tolerant Fuel Control System

In this paper, we focus on the verification of C code generated from SIMULINK models.
To this end, we illustrate the characteristics of this verification problem with the help
of a well-known case study and explain the workflow and principal techniques that a
state-of-the-art embedded software verification tool uses.

The Fault-Tolerant Fuel Control System8 (FUELSYS) for a gasoline engine is repre-
sentative of a variety of automotive applications as it combines discrete control logic
with continuous signal flow and thus establishes a hybrid discrete-continuous system.
More precisely, the control logic of FUELSYS is implemented by six automata with two
to five states each, while the signal flow is further subdivided into three subsystems with
a rich variety of SIMULINK/TARGETLINK blocks involving arithmetic, lookup tables,
integrators, filters and interpolation (Fig. 1). The system is designed to keep the air-fuel
ratio nearly constant depending on the inputs given by a throttle sensor, a speed sensor,
an oxygen sensor (EGO) and a pressure sensor (MAP). Moreover it is tolerant to indi-
vidual sensor faults and is designed to be highly robust, i.e. after detection of a sensor
fault the system is dynamically reconfigured.

Properties of Interest. The key functional property for FUELSYS is how the air-fuel
ratio evolves for each of the four sensor-failure scenarios. Simulation-based approaches
show that FUELSYS is indeed fault-tolerant in each case of a single failure: the air-fuel
ratio can be regulated after a few seconds to about 80% of the target ratio. In addition to
functional testing of industrial embedded software, safety standards call for structural
testing of the production code before release deployment.

2.3 Structure of Generated Code

Many modelling languages follow the synchronous programming paradigm [17], which
is well-suited for modelling time-triggered systems, in which tasks (subsystems of the

8 http://www.mathworks.co.uk/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-
system.html

http://www.mathworks.co.uk/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
http://www.mathworks.co.uk/help/simulink/examples/modeling-a-fault-tolerant-fuel-control-system.html
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sensor correction airflow computation fuel computation

throttle • throttle throt est throt est
speed • speed speed est speed est air flow est air flow est
EGO • EGO EGO est EGO est
press • press

fail throt
fail speed
fail O2 fuel rate fuel rate

control logic fail press MAP est MAP est

throttle fail throt
speed fail speed fuel mode feedback corr feedback corr
EGO fail O2 • • fail O2
press fail press

clock clock fuel mode • fuel mode
fail O2

Fig. 1. The SIMULINK Diagram for the Fault-Tolerant Fuel Control System (without the plant
model)

model) execute at given rates. Code generation for such languages produces a typi-
cal code structure, which corresponds essentially to a non-preemptive operating system
task scheduler. Most code generators provide the scheduler for time-triggered execu-
tion or code to interface with popular real-time operating systems. In either case, the
functionality corresponds to the following pseudo code:

1 void main ( ) {
2 s t a t e s ; inputs i ; outputs o ;
3 i n i t i a l i z e ( s ) ;
4 while ( t rue ) { / / main l o o p
5 i = read inputs ( ) ;
6 ( o , s ) = compute step ( i , s ) ;
7 wri te outputs ( o ) ;
8 wait ( ) ; / / wa i t f o r t i m e r i n t e r r u p t
9 }

10 }

The distinguishing characteristic of such a reactive program is its unbounded main
loop, which we will analyse incrementally. All other loops contained within that loop,
e.g. to iterate over arrays or interpolate values using look-up tables, have a statically
bounded number of iterations and can be fully unwound.

2.4 Analysis with BMC and k-Induction

Property Instrumentation. Formal verification requires formalisations of high-level
requirements, often using observer Büchi automata with a dedicated ‘error state’ gener-
ated from temporal logic descriptions. Test vector generation is done for code-coverage
criteria such as branches, statements, conditions and MC/DC of the production C code.
For FUELSYS, for example, MC/DC instrumentation yields 251 test goals. The proper-
ties to be verified or tested have in common that they can be reduced to a reachability
problem. In formal verification of safety properties, we prove that the error state is
unreachable, whereas the aim of test vector generation is to obtain a trace that demon-
strates reachability of the goal state.

To validate whether the air-fuel ratio in the FUELSYS controller is regulated after
a few seconds to be within some margin of the target ratio, one has to instrument the
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reactive program, as sketched above, with an observer implementing the asserted prop-
erty. For instance, consider the requirement “If some sensor fails for the first time then
within 10 seconds the air-fuel ratio will keep in between the range of 80% to 120% of
the target ratio forever.” The code fragment for an observer for this requirement may
look as follows:

1 / / d e t e c t i o n o f f i r s t s e n s o r f a i l u r e
2 i f ( s e n s o r f a i l == 1 && o b s e r v e r a t i o == 0) {
3 / / i n i t i a l i z e o b s e r v e r v a r i a b l e s
4 o b s e r v e r a t i o = 1 ;
5 counter = 0 ;
6 v i o l a t e d = 0 ;
7 }
8 i f ( o b s e r v e r a t i o == 1) { / / o b s e r v a t i o n mode
9 i f ( counter >= 10 &&

10 ( a i r f u e l r a t i o < 0 . 8∗ t a r g e t r a t i o | |
11 a i r f u e l r a t i o > 1 . 2∗ t a r g e t r a t i o ) )
12 v i o l a t e d = 1 ;
13 counter ++;
14 }
15 a s s e r t ( v i o l a t e d == 0 ) ; / / s a f e t y p r o p e r t y

In order to verify that the above property actually holds, one has to show that the
assertion in the observer code is always satisfied. We use BMC for refutation of the
assertion, and k-induction for proving it.

Bounded Model Checking. BMC [2] can be used to check the existence of a path π =
〈s0, s1, . . . , sk〉 of length k between two states s0 and sk belonging to sets respectively
described by φ andψ. This check is performed by deciding satisfiability of the following
formula using a SAT or SMT solver:

φ(s0) ∧
∧

0≤j<k

T (sj , ij, sj+1) ∧ ψ(sk) (1)

If the solver returns the answer “satisfiable”, it also provides a satisfying assignment to
the variables (s0, i0, s1, i1, . . . , sk−1, ik−1, sk). The satisfying assignment represents
one possible path π = 〈s0, s1, . . . , sk〉 from φ to ψ and identifies the correspond-
ing input sequence 〈i0, . . . , ik−1〉. Hence, BMC is useful for refuting safety properties
(where φ gives the set of initial states and ψ defines the error states) and generating test
vectors (where ψ defines the test goal to be covered).

Unbounded Model Checking by k-Induction. BMC can prove reachability, whereas
unreachability can be shown using k−induction [31,11,16,7]. The predicate ¬ψ is an
(inductive) invariant, i.e., it holds in all reachable states, if each of the following two
formulae, base case (BC) and induction step (SC), are unsatisfiable for a given k (as-
suming that we have already checked for up to k − 1):

(BC) φ(s0) ∧
∧

0≤j<k ¬ψ(sj) ∧ T (sj, ij , sj+1) ∧ ψ(sk)

(SC)
∧

0≤j≤k ¬ψ(sj) ∧ T (sj , ij, sj+1) ∧ ψ(sk+1)
(2)

The base case checks if the formula is unsatisfiable, when this occurs we say that ¬ψ
holds in the first k steps. The induction step checks if we can conclude from the invariant
holding over any k consecutive steps that it holds for the (k+1)st step. If the base step
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fails, i.e. above formula is satisfiable and a counterexample is given, we have refuted
the property. If it holds and the induction step fails, we do not know whether ¬ψ is
invariant. Only if both formulae hold we have proved that ¬ψ is invariant.

Both base step and induction step are essentially instances of BMC: starting from the
initial state φ for the base case, and starting from any state for the induction step. Thus,
similar to BMC, k-induction can be applied by using a sequence of increasing values
for k.

3 Incremental BMC

In this section, we explain the technical background of incremental SAT solving and
how it is employed in our implementation of incremental BMC.

3.1 Incremental SAT Solving

The first ideas for incremental SAT solving date back to the 1990s [21,32]. The question
is how to solve a sequence of similar SAT problems while reusing effort spent on solving
previous instances, i.e. reusing the internal state and learnt information of the solver.
Incremental SAT solving is easy as long as formulas are growing monotonically, i.e.
clauses are added to the formula. Removing clauses is trickier and requires additional
solver features like solving under assumptions [11], which is the most popular approach
to incremental SAT solving: assumptions are temporary assignments to variables that
hold solely for one specific invocation of the SAT solver. In Sec. 3.2, we will explain
how SAT solving under assumptions allows us to emulate the removal of clauses.

An alternative approach is to use SMT solvers. SMT solvers offer an interface for
pushing and popping clauses in a stack-like manner. Pushing adds clauses, popping
removes them from the formula. This makes the modification of the formula intuitive to
the user, but the efficiency depends on the underlying implementation of the push and
pop operations. For example, in [15] it was observed that some SMT solvers (like Z3)
are not optimised for incremental usage and hence perform worse incrementally than
non-incrementally.

Since CBMC itself implements powerful bitvector decision procedures, we use the
SAT solver MINISAT2 [10] as a backend solver, and focus on solving under assump-
tions in the sequel.

3.2 Incremental BMC

We will now discuss which aspects have to be taken into account when implementing an
incremental approach in a software Bounded Model Checker. We will show that sym-
bolic execution and slicing can be performed without interfering with the requirement
of monotonic formula construction for incremental SAT solving, whereas incremental
unwinding and transition function refinements require solving under assumptions.

Following the construction in [11] for finite state machines, incremental BMC can
be formulated as a sequence of SAT problems Φ(k) that we need to solve:

Φ(0) := φ(s0) ∧ (Ψ(0) ∨ α0)
Φ(k + 1) := Φ(k) ∧ T (sk, ik, sk+1) ∧ αk ∧ (Ψ(k + 1) ∨ αk+1)

(3)



Successful Use of Incremental BMC in the Automotive Industry 69

where Ψ(k) is the disjunction
∨

0≤j≤k ψ(sj) of error states ψ to be proved unreachable
up to iteration k. This means that the verification fails if at least one of the error states
is reachable. Since the set of ψjs grows in each iteration, our problem is not monotonic:
one has to remove Ψ(k) when adding Ψ(k + 1) because Ψ(k) subsumes Ψ(k + 1).

Here, solving under assumptions comes to rescue. In iteration k, the αk is assumed
to be false, whereas it is assumed true for iterations k′ > k. This has the effect that
in iteration k′ the formula (Ψ(k) ∨ αk) becomes trivially satisfied. Hence, it does not
contribute to the (un)satisfiability of Φ(k′), which emulates its deletion.9

Symbolic Execution. For software (3) results in large formulae and would be highly
inefficient for the purpose of BMC. In practice, software model checkers use symbolic
execution in order to exploit, for example, constant propagation and pruning branches
when conditionals are infeasible, while generating the SAT formula and thus reducing
its size. This means that the formula describing T is the result of symbolic execution,
and that formulae T and Ψ are actually dependent on k. Fortunately, this does not affect
the correctness of above formula construction and we can replace T by Tk in (3) and ψ
by ψk in the definition of Ψ(k). Tk denotes the transition formula obtained by symbolic
execution of the kth time frame (i.e. unwinding), and ψk the assertions collected for this
time frame.

Slicing. Another feature used by state-of-the-art software model checkers is slicing:
The purpose of slicing is, again, reducing the size of the SAT formula by removing (or
better: not generating) those parts of the formula that have no influence on its satisfia-
bility. There are many techniques how to implement slicing with the desired trade-off
between runtime efficiency and its formula pruning effectiveness [34].

Slicing is performed relative to Ψ(k). We said that the number of disjuncts ψj in Ψ
is growing monotonically with k. Hence, we will show that, assuming that our slicing
operator is monotonic, we obtain a monotonic formula construction:

The transition formula for each time frame Tk obtained by symbolic execution is
a conjunction

∧
τ∈M τ of subrelations τ (e.g., formulae corresponding to program in-

structions). The slicing operator slice selects a subset of M . The operator slice is mono-
tonic iff M ⊆ M ′ =⇒ slice(M) ⊆ slice(M ′).

We can then view the conjunction of transition relations for k time frames T̂ (k) =∧
0≤j≤k Tj as

∧
τ∈Mk

τ . A slice T̂ sliced(k) of T̂ (k) is
∧

τ∈M ′
k
τ where M ′

k ⊆ Mk.

An incremental slice is then defined as the difference between T̂ sliced(k + 1) and
T̂ sliced(k): T sliced

k+1 =
∧

τ∈M ′
k+1\M ′

k
τ .

Monotonicity of formula construction follows from M ′
k+1 ⊆ Mk+1 and the assumed

monotonicity M ′
k ⊆ M ′

k+1 of the slicing operator. We can thus replace T by T sliced
k in

(3). Mind that T sliced
k contains also subrelations τ for time steps k′ < k.

Our slicing operator computes the (syntactic) variable dependency graph for T̂ (k+1)
and obtains M ′

k+1 as the set of all τ which Ψ(k + 1) depends on. Then only those τ

9 For a large number of iterations k, such trivially satisfied subformulas might accumulate as
“garbage” in the formula and slow down its resolution. Restarting the solver at appropriate
moments is the common solution to this issue.
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in M ′
k+1 are added to the formula that have not been in the slice for the previous time

frame, resulting in T sliced
k+1 .

Refinements. Incremental SAT solving is also used for incremental refinements of the
transition relation T for bitvectors [4,8] and arrays [28], for example. Applying bitvec-
tors and arrays refinements inside an incremental software Bounded Model Checker
requires using several incremental formula encodings for (in general, non-monotonic)
refinements. These refinements are global over all unwindings, so that in iteration k we
have to further refine transition relations Tk′ from earlier iterations k′ < k. For de-
tails on the formula construction for refinements inside an incremental Bounded Model
Checker we refer to the extended version of the paper [30].

4 Experimental Evaluation

We present the results of our experimental evaluation of incremental BMC and incre-
mental k-induction on industrial programs from mainly automotive origin. The goal of
this evaluation is to quantify the benefit from an incremental approach in a BMC-based
tool infrastructure.10 The experiments for this study were performed on a 3.5 GHz Intel
Xeon machine with 32 GB of physical memory running Windows 7 with a time limit
of 3,600 seconds.

4.1 Implementation

We have implemented our extension11 for incremental BMC in the Bounded Model
Checker for ANSI-C programs CBMC [6] using the SAT solver MINISAT2 [10]. In-
cremental CBMC can be used with specific options that enables extra features, namely:
(i) slicing, (ii) preprocessing, and (iii) formula-level refinements. The goal of these tech-
niques is to reduce the size of the SAT formula that is being generated. Slicing reduces
the size of the SAT formula by eliminating irrelevant paths of the program. Prepro-
cessing through the MINISAT2 simplifier reduces the size of the SAT formula after
it has been generated, and formula-level refinements performs an incremental build of
the SAT formula. For information regarding the command line options of incremental
CBMC we refer to the CPROVER wiki page.12

In the integration of CBMC with BTC EMBEDDEDTESTER and EMBEDDEDVALI-
DATOR, a master routine selects the next verification/test goal to be analysed starting
from instrumented C code. After some preprocessing like source-level slicing and
internal-loop unwinding the resulting reachability task is given to CBMC. If CBMC is
able to solve the problem within the user-defined time limit, the result, i.e. bounded or
unbounded unreachability, or a counterexample in case of reachability, is reported back

10 For a comparison with alternative verification approaches, we kindly refer to the results of
the Software Verification Competition (http://sv-comp.sosy-lab.org), where BMC-based tools
rank in the top 3 every year.

11 Source code available from http://www.cprover.org/svn/cbmc/branches/peter-incremental-un
winding

12 http://www.cprover.org/wiki/doku.php?id=how to use incremental unwinding

http://sv-comp.sosy-lab.org
http://www.cprover.org/svn/cbmc/branches/peter-incremental-unwinding
http://www.cprover.org/svn/cbmc/branches/peter-incremental-unwinding
http://www.cprover.org/wiki/doku.php?id=how_to_use_incremental_unwinding
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Table 1. Benchmark characteristics from industrial programs

operators input variables state variables observer
LOC cond mul div/rem bool int float bool int float bool unwindings

SAT
max 31222 17103 669 75 688 477 189 3876 750 107 22 106
average 7572 4306 188 9 103 79 19 583 136 15 9 22

UNSAT
max 23014 49530 567 37467 212 282 188 708 663 32 22 10
average 4854 6014 160 1257 30 51 9 163 73 3 7 10

to the master process. Otherwise, i.e. in case of a timeout, CBMC is killed but information
about the solved unwindings of the reactive main loop is given back, which frequently
is a useful result for the user since it may indicate the absence of shallow bugs.

To prove unreachability of verification/test goals (properties), k-induction is per-
formed (see Sec. 2.4). For this purpose BTC EMBEDDEDTESTER generates two source
files, one containing the base case, which is a normal BMC problem with the property
given as assertion (cf. Equ. (2) (BC)); the file for the step case havocs variables modi-
fied in the loop and the invariant property is assumed at the beginning of the loop and
asserted at the end of the loop (cf. Equ. (2) (SC)). To check the step case, we require
a reversed termination behaviour of CBMC, i.e. it continues unwinding as long as the
problem is SAT and stops as soon as it is UNSAT.

4.2 Incremental BMC for Embedded Software

We report results on industrial programs for the integration of CBMC with BTC EM-
BEDDEDTESTER and EMBEDDEDVALIDATOR. For these experiments, we used 60 in-
dustrial benchmarks, which are original, unmodified code from BTC customers, mainly
from automotive applications. Unfortunately, software in the automotive domain is
closed source, and hence, being subject to NDAs, these benchmarks cannot be made
public.13 These benchmarks have the property of having only one unbounded loop.
Half of the benchmarks are bug-free (UNSAT instances), half contain a bug (SAT in-
stances). This benchmark suite is an indicator for performance of model checking tools
in an industrial setting as it covers a representative spectrum of embedded software.

A summary of the benchmark characteristics is listed in Table 1. Besides the num-
ber of lines of code, we give the number of conditional operators, multiplications and
divisions or remainder operations, which are a good indicator for the difficulty of the
benchmark, because they generate large formulae — recall that for each “/” occurring
in the program, CBMC has to generate a divider circuit. The surprisingly high number
of conditional operators in most of the benchmarks is due to the preprocessing of condi-
tional assignments by BTC EMBEDDEDTESTER and hints at the amount of branching
in these benchmarks. Moreover, we list the number of input and state variables, and the
variables introduced by the observer instrumentation.

Runtimes. We compared the incremental (i) with the non-incremental (ni) approach
and evaluated the impact of slicing (s), SAT preprocessing (p) and bitvector refinement
(r).14 The incremental and non-incremental approaches were compared by activating

13 To mitigate this problem, we present a detailed summary of the benchmark characteristics in
the extended version of the paper [30].

14 Array refinement is not used because the benchmarks do not contain arrays.
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Fig. 2. Incremental vs. non-incremental BMC

none of the three techniques, with slicing only (+s), with slicing and preprocessing
(+s+p), and with all three options activated (+s+p+r). The maximum number of loop
unwindings was fixed to 10 for the UNSAT instances in order to balance a significant
exploration depth with reasonable analysis runtimes. For SAT instances, a maximum
number of loop unwindings was not fixed since the incremental and non-incremental
approaches are bound to terminate when the unwinding depth reaches the depth of the
bug. The number of unwindings are listed in the last column in Table 1.

Fig. 2 shows the comparison between the incremental and non-incremental
approaches and the impact of each tool option on their performance. Fig. 2a shows the
average geometric mean [12] speedup of instances that were solved by all approaches.
We consider as baseline the (ni+s+p) approach since it was the best non-incremental
approach. Each bar shows the average geometric mean speedup of each approach when
compared to (ni+s+p). For example, (ni) has a speedup of 0.77, i.e. (ni) is on average
0.77× slower than (ni+s+p). On the other hand, all incremental versions are much faster
than the non-incremental versions. For example, (i) is on average over 3.5× faster than
(ni+s+p) and (i+s+p) is on average over 5× faster than (ni+s+p). We observe the fol-
lowing effects of the tool options: (i) slicing shows significant benefits overall (also on
peak memory consumption); (ii) not using formula preprocessing is a bad idea in gen-
eral; and (iii) bitvector refinement shows benefits for UNSAT instances, but produces
overhead for SAT instances which deteriorates the overall performance of the tool (see
the extended version of the paper [30] for more details). Even though the tool options
have some positive effects, they are rather minor in comparison to the performance
gains from using an incremental approach.

Since the best incremental and non-incremental approaches were obtained with the
configuration (+s+p), we will use this configuration for both approaches on the results
described in the remainder of the paper.
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Fig. 2b shows a scatter plot with runtimes of the best non-incremental (ni+s+p)
and incremental (i+s+p) approaches. Each point in the plot corresponds to an instance,
where the x-axis corresponds to the runtime required by the incremental approach and
the y-axis corresponds to the runtime required by the non-incremental approach. If an
instance is above the diagonal, then it means that the incremental approach is faster
than the non-incremental approach, otherwise it means that the non-incremental ap-
proach is faster. SAT instances are plotted as crosses, whereas UNSAT instances are
plotted as squares. Incremental BMC significantly outperforms non-incremental BMC.
For SAT instances, the advantage of incremental BMC is negligible for the easy in-
stances, whereas speedups are around a factor of 10 for the medium and hard instances.
For UNSAT instances, speedups are also significant and most instances have a speedup
of more than a factor of 5.

Solving vs. Overall Runtime. Since CBMC is used as a black-box with BTC EM-
BEDDEDTESTER and EMBEDDEDVALIDATOR, the non-incremental approach has to
re-parse files in each iteration. One might argue that removing this overhead is the
main reason for the speedup observed. However, the overhead for parsing files, sym-
bolic execution and slicing when compared to generating and solving SAT formula is
similar for the incremental and non-incremental approach. The incremental approach
spends 27% of its time solving the SAT formula (582 out of 2,151 seconds), whereas
the non-incremental approach spends 28% of its time (3,317 out of 11,811 seconds).
Unsurprisingly, solving the instance for the largest k in the non-incremental approach
takes a considerable amount of time (around 24%), when compared to the total time for
solving the SAT formulae for iterations 1 to k (784 out of 3,317 seconds).

An explanation for these speedups might be the size of the queries issued in both ap-
proaches. The average number of clauses per solver call is halved from 1,367k clauses
for the non-incremental approach to 709k clauses for the incremental approach. Simi-
larly, the average number of variables is less than a third in the incremental approach
when compared to the non-incremental approach, being 217k and 746k respectively.

Smaller query sizes also have an effect on peak memory consumption which is re-
duced by 30% for UNSAT benchmarks; for SAT benchmarks, however, we observed a
10% increase.

4.3 Code Coverage on FUELSYS Using BTC EMBEDDEDTESTER

As reported in the previous section, enabling CBMC to work incrementally led to tremen-
dous performance gains. In order to assess whether these improvements have practical
impact in the integration of CBMC with an industrial-strength test-vector generation tool,
we compared the performance of BTC EMBEDDEDTESTER with the incremental fea-
ture of CBMC being disabled and enabled. The time limit per subtask was 10 minutes
and the unwinding depth for all internal loops was 50. For unwinding depth 10 of the
main loop, the incremental feature improves the overall runtime from 152.3 to 70.4min-
utes, i.e. more than 2× faster, and for unwinding depth 50 from 377.4 to 108.5 minutes,
i.e. more than 3× faster.
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4.4 Incremental k-Induction for Embedded Software
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To compare the performance of incre-
mental and non-incremental approaches
for k-induction, we considered the sub-
set of UNSAT benchmarks for which
k-induction required more than 1 itera-
tion (see the extended version of the pa-
per [30] for more details). Note that when
k-induction requires only 1 iteration, the
performance of both approaches is simi-
lar.

Fig. 3 shows a scatter plot with the
runtimes of incremental and non-incre-
mentalk-induction using the tool options
(+s+p). Instances that correspond to the
base case are plotted as crosses, whereas
instances that correspond to the step case
are plotted as squares. The runtimes for
both incremental and non-incremental checking are relatively small. These are due to
the small number of iterations required by k-induction to prove the unreachability of
the properties present on these benchmarks (between 2 and 4 iterations with an aver-
age of 2.4 iterations per instance). Incremental checking is on average 2× faster than
non-incremental checking, on both base and step cases.

5 Related Work

Most related is recent work on a prototype tool NBIS [15] implementing incremental
BMC using SMT solvers. They show the advantages of incremental software BMC.
However, they do not consider industrial embedded software and have evaluated their
tool only on small benchmarks that are very easy for both, incremental and non-incre-
mental, approaches (runtimes <1s).15

Bit-precise formal verification techniques are indispensable for embedded system
models and implementations, that have low-level, i.e. C language, semantics like discre-
te-time SIMULINK models. The importance of this topic has recently attracted attention
as shown by publications on verification using SMT Solving [19,26], test case genera-
tion [27], symbolic analysis for improving simulation coverage [1], and directed random
testing [29]. Yet, all these works have not exploited incremental BMC.

The test vector generation tool FSHELL [20] uses incremental SAT solving to check
the reachability of a set of test goals. However, it assumes a fixed unwinding of the loops.
There is no reason why incremental BMC should not boost its performance when increas-
ing loop unwindings need to be considered. Test vector generation tools like KLEE [5]
use incremental SAT solving to extend the paths to be explored. However, they consider
only single paths at a time, whereas BMC explores all paths simultaneously.

15 Unfortunately, a working version of the tool was not available at time of submission.
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Incremental SAT solving has important applications in other verification techniques
like the IC3 algorithm [3,9] and incremental BMC is standard for hardware verifica-
tion [23,36]. We show that the speedups of incremental SAT solving reported in [11]
regarding k-induction on small HW circuits carry over to industrial embedded software.

6 Conclusions

We claim that incremental BMC is an indispensable technique for industrial embedded
software verification based on BMC. To underpin this claim, we report on the successful
integration of our incremental extension of CBMC into an industrial embedded software
verification tool. Our experiments demonstrate one-order-of-magnitude speedups from
incremental approaches on industrial embedded software benchmarks for BMC and k-
induction. These performance gains result in faster property verification and higher test
coverage, and thus, a productivity increase in embedded software verification.

Incremental BMC is effective on embedded software because of its specific proper-
ties (one big unbounded loop, whereas other loops are bounded). Nonetheless, we can
also expect benefits for general software where loops and control structures are more
irregular. A preliminary report on incremental BMC for programs with multiple loops is
presented in the extended version of the paper [30]. Even though the current approach
for multiple loops can still be improved, we already observe significant speedups that
show the applicability of incremental BMC beyond embedded software.
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