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We present a new subspace iteration method for the efficient computation of several
smallest eigenvalues of the generalized eigenvalue problem Au = λBu for symmetric
positive definite operators A and B. We call this method successive eigenvalue relax-
ation, or the SER method (homoechon of the classical successive over-relaxation,
or SOR method for linear systems). In particular, there are two significant features
of SER which render it computationally attractive: (i) it can effectively deal with
preconditioned large-scale eigenvalue problems, and (ii) its practical implementation
does not require any information about the preconditioner used: it can routinely
accommodate sophisticated preconditioners designed to meet more exacting require-
ments (e.g. three-dimensional elasticity problems with small thickness parameters).
We endow SER with theoretical convergence estimates allowing for multiple and
clusters of eigenvalues and illustrate their usefulness in a numerical example for a
discretized partial differential equation exhibiting clusters of eigenvalues.

Keywords: large-scale eigenvalue problems; eigensolvers with preconditioning;

subspace iteration; convergence rate; multiple and clustered eigenvalues

mnemosyne and the children of memory†
Constantine Carathéodory [1873–1950]
Mathematician towering and pre-eminent.

A chorus for his legacy:
˜́ω καλλίπυργoν σoϕίαν κλεινoτάτην ’επασκω̃ν,

‘ως ‘ηδύ σoυ τoι̃σι λóγoις σω̃ϕρoν ’́επεστιν ’́ανϑoς.

—Aristophanes, Clouds

Prolegomena

We are entering large, difficult ground, landmarked by such luminaries as Arnoldi,
Lanczos and Wilkinson. This list could be extensive if we were to add the names of

† Title of an address delivered (12 November 1993) at the British Museum by His All Holiness The
Ecumenical Patriarch Bartholomew I (it invokes the Muses with their inspired knowledge to weave a
song of praise, and Mnemosyne—archetypal image of cultural and intellectual memory—to record our
homage to the Mathematical Muse).
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442 E. E. Ovtchinnikov and L. S. Xanthis

the several eminent mathematicians and computer scientists who, alongside younger
talented guild members, constantly chart the field of eigenvalue computation (see,
for example, Golub & van der Vorst 2000; van der Vorst & Golub 1997). Thus, we
feel the need at the outset to delineate our niche in this crowded, and in spots foggy,
landscape.
The present work (on eigenvalue computation) is but a clade branching off the main

trunk of our research project aiming at the development of robust—with respect to
certain parameters—numerical (iterative) methods for three-dimensional large-scale
problems (see, for example, Ovtchinnikov & Xanthis 1998, 2000a). What prompted
us to explore new pathways for computing large-scale eigenvalue problems was the
result of an aporia, an impasse we reached when we tried to employ existing methods:
no single method would satisfy our requirements for solid theoretical foundations
(convergence estimates)—a sine qua non for computational reliability—and efficient
implementation for the important cases of multiple and clustered eigenvalues.
The above class of problems is of high theoretical and practical interest and cur-

rently pursued by several researchers, employing a variety of methods, but mostly
through numerical calculations, often referred to in the literature as numerical exper-
iments. But, is there an epistemology of experiment in general, and numerical exper-
iment in particular, to provide confidence in experimental results/numerical calcu-
lations? On this important issue we are on rather uncharted ground. However, to
begin reflecting on the epistemic role of experiment, we draw from two of the leading
scientists of 20th century physics and mathematics: the late Richard Feynman, Nobel
laureate in physics, and Peter Lax, member of the American Academy of Sciences.
‘The test of all knowledge is experiment. Experiment is the sole judge of scientific
“truth” ’ Feynman (Feynman et al . 1963) asserts (surely referring to experiments
in the physical sciences). In the context of numerical methods we take ‘truth’ to
refer to the quality of the method used in a calculation, and experiment to refer
to the numerical testing of the method. But can such an experiment be the ‘sole
judge’ of (mathematical) ‘truth’? Or, invoking Peter Lax’s resonant words ‘How
much confidence can one place in a calculation? ’ (our italics) (see Lax 2000, § 3).
One of the salient points conveyed by Lax is that full confidence in a calculation
requires that the ‘theory is well understood’ (Lax 2000). With reference to iterative
methods, which underlie the present work, the Lax message echoes the need for theo-
retical convergence estimates, established through rigorous mathematical proof. But,
for large-scale eigenvalue computations, such estimates (and proofs) are not easy to
come by, which explains their scarcity.
In the present paper we take up this challenge. We present a new method fully sup-

ported by theoretical convergence estimates (illustrated by numerical experiments).
These include the more demanding cases of multiple and clustered eigenvalues. Thus,
our position in the eigenvalue computation landscape is engraved on the epistemolog-
ical rock of apodeictics (Ovtchinnikov & Xanthis 2000b, c), where the (mathematical)
proof reigns supreme over the extensive land of numerical experiments and heuristics.

1. Introduction

The subject of eigenvalue analysis and computation has a long and rich history. It
began with the work of Carl Gustav Jacobi in 1846 and slowly progressed, until
the advent of the computer accelerated its pace and fertilized its blossoms. Today
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we can reap its fruits in various areas of mathematical engineering, physics, chem-
istry, economics and finance. Several monographs and recent review papers con-
summately expound the eigenvalue-computation story† (see, for example, Wilkinson
1965; Parlett 1998; Chatelin 1993; Golub & van Loan 1997; Saad 1992; D’yakonov
1996; Bertolini 1998; Golub & van der Vorst 2000; van der Vorst & Golub 1997;
Bai et al . 2000; Knyazev 1998). These stimulating xenagogies skilfully guide the
inquisitive xenos (stranger, visitor and guest) to the ‘eigenvalue palace’ through the
labyrinthine corridors of algorithms and countless alleys of their modifications built
over the years by a host of daedalic, inventive researchers. When this tour of explo-
ration, discovery and knowledge is complete, the enlightened xenos will reflect that
the algorithms leading to the challenging area of large-scale eigenvalue computations
invariably pass, at some stage, through the door of preconditioning. Further, they will
notice that many of these algorithms largely rely on numerical experiments rather
than on solid theoretical foundations.
Below we will endeavour to thread our way through the various concepts mentioned

above and then proceed to present a new method, with convergence estimates, for
the solution of the generalized eigenvalue problem

Au = λBu, (1.1)

where A and B are symmetric positive definite operators.
Large-scale eigenvalue problems arise in a plethora of important applications in

various fields (e.g. quantum chemistry, vibration analysis of geomechanical and aero-
space structures). As it is known, such problems cannot be efficiently addressed
by the standard ‘matrix transformation’ methods usually employed for problems of
‘small’ size. Thus, to face the challenge of large-scale computations, various alter-
native iterative methods had to be invented: operating on vectors rather than on
matrices. Typically, such methods require on each iteration the solution of a system
of the form (L−µ)v = g, where L is a linear operator whose eigenvalues and associ-
ated eigenvectors are sought. For large-scale problems the solution of such systems
by direct methods is prohibitively expensive in terms of arithmetic operations and
memory storage requirements. At the same time, standard iterative methods may
fail to converge due to the poor conditioning of L. This is often the case in appli-
cations related to partial differential equations. Here is where preconditioning enters
to improve convergence by using iterations of the form

vn+1 = vn − τnL
−1
0 ((L − µ)vn − g) (1.2)

with a ‘proper’ choice of the preconditioner L0.
The fact that most modern methods for solving large-scale eigenvalue problems

ultimately employ iterations with preconditioning of the type (1.2) suggests the idea
of applying such iterations directly to the computation of eigenvectors of L rather
than of some auxiliary vectors v. This idea may be seen behind several new—or newly
rediscovered—methods for solving eigenvalue problems. They are known in the liter-
ature as eigensolvers with preconditioning (or, as Bramble et al . (1996) and Knyazev

† In the beginning was the word eigenvalue, the linguistic hybrid, alluding to another (biological)
hybrid: the Minotaur ! (Was such a formidable creature in the mind of Davidson (1993) when he wrote
about monster matrices and their eigenvalues?!) The intricacies involved in the computation of eigenval-
ues are evocative of the Cretan Labyrinth: the archetype of complexity. Will preconditioning emulate the
role of the long awaited hero Theseus? Can modern convergence theories for preconditioned eigensolvers
serve as Ariadne’s thread?
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(1998) have it, ‘preconditioned eigensolvers’). However, preconditioning in eigenvalue
computations is a theme scarcely investigated and certainly less understood in com-
parison with the more mature area of preconditioning in linear systems (Knyazev
1998). This is evident from the fact that the preconditioned eigensolvers proposed in
the literature are almost entirely supported by numerical experiments rather than
justified by theoretical convergence estimates (see, for example, Davidson’s (1993)
method and its variants in, for example, Bai et al . (2000), Golub & van der Vorst
(2000), van der Vorst & Golub (1997), and references therein). A laudable achieve-
ment in the realm of convergence analysis for eigensolvers with preconditioning is
the work of D’yakonov & Knyazev (1992), D’yakonov (1996), Knyazev (1987), Bram-
ble et al . (1996), Bergamaschi et al . (1997), Neymeyr (1999) (for a more thorough
xenagogy visit Knyazev 1998). Nevertheless, the theory of eigensolvers with precon-
ditioning is still in its early stages, and most convergence results available to date
address some particular cases. Prime examples are: the case when L0 = L (Berga-
maschi et al . 1997) and the case when L has simple eigenvalues (Bergamaschi et al .
1997; Bramble et al . 1996). To date the most comprehensive theoretical results for a
preconditioned method which includes convergence estimates valid for multiple and
clusters of eigenvalues (as in the present paper) are given in D’yakonov & Knyazev
(1992) and D’yakonov (1996). However, the practical use of the method proposed in
D’yakonov & Knyazev (1992) (see also D’yakonov 1996, ch. 9, § 6) requires knowledge
of an upper estimate for the eigenvalues of L−1

0 L which, for certain preconditioners,
may not be available (see, for example, the preconditioner in Ovtchinnikov & Xanthis
(1998) and Ovtchinnikov & Xanthis (2000a) dealing with three-dimensional elastic-
ity problems for thin structures featuring a small parameter). The same difficulty is
inherent in the method of Bramble et al . (1996). The modifications of the methods
of Bramble et al . (1996), D’yakonov & Knyazev (1992) and D’yakonov (1996) sug-
gested in Knyazev (1987) and Leinen et al . (1997) to avoid this difficulty have not
been thoroughly studied. The above limitations prompted us to explore new avenues,
leading to the work reported here.
Until now we have argued the case of eigensolvers with preconditioning for tackling

large-scale eigenvalue problems. At this point we wish to emphasize that the results
of the present paper are not confined to the preconditioning case alone but encompass
the broader area of the generalized eigenvalue problem (1.1).
Several preconditioned methods for finding eigenvalues of a symmetric positive

definite operator L can be interpreted as iterative methods for the solution of (1.1),
where A = L−1

0 L and B = L−1
0 (preconditioned eigenproblem). We note that in

many applications the operators L and L0 are derived from discretizations of some
differential operators, in which case A can be associated with a discretization of
some bounded operator, and B with some compact operator. Further, we note that
problems of such a kind also appear in various other areas unrelated to precondi-
tioning (cf. eigenvalue problems for integral equations, and projection methods for
eigenvalue problems; see, for example, the Rayleigh–Ritz method used in § 5). It is for
this reason that in the method we propose here we address the generalized eigenvalue
problem (1.1) rather than the (standard) eigenvalue problem for L.
In this paper we introduce a new method of the subspace iteration type for the

efficient computation of several smallest eigenvalues of the generalized symmetric
eigenvalue problem (1.1). We call this method successive eigenvalue relaxation, or
the SER method (homoechon of the classical successive over-relaxation, or SOR
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method for linear systems). We endow SER with theoretical convergence estimates
which cover the case of multiple eigenvalues and eigenvalue clusters and identify the
important parameters essentially affecting the convergence. Finally, we illustrate the
convergence of SER numerically by solving an eigenvalue problem for an elliptic par-
tial differential equation that features multiple eigenvalues and eigenvalue clusters.

2. Notation

In this paper we are concerned with the efficient numerical solution of the general-
ized eigenvalue problem (1.1) where A and B are linear operators in N -dimensional
Euclidean space R

N . We assume that A and B are symmetric positive definite in the
scalar product [·, ·] = (C·, ·), where C is a symmetric positive definite operator and
(·, ·) is the scalar product in R

N . We denote by α0 and α0 two positive constants
such that

α0[u, u] � [Au, u] � α0[u, u]. (2.1)

We enumerate the eigenvalues of (1.1) in ascending order (starting from 0) and
we assume that the first m ≪ N eigenpairs (i.e. eigenvalues and corresponding
eigenvectors) are of interest. The corresponding eigenvectors ui are normalized by
[Bui, ui] = 1.
We denote the Rayleigh quotient for a vector v by λ(v) and the residual by r(v),

i.e.

λ(v) =
[Av, v]

[Bv, v]
, r(v) = Av − λ(v)Bv.

The Ritz eigenvectors and eigenvalues of the problem (1.1) in a subspace H ⊂ R
N

are denoted by ui(H) and λi(H) respectively, i.e.

[Aui(H) − λi(H)Bui(H), v] = 0 ∀v ∈ H. (2.2)

Again, we enumerate the eigenvalues λi(H) in ascending order and normalize the
eigenvectors ui(H) by [Bui(H), ui(H)] = 1. We also denote rk(H) = r(uk(H)).

3. The SER method

Consider the following iterative procedure. Given an approximation In to the invari-
ant subspace I corresponding to the first m eigenvalues of (1.1) we choose a number
kn, 0 � kn < m, and define the new approximation as

In+1 = span{ui(Ĩ
n)}i=0,m−1, Ĩn = In + span{rkn

(In)}. (3.1)

In other words, we add the residual on the Ritz vector ukn
(In) to the set of Ritz

vectors in In, then we apply the Rayleigh–Ritz projection onto the subspace Ĩn

spanned by these m+ 1 vectors and we define the new approximation In+1 to the
invariant subspace I as the span of the first m Ritz eigenvectors in Ĩn (the last
one is discarded so that the dimension of In+1 is the same as In). It is known that
the residual vector rkn

(In) is collinear to the gradient (in the scalar product [·, ·])

Proc. R. Soc. Lond. A (2001)



446 E. E. Ovtchinnikov and L. S. Xanthis

of the functional λ(u) at u = ukn
(In). Furthermore, from the minimax principle for

eigenvalues (see, for example, Parlett 1998) it follows that

λi � λi(I
n+1) = min

H⊂Ĩn

dim H=m

λi(H) � λi(I
n). (3.2)

In the iterative procedure introduced here, this suggests the following interpretation
of (3.1): we use the gradients of λ(u) for the Ritz vectors successively (i.e. one at a
time) in order to minimize (or relax ) the Ritz eigenvalues. In view of this property,
we call the iterative procedure (3.1) the successive eigenvalue relaxation, or SER
method.
The following lemma is pivotal to the analysis of the convergence of SER (for the

proof see Ovtchinnikov & Xanthis (2000b)).

Lemma 3.1. Let H ⊂ R
N be a subspace of dimension k + 1 and let H̃ = H +

span{rk}, where rk = r(uk(H)). Then

k∑

i=0

(λi(H) − λi(H̃)) �
1

s(H)[Ark, rk]

k∑

i=0

[ri, rk]
2, (3.3)

where ri = r(ui(H)) and

s(H) = (1 + 2s1)(1 + s2), si =
1

λ
i/2
0

k∑

j=0

[A−1rj , rj ]
i/2.

Corollary 3.2.

[A−1rk(H), rk(H)] � s(H)
k∑

i=0

(λi(H) − λi).

Corollary 3.3.

∞∑

n=0

[A−1rn
kn
, rn

kn
] � s0

α0

α0

m−1∑

i=0

(λi(I
0) − λi), (3.4)

where

s0 = (1 + 2s0
1)(1 + s0

2), s0
i =

m−1∑

j=0

(
λj(I

0)

λ0

)3/i

.

Based on lemma 3.1 we immediately obtain the following convergence result.

Theorem 3.4. Let 0 � k < m and suppose that for any number n there exists a
number ñ > n such that kñ = k. Then

λk(I
n) → λk̃, as n → ∞, (3.5)

where k̃ � k.
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Proof . As we see from equation (3.2), the sequence {λk(I
n)}n=0,∞ is decreasing

and bounded from below by λk. Hence it converges to some λ̃ � λk. From corol-
lary 3.3 we have:

∑

n: kn=k

[A−1rn
k , r

n
k ] < ∞,

where the sum has infinite number of terms. Hence [A−1rn
k , r

n
k ] → 0, which implies

that λ̃ is an eigenvalue of (1.1). �

Corollary 3.5. If λm−1(I
0) < λm and the condition of theorem 3.4 holds for all

k < m then in (3.5) we have k̃ = k, and the angles between the Ritz eigenvectors
uk(I

n) and the corresponding invariant subspace converge to 0.

4. Convergence estimate

The convergence rate of SER iterations depends on the choice of kn. In this paper
we present the convergence estimates for the following selection procedure:

(i) for n = lm, l = 0, 1, . . . , we choose kn = 0 and we set H0 = span{u0(I
n)}; and

(ii) for n = lm + k, 0 < k < m, we choose kn � k for which the angle between
ukn

(In) and Hk−1 measured in the scalar product [A·, ·] is maximal and we set
Hk = Hk−1 + span{ukn

(In)}.

The purpose of introducing the auxiliary subspaces Hk is to ensure that on each step
we ‘relax’ the Ritz eigenvalues corresponding to Ritz eigenvectors which approximate
different eigenvectors of (1.1). We note that in practice we do not need to compute
(and store) explicitly the subspaces Hk: it is enough to calculate approximations to
the angles between ui(I

n) and Hk which would guarantee uniform positiveness of
these angles. Here we do not elaborate on these rather technical calculations (for
details see Ovtchinnikov & Xanthis (2000b)).
Theorem 4.1 below gives the convergence estimate for SER iterations with the

above selection procedure for kn (for the proof see Ovtchinnikov & Xanthis (2000b)).
In order to allow for multiple eigenvalues and, moreover, to treat efficiently eigenval-
ues which are very close to each other this estimate is formulated in terms of groups
(clusters) of eigenvalues, i.e. it is independent of the distances between individual
eigenvalues in a cluster. We divide the set of m smallest eigenvalues into subsets
σj = {λi}sj�i<sj+1

, 1 � j � J , λsj
> λsj−1, sJ+1 = m, and denote by mj the num-

ber of eigenvalues in σj , i.e.mj = sj+1 − sj , and by δj (for j > 1) the relative distance
between σj−1 and σj , i.e. δj = (λsj

− λsj−1)/λsj
.

Theorem 4.1. Assuming that kn are chosen according to the above selection pro-
cedure and that λm−1(I

0) < λm, the following estimates are valid for the convergence
of SER iterations:

m−1∑

i=0

(λi(I
(l+1)m) − λi) � ν

m−1∑

i=0

(λi(I
lm) − λi), (4.1)

sj+1−1
∑

i=sj

(λi(I
(l+1)m) − λi) � qj,l

sj+1−1
∑

i=sj

(λi(I
lm) − λi), j = 1, . . . , J, (4.2)
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where qj,l = min{1, qj + ανl},

qj = 1 −

(

amj

α0

α0
+ bmj

λm

λm − λsj

)−1λm − λsj+1−1

λm − λsj

(

1 −
λsj+1−1

λm

)

. (4.3)

aµ and bµ are positive constants depending only on µ (in particular, a1 = 1 and
b1 = 0) and α and ν < 1 are positive constants which depend on α0/α

0, λ0, λm, m,
maxj mj , minj δj and 1 − λm−1(I

0)/λm only.

Remark 4.2. To simplify our presentation of SER we omit explicit formulae for
aµ, bµ, α, ρ and ν from the above theorem. Instead, we explicitly identify the param-
eters of the problem (1.1) which essentially affect the convergence of SER. Below we
demonstrate how this information can be used in practice.

5. Numerical example

In order to assess the benefits of the theoretical convergence estimates provided by
theorem 4.1, we solve numerically an eigenvalue problem for a discretized partial
differential equation exhibiting clusters of eigenvalues. In dealing with such prob-
lems it is important to ensure that the convergence of iterations is robust, i.e. it is
not adversely affected by the discretization parameters. Below we demonstrate how
theorem 4.1 can be used to verify that the convergence of SER iterations is robust.
Let V be the subspace of the Sobolev space H1(Ω), Ω = (0, a) × (0, b), which

contains functions vanishing at x = 0 and x = a. Further, let w(x, y) be a function
which is positive and bounded in Ω̄. We consider the following eigenvalue problem

u ∈ V : A(u, v) = λB(u, v) ∀v ∈ V (5.1)

where

A(u, v) = (w∇u,∇v)Ω, B(u, v) = (wu, v)Ω, (v1, v2)Ω =

∫

Ω

v1v2 dxdy.

Problem (5.1) is the variational formulation of an eigenvalue problem for the second
order partial differential operator L given by

L = −
1

w

∂

∂x
w

∂

∂x
−

1

w

∂

∂y
w

∂

∂y
. (5.2)

We discretize problem (5.1) using the Rayleigh–Ritz method in the subspace V pq of
polynomials of degrees p and q in the variables x and y, respectively. This translates
to simply replacing V by V pq in (5.1). Introducing a basis {vi}i=1,Npq

in V pq we
eventually obtain the algebraic eigenvalue problem (1.1) where the operators A and
B are represented by matrices with elements A(vi, vj) and B(vi, vj), and C is the
identity operator.
We take a basis in V pq for which (∇vi,∇vj)Ω = δij (the construction details are

rather technical and are omitted). Thus, if w0 � w(x, y) � w0 on Ω̄, then one can
take α0 = w0 and α0 = w0 (see § 2). From these facts, together with the fact that the
eigenvalues of the discretized problem converge to those of (5.1), we conclude based
on theorem 4.1 that in the present case the convergence of SER iterations is uniform
in the discretization parameters p and q. The numerical results below confirm this
conclusion.
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Table 1. First 25 eigenvalues of the discretized problem (5.1) (p = q = 20)

1.0625 8.0626 13.0625 20.0626 26.0626

2.0625 9.0625 16.0625 20.0627 26.0630

4.0625 10.0625 17.0625 25.0627 29.0627

5.0625 10.0625 17.0626 25.0629 29.0631

5.0625 13.0625 18.0626 25.0629 32.0632

Table 2. Number of SER iterations versus discretization parameters

q
︷ ︸︸ ︷

p 12 14 16 18 20

12 377 407 381 378 349

14 368 372 409 345 362

16 431 351 405 370 380

18 358 373 423 376 405

20 359 384 377 375 395

In our numerical experiments we take w(x, y) = eαx so that the eigenvalues of
problem (5.1) are

{λk}k=0,∞ = {λkij
}i=1,∞;j=0,∞, λkij

= 1
4α

2 +

(
πi

a

)2

+

(
πj

b

)2
pij

b
. (5.3)

Using this formula it is easy to arrange that the problem (5.1) contains clusters of
eigenvalues. Specifically, we set a = b = π so that the problem (5.1) has double eigen-
values (e.g. λk12

= λk21
), triple eigenvalues (e.g. λk34

= λk43
= λk50

) and eigenvalues
which are close to each other (e.g. λk40

, λk41
, λk14

). Consequently, the discretized
problem contains clusters of eigenvalues. Furthermore, the distances between eigen-
values in a cluster corresponding to a multiple eigenvalue of the differential problem
generally depend on the discretization. However, the convergence estimate for SER
is independent of the distances between individual eigenvalues in a cluster (see § 4).
Thus, we can assert that the convergence of SER is robust even in the presence of
clusters and multiple eigenvalues.
Table 1 shows the first (smallest) 25 eigenvalues of the discretized problem (5.1)

with w(x, y) = ex/2 calculated using SER. Table 2 summarizes the convergence
results for these eigenvalues. As is common in practical subspace iteration calcu-
lations, we take m slightly greater than the number of eigenpairs sought, namely
m = 35, and we apply the transformation (3.1), with kn chosen as described in § 4,
only to ukn

for which the relative residual

√

[Ar(un
kn
), r(un

kn
)]/[Aun

kn
, un

kn
]

is greater than 0.01 for kn < 25 and greater than 0.5 for kn � 25. Table 2 shows the
number of iterations (3.1) versus the discretization parameters p and q. We observe
that the convergence of SER is robust, i.e. uniform in p and q.
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Epilegomena

Here we conclude with some reflections on SER. In a previous paper (Ovtchinnikov &
Xanthis 2000a) we have introduced a methodology for computing the minimal eigen-
value (with theoretical convergence estimates) for three-dimensional large-scale prob-
lems for thin elastic structures (e.g. rods, plates and shells). Our efforts to extend this
work to several eigenvalues (including multiple and clustered ones) based on exist-
ing eigensolvers revealed—after thorough scrutiny of the literature—the difficulties
already discussed at the outset. With SER we radically overcome these difficulties,
thus eloquently justifying its raison d’être and unique role amongst other eigensolvers
(cf. Prolegomena and Introduction). Although SER is particularly attractive for pre-
conditioned large-scale problems, our numerical example was chosen to accentuate
and illustrate the fact that SER performs well also for other classes of problems
unrelated to preconditioning. The full computational capabilities of SER will emerge
when one undertakes extensive numerical (large-scale) computations to demonstrate
its performance and relative merits compared with other methods (eigensolvers). Our
current work aims at providing such a demonstration.
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