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Abstract—In prior work, we proposed the compute-and-
forward framework for sending linear combinations of messages
to relays. In this note, we extend the notion of successive
interference cancellation to the compute-and-forward setting. We
find that once a relay has decoded a linear combination, it can
mix it with its channel output to create a new effective channel
output. The resulting effective channel can be tuned so that it
is more suitable for decoding a second linear combination than
the original channel.

I. INTRODUCTION

The classical approach to communication over a wireless

relay network treats interference between transmitters as a

nuisance to be avoided. Typically, each relay observes a noisy

linear combination of the transmitted codewords and attempts

to decode one (or more) of them while treating the others as

additional noise. Recent efforts have revealed that interference

can in fact be exploited if we are willing to expand the set

of decoding possibilities to include linear combinations of

codewords. One natural approach, sometimes referred to as

compute-and-forward, is to employ a lattice codebook so that

integer combinations of codewords are themselves codewords

[1]–[5]. Relays are then free to select integer coefficients that

match the channel coefficients as closely as possible, thus

reducing the effective noise and increasing the achievable

rates.

Under the classical approach, a relay can employ successive

interference cancellation to remove decoded codewords from

its channel observation. This decreases the effective noise

encountered in the next decoding step. In this paper, we

devise an analogous technique for the compute-and-forward

framework. After decoding a linear combination, a relay can

combine it with its channel observation to obtain a new

effective channel that is even better for decoding the next

linear combination. For ease of exposition, we will focus on

the case where each relay wants to recover just two linear

combinations.

Owing to space limitations, we do not attempt a full

survey of the literature. We refer interested readers to [2]

for additional references pertaining to compute-and-forward

and to [6], [7] for surveys of the closely related topic of

physical-layer network coding.

II. PROBLEM STATEMENT

Our setting is nearly identical to that of [2] and we repro-

duce some of the key definitions below. For ease of exposition,

we will limit ourselves to real-valued channels and symmetric

rates. We will denote addition and summation over R with +
and

∑

, respectively, and use ⊕ and
⊕

to denote the same

over Fp.

Each transmitter (indexed by ℓ = 1, . . . , L) has a length-

k message that is drawn independently and uniformly over a

prime-sized finite field, wℓ ∈ F
k
p . An encoder, Eℓ : Fk

p → R
n,

then maps the message into a length-n codeword, xℓ = E(wℓ),
which must satisfy the usual power constraint ‖xℓ‖

2 ≤ nP .

The message rate is R = (k/n) log p.

Each relay (indexed by m = 1, . . . ,M ) observes a noisy

linear combination of the codewords,

ym =

L
∑

ℓ=1

hmℓxℓ + zm , (1)

where the hmℓ ∈ R are the channel coefficients and zm ∼
N (0, I) is i.i.d. Gaussian noise. Let hm = [hm1 · · · hmL]

T

denote the vector of channel coefficients. The goal is for each

relay to recover two linear combinations of the messages of

the form

u(1)
m =

L
⊕

ℓ=1

q
(1)
mℓwℓ u(2)

m =

L
⊕

ℓ=1

q
(2)
mℓwℓ (2)

where the q
(1)
mℓ, q

(2)
mℓ ∈ Fp are finite field coefficients. To this

end, each relay is equipped with a decoder, D : Rn → F
k
p ×

F
k
p , that produces estimates û

(1)
m and û

(2)
m of its desired linear

combinations. We will say that the average probability of error

is at most ǫ if

P

(

⋃

m

{

û(1)
m 6= u(1)

m

}

∪
{

û(2)
m 6= u(2)

m

}

)

< ǫ . (3)

To map between the real-valued linear combination pro-

vided by the channel and the desired finite field linear com-

binations, we will need a bit of additional nomenclature.

Specifically, we will refer to u
(1)
m as the linear combination

with coefficient vector am = [am1 · · · amL]
T ∈ Z

L if its

finite field coefficients satisfy1

q
(1)
mℓ = [amℓ] mod p . (4)

1This is a slight abuse of notation. More formally, we should explicitly
define a mapping between Fp and {0, 1, . . . , p − 1}. See [2, Definition 6]
for more details.



Similarly, we will refer to u
(2)
m as the linear combination with

coefficient vector bm = [bm1 · · · bmL]
T ∈ Z

L if

q
(2)
mℓ = [bmℓ] mod p . (5)

We will say that the computation rate region

R(hm, am,bm) is achievable if, for any ǫ > 0 and n
large enough, there exist encoders and decoders, such that

all relays can recover their desired linear combinations with

average probability of error ǫ so long as

R < min
m

R(hm, am,bm) . (6)

Note that the relays are free to choose which linear combina-

tions to decode so long as (6) is satisfied.

III. NESTED LATTICE CODES

One key requirement of our scheme is that all integer com-

binations of codewords must be afforded protection against

noise. Nested lattice codes are a natural fit for this purpose. A

lattice Λ is a discrete subgroup of R
n with the property that

if t1, t2 ∈ Λ then t1 + t2 ∈ Λ. By construction, all of our

lattices will contain the zero vector. A pair of lattices Λ,ΛFINE

is nested if Λ ⊂ ΛFINE.

A lattice quantizer is a function, QΛ : Rn → Λ, that maps

vectors to the nearest lattice point in Euclidean distance,

QΛ(x) = argmin
t∈Λ

‖x− t‖ . (7)

The fundamental Voronoi region is the subset of points in R
n

that quantize to the zero vector, V = {x : QΛ(x) = 0}. The

modulo operation returns the quantization error with respect

to the lattice,

[x] mod Λ = x−QΛ(x) , (8)

and satisfies the distributive law,
[

a[x] mod Λ + b[y] mod Λ
]

mod Λ =
[

ax+ by
]

mod Λ ,

for any a, b ∈ Z.

A nested lattice code C is created by taking the set of fine

lattice points that fall within the fundamental Voronoi region

of the coarse lattice, C = ΛFINE ∩ V . Erez and Zamir have

shown that their exist nested lattice codes that can approach

the capacity of a point-to-point Gaussian channel [8].

IV. COMPUTE-AND-FORWARD

In [2], we proposed the compute-and-forward framework

as a way of communicating linear combinations of messages.

Our focus was on the case where each relay decodes a single

linear combination with coefficient vector am. Define

RCF(h, a) ,
1

2
log+

((

‖am‖2 −
(hT

mam)2P

1 + P‖hm‖2

)−1)

where log+(x) , max(log(x), 0).
Theorem 1 ( [2, Theorem 2]): For any set of channel vec-

tors hm ∈ R
L and coefficient vectors am ∈ Z

L, the following

computation rate region is achievable:

R(hm, am) = RCF(hm, am) . (9)

We now provide a brief overview of the basic compute-

and-forward encoding and decoding functions which will be

useful in the proof of our main result. Using Construction A

[8], [9], we select a pair of nested lattices Λ ⊂ ΛFINE that can

approach the capacity of a point-to-point Gaussian channel. It

can be shown that there is a one-to-one map φ between F
k
p

and the nested lattice code C that preserves linearity (see [2,

Lemma 5]). Using this mapping, the encoder chooses a lattice

point tℓ = φ(wℓ). It then applies a dither dℓ that is drawn

independent and uniformly over V and transmits the result,

xℓ = [tℓ − dℓ] mod Λ . (10)

Relay m observes ym and has access to every dither2. It

scales its observation by the minimum mean-squared error

(MMSE) coefficient

αm =
PhT

mam

1 + P‖hm‖2
(11)

and removes the dithers according to the desired coefficients

amℓ. Afterwards, it quantizes the result onto the fine lattice

and takes the modulus with respect to the coarse lattice,

v̂(1)
m =

[

QΛFINE

(

αmym +

L
∑

ℓ=1

amℓdℓ

)

]

mod Λ . (12)

It can be shown that, with high probability, this is equal to

v(1)
m =

[ L
∑

ℓ=1

amℓtℓ

]

mod Λ (13)

so long as

R < min
m

1

2
log+

(

P

α2
m + P‖αmhm − am‖2

)

. (14)

Finally, the relay applies the inverse map to get its estimate

û
(1)
m = φ−1(v̂

(1)
m ). Assuming that v̂

(1)
m = v

(1)
m , it can be shown

that û
(1)
M = u

(1)
m (see [2, Lemma 6]).

V. SUCCESSIVE COMPUTE-AND-FORWARD

Successive interference cancellation is a powerful technique

for decoding several messages at a single receiver. Assume

that, given the channel observation ym, a relay has correctly

decoded xi. It can now completely remove the effect of xi

from its observation,

ym − hmixi =
∑

ℓ 6=i

hmℓxℓ + zm , (15)

which reduces the interference and makes it easier to decode

the next codeword.

As it turns out, we can employ a similar technique when

decoding several linear combinations. Assuming the relay has

decoded
∑

ℓ amℓxℓ, it can create a new effective channel

ym + γm

L
∑

ℓ=1

amℓxℓ =

L
∑

ℓ=1

(hmℓ + γmamℓ)xℓ + zm . (16)

2These dithers can be replaced with deterministic sequences.



By adjusting the effective channel coefficients, we can make

it easier for the relay to decode its second linear combination,

and thus increase the computation rate region. Note that unlike

successive interference cancellation, it is not always optimal to

subtract the recovered linear combination. Below, we develop

a successive computation scheme that follows the concept

outlined above. We begin by showing that we can always

recover the real sum of codewords if we have access to the

modulo sum and the dithers.

Remark 1: In [2, Theorem 12], we described a limited

version of successive computation. The key drawback is that

this scheme only allows for integer-valued γm, owing to the

fact that it works directly with the modulo sum of codewords.

As part of the compute-and-forward scheme, the relay

recovers an estimate v̂
(1)
m of the modulo linear combination of

codewords v
(1)
m from (34). The lemma below shows that this

modulo sum can be used to recover the real sum
∑

ℓ amℓxℓ

that is needed for successive computation.

Lemma 1: The relay can make an estimate ŝm of the real

sum of codewords

sm =

L
∑

ℓ=1

amℓxℓ (17)

with vanishing probability of error, limn→∞ P(̂sm 6= sm) = 0,

so long as R < R(hm, am).
Proof: Since R < R(hm, am), we can use Theorem

1 to make an estimate v̂
(1)
m that is equal to v

(1)
m with high

probability. For the remainder of the proof, we will assume

that this estimate is correct. First, the relay dithers this linear

combination and takes the modulus with respect to Λ. This

gives it access to a modulo combination of the dithered lattice

points,

[

v̂(1)
m −

L
∑

ℓ=1

amℓdℓ

]

mod Λ (18)

=

[

[

∑

ℓ

amℓtℓ

]

mod Λ−
L
∑

ℓ=1

amℓdℓ

]

mod Λ (19)

=

[

∑

ℓ

amℓ(tℓ − dℓ)

]

mod Λ =

[

∑

ℓ

amℓxℓ

]

mod Λ .

It then subtracts this quantity from αmym,

rm = αmym −

[

∑

ℓ

amℓxℓ

]

mod Λ (20)

=
L
∑

ℓ=1

αmhmℓxℓ + αmzm −
L
∑

ℓ=1

amℓxℓ +QΛ

( L
∑

ℓ=1

amℓxℓ

)

= QΛ

( L
∑

ℓ=1

amℓxℓ

)

+ αmzm +
L
∑

ℓ=1

(αmhmℓ − amℓ)xℓ ,

to get a quantized version of the desired sum sm plus some

effective noise with variance α2
m + P‖αmhm − am‖2. To

remove this noise, it applies the coarse lattice quantizer.

This operation will be successful with high probability so

long as the second moment of Λ exceeds the effective noise

variance, i.e., P > α2
m + P‖αmhm − am‖2. Assuming that

R(hm, am) > 0, this condition holds and we have that

QΛ(rm) = QΛ

(

[ L
∑

ℓ=1

amℓxℓ

]

mod Λ

)

(21)

with high probability. Finally, since the relay knows the

quantized sum as well as its quantization error, it can infer

the desired real sum. Assuming that (21) holds, we have that

ŝm = QΛ(rm) +

[ L
∑

ℓ=1

amℓxℓ

]

mod Λ (22)

=

L
∑

ℓ=1

amℓxℓ = sm . (23)

Using the real sum of the codewords, we can construct a

successive compute-and-forward scheme. Define

RSCF(h, a,b) , (24)

1

2
log+














‖b‖2 −

(aTb)2

‖a‖2
−

P
(

(

h− a
T
h

‖a‖2a
)T

b

)2

1 + P
(

‖h‖2 − (aTh)2

‖a‖2

)







−1








Theorem 2: For any set of channel vectors hm ∈ R
L and

coefficient vectors am,bm ∈ Z
L, the following computation

rate region is achievable:

R(hm, am,bm) = max(RAB, RBA) (25)

RAB = min
(

RCF(hm, am), RSCF(hm, am,bm

)

(26)

RBA = min
(

RCF(hm,bm), RSCF(hm,bm, am

)

. (27)

Proof: Fix an ǫ > 0. The expressions RAB and RBA

correspond to the two possible decoding orders. We will

prove that RAB is achievable by first decoding the linear

combination with coefficient vector am and then that with

bm. The proof of RBA follows identically by exchanging the

role of am and bm.

We employ the same encoding framework as in Theorem

1. Relay m uses the same decoding framework to make an

estimate û
(1)
m of u

(1)
m . For n large enough, this estimate is

incorrect with probability at most ǫ/3 if

R < min
m

RCF(hm, am) . (28)

As a byproduct of successful decoding, the relay will obtain

a correct estimate v̂
(1)
m of v

(1)
m . Using Lemma 1, it makes an

estimate ŝm of sm =
∑

ℓ amℓxℓ that has probability of error

at most ǫ/3 for n large enough. Below, we assume ŝm = sm.

The relay removes the projection of ŝm onto ym from ym

to get

rm = ym −
aTmhm

‖am‖2
ŝm (29)

=

L
∑

ℓ=1

(

hmℓ −
aTmhm

‖am‖2
amℓ

)

xℓ + zm (30)



Define gmℓ = hmℓ −
a
T

m
hm

‖am‖2 amℓ and gm = [gm1 · · · gmL]
T .

It then forms a new effective channel observation

ỹm = βmrm + µmŝm (31)

=

L
∑

ℓ=1

(βmgmℓ + µmamℓ)xℓ + βmzm . (32)

and proceeds to decode the linear combination with coefficient

vector bm as in Theorem 1. Specifically, it forms the estimate

v̂(2)
m =

[

QΛFINE

(

ỹm +
L
∑

ℓ=1

bmℓdℓ

)

]

mod Λ . (33)

It can be shown that, with probability of error at most ǫ/3,

this is equal to

v(2)
m =

[ L
∑

ℓ=1

bmℓtℓ

]

mod Λ (34)

so long as

R < min
m

1

2
log+

(

P

β2
m + P‖βmgm + µmam − bm‖2

)

.

(35)

Finally, the relay applies the inverse map to get its estimate

û
(2)
m = φ−1(v̂

(2)
m ).

It remains to solve for the βm and µm that minimize the

effective noise variance

f(βm, µm) = β2
m + P‖βmgm + µmam − bm‖2 . (36)

This is a convex function whose global minimum is attained

at

β∗
m =

PgT
mbm

1 + P‖gm‖2
(37)

µ∗
m =

aTmbm

‖am‖2
. (38)

Plugging this back in, we find that

f(β∗
m, µ∗

m) = P‖bm‖2 −
P (aTmbm)2

‖am‖2
−

P 2(gT
mbm)2

1 + P‖gm‖2
.

Substituting this into (35), we get the desired condition

R < min
m

RSCF(hm, am,bm) . (39)

By the union bound, the probability of error is at most ǫ.

Example 1: Consider a single relay with channel vector

h1 = [2 1 1]T that wishes to decode the linear combinations

with coefficient vectors a1 = [1 1 1]T and b1 = [1 −1 −1]T

using Theorem 2. It is not possible to decode b1 first as

RCF(h1,b1) = 0. Decoding a1 first requires

R <
1

2
log+

(

1 + 6P

3 + 2P

)

. (40)

After recovering a1, the relay can adjust the channel and

decode b1 so long as

R <
1

2
log+

(

9

24
+

P

4

)

. (41)

The example above demonstrates that successive compute-

and-forward can make it possible to recover linear combi-

nations that are not available via a direct application of the

original compute-and-forward framework. In other words, the

relay can first target a linear combination that is “easy” to

decode and then use it to create a better effective channel for

decoding the second linear combination.

From another perspective, successive compute-and-forward

can be used to enlarge the computation rate region for de-

coding a single linear combination with coefficient vector

bm. The relay should order all viable coefficient vectors (i.e.,

those satisfying ‖am‖2 ≤ 1 + P‖hm‖2) by computation

rate RCF(hm, am) and set aside those am with rates larger

than RCF(hm,bm). It can then calculate which pair (am,bm)
offers the highest rate using Theorem 2. Finally, it applies suc-

cessive compute-and-forward for this pair and keeps only the

second equation. Example 1 demonstrates that this procedure

does indeed enlarge the rate region.

VI. GENERALIZATIONS AND EXTENSIONS

Following the framework in [2], successive compute-and-

forward can be generalized to include complex-valued channel

models as well as unequal message rates. One can also

envision extending this technique to the case where each relay

may want more than two linear combinations. In this case, the

linear combinations obtained thus far should be mixed together

with the original channel observation to create a new effective

channel for the next targeted linear combination.
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