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Successive Localization and Beamforming in 5G

mmWave MIMO Communication Systems
Bingpeng Zhou , Member, IEEE, An Liu , Senior Member, IEEE, and Vincent Lau, Fellow, IEEE

Abstract—Beamforming is an attractive technique to improve
the system performance for multi-input multi-output (MIMO)
communications. Previous works mainly focus on improving the
data transmission quality. However, the potential of beamform-
ing for improving the localization quality is not yet fully studied.
In this paper, we focus on active beamforming to reduce the user
equipment (UE) localization error for millimeter-wave MIMO sys-
tems. Such beamforming for localization is of challenge because
its optimization cost function (e.g., the localization error bound)
also depends on the actual UE location and instantaneous channel
states, which are unknown in advance. To address this challenge, a
novel successive localization and beamforming (SLAB) scheme is
proposed, where the long-term UE location and the instantaneous
channel state will be jointly estimated and then the beamforming
vector will be successively optimized as per the obtained estimation
results. The proposed SLAB scheme will yield a sequence of beam-
forming weights and UE location estimates, which will converge to
the stationary point of the associated optimization problem. Simu-
lation results show that the proposed SLAB scheme achievesa huge
performance gain for UE localization compared with state-of-the-
art baselines.

Index Terms—5G localization, mmWave MIMO, beamforming,
Cramer-Rao lower bound.

I. INTRODUCTION

W
IRELESS localization is of increasing importance for

5G communications, particularly for the millimeter-

wave (mmWave) multiple-input-multiple-output (MIMO) sys-

tems, due to the expected rising demands of localization-based

services in the future [1]–[3].

A number of papers regarding the localization of mmWave

systems [4]– [8] have been published. For instance, active beam-

forming (BF) is proposed in [9] to enhance the localization ac-

curacy of distributed antenna systems. However, active BF for
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localization of a mmWave MIMO system has not yet been stud-

ied. Compared with radio resource optimizations for improving

communication qualities (such as maximizing the sum capac-

ity [10] and the error bit probability [11], and minimizing the

outage probability [12], the mean squared error [13] and the

power subject to minimal rate constraint [14]), radio resource

optimization targeting for localization is quite challenging for

the following reasons.
� Parameter Uncertainties: The cost function (i.e., Cramer-

Rao lower bound (CRLB) [8] on localization errors) of

the BF optimization depends on the BF vector, channel

states and the actual user location. However, the actual

user location and channel states are unknown in advance.
� Non-convexity Of the BF Optimization: The localization-

oriented BF optimization is a non-convex problem. Tradi-

tional brute-force solutions may result in a poor solution

or lead to a high computational cost.

In [15]–[18], power and bandwidth optimization for local-

ization (by optimizing the CRLB) was studied, where the user

location is assumed to be known. To overcome the first chal-

lenge, a solution from a robust optimization method is used to

optimize the radio resource for localization [19]–[21]. Specifi-

cally, a worst case CRLB with respect to (w.r.t.) an uncertainty

set of UE location parameters is used as the optimization ob-

jective. However, such a robust optimization method is usually

over-conservative, especially when the uncertainty set is large.

This uncertainty jeopardizes the associated performance gain.

To overcome the con-convexity challenge, the successive con-

vex approximation (SCA) or majorization minimization (MM)

methods are commonly used. Please refer to [22]–[25] for the

details. However, the brute-force application of these algorithms

will result in poor performance.

In this paper, we focus on the active BF optimization for

5G mmWave localization. To overcome the above challenges,

we propose a novel successive localization and beamforming

(SLAB) scheme which does not require a known UE location

or the known uncertainty set of the user location. The proposed

SLAB performs an alternating optimization of base station BF

vectors (namely the beamforming refinement (BFR)), long-term

user equipment (UE) location parameters and instantaneous

channel state (namely the localization and channel estimation

(LCE)). The proposed SLAB solution generates a sequence of

location estimates and BF updates, which is shown to approach

the performance of the genie-aided BF strategy (the optimal BF

with a known UE location). As a result, the proposed solution

achieves significant performance gains in localization accuracy
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Fig. 1. Illustration of the mmWave MIMO system for localization and BF.

over various state-of-the-art baselines. The following summa-

rizes the main contributions.
� Successive Localization and BF Optimization: The pro-

posed SLAB algorithm based on alternating optimization

of two subproblems, namely BFR and LCE, does not re-

quire any prior assumption on the UE location. Moreover,

it can achieve a significant performance gain over existing

robust optimization approaches. Unlike the conventional

UE localization methods, such as [26] and [27], which first

perform the intermediate step of time-of-arrival (ToA) or

angle-of-arrival (AoA) estimation combined with trilatera-

tion or triangulation, the proposed LCE algorithm directly

estimates the UE and scatterer locations, with problem-

specific update rule designs.
� Successive Non-Convex Approximation: To overcome the

challenge of non-convexity, we propose a novel successive

non-convex approximation method to derive an efficient

BFR algorithm for the SLAB problem. In traditional SCA

algorithm designs, a convex surrogate function is used

to derive low complexity iterations. In contrast, in our

BFR algorithm, we exploit a specific problem structure

and propose a non-convex surrogate function with closed-

form iterations, which simultaneously preserves the impor-

tant inherent structure of the BFR subproblem. Thus, the

proposed BFR algorithm has fast convergence and good

performance.
� Convergence Analysis of SLAB: The convergence analysis

of SLAB is non-trivial, since it involves a coupled dynamic

issue between the fast-time-scale channel states and the

varying BF strategies. We have addressed this issue in

associated convergence proof.

The remainder of this paper is organized as follows. Section II

presents system model. Problem formulation and outline of the

proposed SLAB scheme are presented in Section III. The novel

LCE and BRF algorithms of SLAB are elaborated in Section IV

and V, respectively. In Section VI, the associated convergence

is analyzed. Simulations results are presented in Section VII.

Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a mmWave system with J base stations (BSs),

one UE and N ′
C subcarriers. Each BS has NB antennas, whereas

the UE has NU antennas, as shown in Fig. 1. In addition, we

Fig. 2. The frame structure and subcarrier allocation of SLAB.

consider the uniform linear antenna array for UE and BS’s.

However, the SLAB scheme proposed in this paper can be

applied to an arbitrary-shaped antenna array. At each time slot

(indexed by k), BSs will transmit downlink pilot signals for the

UE to jointly estimate the UE location (including orientation)

and channel gains based on the received signals. In the follow-

ing, we will elaborate the frame structure of the system, the

channel model, the geometric model for UE localization, and

the received signal model.

A. Frame Structure

The frame structure of the SLAB scheme is illustrated in

Fig. 2. We focus on a coherence time interval of channel statis-

tics within which the ToA, angle-of-departure (AoD) and AoA

of each channel path and the distribution of small-scale fading

coefficients are invariant. The coherence time of channel statis-

tics consists of several time slots, and the small-scale fading

coefficients are constant within each time slot. Moreover, each

time slot consists of a number of symbols, where the first M
symbols are used to transmit training BF vectors for joint local-

ization and channel estimation, and the rest are used to transmit

data, as illustrated in Fig. 2. Let ωj [n,m] ∈ C
NB be the mth

training BF vector transmitted from the NB antennas of the jth

BS on the nth subcarrier.1

In order to ensure the effectiveness of SLAB, we assume

the received signals from different BSs can be identified by

UE, via a frequency-division-based coordinated multiple point

transmission technique [29]. To be specific, the N ′
C subcarriers

of each pilot are fairly allocated to those J BSs via some prede-

fined scheduling procedure, and thus each BS has NC = N ′
C/J

subcarriers to transmit training BF pilots (we assume NC is

an integer). For instance, the subcarriers of the jth BS are

given by {j, j + J, . . . , j + (NC − 1)J}. For brevity, we use

Θj = {j, j + J, . . . , j + (NC − 1)J} to denote the index set of

subcarriers associated with the jth BS. Let ω ∈ C
NB J NC M =

vec [ωj [n,m]|∀n ∈ Θj ,∀m = 1 : M,∀j = 1 : J ] be the col-

lection of the training BF vectors.

It should be noted that the realization of BF vector ω will be

determined at each BFR stage, and thus it will be viewed as an

unknown parameter to be optimized in the BFR stage. Once it

is optimized, it will keep invariant (a known signal) at the LCE

1We slightly abuse the use of “BF vector” without any ambiguity, which
incorporates both the BF matrix and the training pilot [28].
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stage. In addition, during the BFR phase at each time slot k,

the channel h[k] is still unknown. Therefore, we can only adapt

the training BF vector ω according to the channel statistics,

instead of the instantaneous channel h[k]. Moreover, we have

no assumption on the structure of training sequence,2 and we

will use a general-form expression of beamformer ω.

B. Channel Model With Limited Scattering

We consider the limited scattering in the mmWave channel.

Specifically, let uj ∈ R
2 and ϕj ∈ [−π, π) be the known co-

ordinate and angular position, respectively, of the jth BS. Let

x ∈ R
2 and ϑ ∈ [−π, π) be the unknown position and orienta-

tion, respectively, of the UE. We assume there are L + 1 paths

in the scattering channel (l = 0 for the line-of-sight (LOS) path,

and l > 0 for the non-line-of-sight (NLOS) path), where L is

the maximum number of paths between the UE and any BS.

Let τl,j , θB ,l,j and θU ,l,j denote the ToA, AoD and AoA, re-

spectively, of the lth path associated with the jth BS, which are

unknown scalars. For each NLOS path, there is a scatterer with

an unknown location, as shown in Fig. 1. Let vl,j ∈ R
2 be the

unknown location of the scatter associated with the lth path and

the jth BS.

For given large-scale multipath parameters τl,j , θB ,l,j , θU ,l,j ,

∀l, the channel matrix H̃j [k, n] ∈ C
NB ×NU between the jth BS

and the UE on the nth subcarrier is given by [5]

H̃j [k, n] = AU ,j [n]Hj [k, n]AH
B ,j [n],

whereAB ,j [n] ∈ C
NB ×(L+1) is the steering matrix of the jth BS

antenna array on the nth subcarrier, and AU ,j [n] ∈ C
NU ×(L+1)

is the response matrix of UE antenna array on the nth subcarrier,

which depend on the unknown angular parameters such as θB ,l,j

and θU ,l,j , given by

AB ,j [n] = [aB ,n (θB ,0,j ), . . . ,aB ,n (θB ,L,j )], (1)

aB ,n (θB ,l,j ) = vec[e−j
d B π

λn
(t−1) sin θB , l , j |∀t = 1 : NB ], (2)

AU ,j [n] = [aU ,n (θU ,0,j ), . . . ,aU ,n (θU ,L,j )], (3)

aU ,n (θU ,l,j ) = vec[e−j
d A π

λn
(r−1) sin θU , l , j |∀r = 1 : NU ], (4)

in which j =
√
−1, λn denotes the wavelength associated with

subcarrier n, and dA is the distance between the antenna ele-

ments of each BS, which are known scalars.

In addition, Hj [k, n] ∈ C
(L+1)×(L+1) is the frequency-

domain channel matrix on the nth subcarrier:

Hj [k, n] =
√

NBNUdiag
{
hl,j [k]e

−j2π n
N ′

C
T s

τ l , j |∀l = 0 : L
}
,

where hl,j [k] denotes the small-scale fading coefficient of the lth
path associated with the jth BS at time slot k (note that we ab-

sorb the path loss into the small-scale fading coefficient), and Ts

is the sampling period. For convenience, let h[k] ∈ C
J (L+1) =

2In practice, the training sequence structure will affect the receiver-end SNR
and hence the UE localization error, as will be implied in (20).

vec[hl,j [k]|∀l = 0 : L,∀j = 1 : J ] denote the small-scale fad-

ing channel vector, which is an unknown variable. We as-

sume h[k] ∼ CN (h[k]|0,Σ) is independent and identically

distributed over different time slots, where Σ is the variance

matrix of h[k] which is assumed to be known.

C. Geometric Model for UE Localization

Let α ∈ R
2J L+3 = [x⊤, ϑ,v⊤]⊤ be the set of location pa-

rameters, where v ∈ R
2J L = vec[vl,j |∀l = 1 : L, ∀j = 1 : J ]

is the collection of unknown scatter locations. The relationship

between {x,vl,j , ϑ} and {τl,j , θB ,l,j , θU ,l,j} is given by

τ0,j =
‖x − uj‖2

c
, (5)

τl,j =
‖x − vl,j‖2 + ‖uj − vl,j‖2

c
, l > 0, (6)

θB ,0,j = arccos

(
(x − uj )

⊤eX

‖x − uj‖2

)
− ϕj , (7)

θB ,l,j = arccos

(
(vl,j − uj )

⊤eX

‖vl,j − uj‖2

)
− ϕj , l > 0, (8)

θU ,0,j = π + arccos

(
(x − uj )

⊤eX

‖x − uj‖2

)
− ϑ, (9)

θU ,l,j = π + arccos

(
(x − vl,j )

⊤eX

‖x − vl,j‖2

)
− ϑ, l > 0, (10)

where c is the light speed, and eX = [1, 0]T .

D. Received Signal Model

Let zj [k, n,m] ∈ C
NU be the observation signal, i.e., the mth

received pilot signal vector on subcarrier n from the jth BS at

the kth time slot, which is given by [5]

zj [k, n,m] = H̃j [k, n]ωj [n,m] + ǫj [k, n,m], (11)

where ǫj [k, n,m] ∈ C
NU denotes the measurement noise vec-

tor at the UE side, and we generally assume ǫj [k, n,m] ∼ CN
(ǫj [k, n,m]|0NU

, σ2INU
) with the variance σ2 . Let z[k] ∈

C
NU NC M J = vec[zj [k, n,m]|∀n ∈ Θj ,∀m = 1 : M,∀j =

1 : J ] and ǫ[k] ∈ C
NU NC M J = vec[ǫj [k, n,m]|∀n ∈ Θj ,∀m

= 1 : M,∀j = 1 : J ] be the collection of received pilot signals

and noise vectors, respectively. Then, given a training BF vector

ω, the measurement signal z[k] can be expressed as a function

of the slow-timescale location parameter α, the fast-timescale

channel h[k] and the noise vector ǫ[k] as

z[k] = g(α,h[k];ω) + ǫ[k], (12)

where g(α,h[k];ω) is the measurement function, given by

g(α,h[k];ω) = G(α;ω)h[k], (13)

in which G(α;ω) ∈ C
NU NC M J×J (L+1) is called the coeffi-

cient matrix of channel vector h[k], which is dependent on the
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unknown location parameter α and given by [5]

G(α;ω) = diag[Gj |∀j = 1 : J ], (14)

Gj ∈ C
NU NC M ×(L+1) = vec[g

(r)H
j [n,m]|∀r,∀n,∀m], (15)

g
(r)
j [n,m] ∈ C

L+1 = vec[g
(r)
l,j [n,m]|∀l = 0 : L], (16)

g
(r)
l,j [n,m] = ωH

j [n,m]µ
(r)
l,j,n , (17)

µ
(r)
l,j,n ∈ C

NB = vec[μ
(r,t)
l,j,n |∀t = 1 : NB ], (18)

μ
(r,t)
l,j,n = a

(r)
U ,n (θU ,l,j )e

−j2π n
N ′

C
T s

τ l , j

(a
(t)
B ,n (θB ,l,j ))

∗, (19)

where a
(r)
U ,n (θU ,l,j ) and a

(t)
B ,n (θB ,l,j ) denote the rth and the tth

elements of aU ,n (θU ,l,j ) and aB ,n (θB ,l,j ) in (4) and (2), respec-

tively. Note that, a
(r)
U ,n (θU ,l,j ) and a

(t)
B ,n (θB ,l,j ) are functions of

location parameters x, ϑ and vl,j via (5)–(10).

III. THE PROPOSED SLAB SCHEME

We first formulate the localization-oriented beamforming

(LOB) problem and then point out its challenges. After that, we

outline the proposed SLAB scheme and explain how it addresses

the challenges. In the next two sections, we will elaborate the

proposed SLAB scheme.

A. Problem Formulation Of LOB

Let β[k] ∈ C
3J L+J +3 = [α;h[k]] be the joint variable of α

and h[k]. At each time slot k, an LCE algorithm is used to

obtain a new estimate of β[k]. The minimum mean squared

error (MSE) of a specific LCE algorithm for β[k] is given by

MSEβ[k ](ω) = Eh[k ],ǫ[k ]{‖β[k] − β̂[k]‖2
2},

where the expectation is taken w.r.t. ǫ[k] and h[k]. It should

be noted that MSEβ[k ](ω) depends on the BF vector ω. Yet,

there is no closed-form expression of MSEβ[k ](ω) due to the

nonlinear model G(α;ω) w.r.t. α. To address this challenge,

we first obtain a closed-form lower bound, i.e., CRLB [30], for

the MSE of an arbitrary LCE algorithm, and then we use the

obtained CRLB as a performance metric to optimize the BF

vector, as elaborated later. This is effective since the reduction

of the lower bound usually means the reduction of the actual

MSE, which has been widely adopted, as in [15]–[21].

Lemma 1 (Lower Bound of MSE): For a given training BF

vector ω, the MSE performance of an arbitrary LCE algorithm,

denoted by MSEβ[k ](ω), is bounded from below as

MSEβ[k ](ω) ≥ trace
(
B̄β[k ](α,Σ;ω)

)
,

where B̄β[k ](α,Σ;ω) ∈ S
3J L+J +3 is called the long-term

CRLB of β[k] (in terms of the average over small-scale fad-

ing h[k]), given by (20) shown at the bottom of this page,

where K
(r)
n,m

(
α;ω

)
∈ C

(2J L+3)×J (L+1) and G
(r)
n,m

(
α;ω

)
∈

C
J×J (L+1) will be given by (49) and (54), respectively, in

Appendix A.

Proof: The proof is given in Appendix A. �

Given this long-term CRLB, we propose to design the BF

vector ω as the following minimization problem:

PLOB : ω⋆ = arg min
ω

trace
(
B̄β[k ](α,Σ;ω)

)
, (21)

s.t. ‖ωj [n,m]‖2 ≤ 1, ∀n,m, j, (22)

where the BF vector ω is viewed as an unknown parameter to

be optimized. It should be noted that we consider to adopt the

“long-term” CRLB B̄β[k ](α,Σ;ω) adaptive to the statistics of

h[k] in the cost function of BF optimization, since the “instan-

taneous” CRLB adaptive to the instantaneous h[k] is practically

unavailable because the instantaneous h[k] is still unknown be-

fore BF training at time slot k.3

Challenge. However, there are two technical challenges in the

above BF optimization problem PLOB :
� B̄β[k ](α,Σ;ω) used for LOB is dependent on the true

value of α that is, however, unknown beforehand.
� PLOB is a non-convex problem w.r.t. ω.

For the unknown location parameters in the cost function,

conventional methods [19]–[21] in a power allocation regime

resort to optimizing the worst case CRLB within an uncer-

tain set of UE location parameters. These methods are usually

over-conservative, especially when the uncertainty set of the

UE location is large, thus jeopardizing the associated perfor-

mance gain. Regarding the non-convex problem, conventional

algorithms such as [31] resort to optimizing the BF vector ω via

maximizing the Fisher information matrix (FIM, i.e., inverse

CRLB), where the FIM constraint is formulated as a linear ma-

trix inequality (LMI). However, due to the semidefinite positive

approximation and rank relaxation, there will be a non-ignorable

performance loss in these methods.

3The CRLB B̄β [k ](α, Σ; ω) in (20) contains two types of CRLB

sub-matrices, i.e., the location-related CRLB (the (2JL + 3) × (2JL +
3) left-top submatrix, denoted by B̄α(α, Σ; ω)) and the channel-related
CRLB (the (JL + J ) × (JL + J ) right-bottom submatrix, denoted by
B̄h [k ] (α, Σ; ω)), which might be in different scales. In practice, we can ad-
just them into the same scale via matrices normalization over the corresponding
sub-matrix traces, as illustrated in (23),

B̃β [k ](α, Σ; ω) =

⎡
⎢⎣

B̄α(α,Σ ;ω)

trace

(
B̄α(α,Σ ;w [0 ])

) 0(2J L+3)×J (L+1)

0H
(2J L+3)×J (L+1)

B̄h [k ] (α,Σ ;ω)

trace

(
B̄h [k ] (α,Σ ;w [0 ])

)

⎤
⎥⎦ .

(23)

where w[0] is the realization of BF vector ω at the initial time slot k = 0.

Then, the normalized CRLB B̃β [k ](α, Σ; ω) can be adopted as the new cost
function in (21) to take care of the different scaling issue, which will not affect
the structure of the proposed BFR method.

B̄β[k ](α,Σ;ω) = σ2

(
∑

r,n,m

[
K

(r)
n,m

(
α;ω

)
Σ
(
K

(r)
n,m

(
α;ω

))H
0(2J L+3)×J (L+1)

0H
(2J L+3)×J (L+1)

(
G

(r)
n,m (α;ω)

)H
G

(r)
n,m (α;ω)

])−1

. (20)
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Fig. 3. Illustration of the main SLAB diagram and the associated time line.

B. Outline of the SLAB Scheme

To address the above challenges, we propose a novel SLAB

scheme to find a stationary point of PLOB (the optimized train-

ing BF vector), and simultaneously obtain the estimate of loca-

tion parameters and channel state at each time slot.

Specifically, starting from an initial BF vector w[1] at time

slot k = 1,4 we alternately update the estimate of joint parameter[
α;h[k]

]
and optimize the BF choice w[k], until the obtained

BF sequence {w[k]} and the location parameter estimate se-

quence {ᾱ[k]} converge. Thus, at each time slot k, the SLAB

scheme is comprised of two stages, i.e., the joint localization and

channel estimation (LCE) stage and the BF refinement (BFR)

stage. At the LCE stage, the estimate of location parameter α is

updated and the channel parameter h[k] is estimated based on

the fresh measurements z[k]. Then, at the BFR stage, the BF vec-

tor ω will be refined based on the updated location parameter

estimate ᾱ[k] from the LCE stage (via minimizing the long-

term CRLB trace
(
B̄β[k ](ᾱ[k],Σ;ω)

)
over ω). Afterwards,

BSs will transmit new pilot signals by using the newly opti-

mized BF vector w[k + 1], and the new measurement z[k + 1]
will be received at the UE. Based on z[k + 1], the UE will fur-

ther update its location parameter estimate ᾱ[k + 1] using the

LCE algorithm (i.e., the new LCE stage again). This alternating

optimization process between LCE and BFR will repeat until

{w[k]} and {ᾱ[k]} converge. The main diagram of SLAB is

illustrated in Fig. 3. The LCE and BFR stages are outlined as

follows.

Outline of the LCE Stage: At the kth time slot, the LCE stage

is to determine the location estimate ᾱ[k] (based on a fusion

criterion) and the channel estimate ĥ[k], as follows.

Firstly, a new estimate β̂[k] =
[
α̂[k]; ĥ[k]

]
is determined by

solving the following optimization problem:

A
(LCE)
SLAB : β̂[k] = arg min

β
‖z[k] − g(β;w[k])‖2

2 , (24)

where it should be noted that the measurement z[k] used for LCE

depends on the training BF vector w[k] obtained in the previous

BFR stage. The details of the LCE algorithm to estimate α̂[k]

and ĥ[k] will be elaborated in Section IV.

4We use w[k] to denote the realization of ω at the kth time slot.

Secondly, once a new estimate α̂[k] is obtained as above, the

UE location parameter ᾱ[k] will be updated by fusing the new

estimate α̂[k] from fresh measurement z[k] and the previous

result ᾱ[k − 1] in the following manner:

ᾱ[k] = (Λ[k])−1
(
Λ[k − 1]ᾱ[k − 1] + Λ♯ [k]α̂[k]

)
, (25)

where Λ [k − 1] ∈ S
2J L+3 is the overall estimation precision

matrix at the previous time slot, Λ♯ [k] ∈ S
2J L+3 is the esti-

mation precision matrix associated with the fresh measurement

z[k] at the current time slot, and Λ[k] ∈ S
2J L+3 is the overall

estimation precision matrix obtained so far, given by5

Λ[k] = Λ[k − 1] + Λ♯ [k], (26)

Λ♯ [k] =
(
Bα(α̂[k], ĥ[k];w[k])

)−1
, (27)

where Bα(α̂[k], ĥ[k];w[k]) ∈ S
2J L+3 is the CRLB of α, de-

pending on the BF vector w[k] obtained at the previous BFR

stage. The CRLB of α is actually the (2JL + 3) × (2JL + 3)

top-left sub-matrix of CRLB matrix Bβ[k ](α̂[k], ĥ[k];w[k])

of joint variable β[k]; that is to say, Bα(α̂[k], ĥ[k];w[k]) =

[Bβ[k ](α̂[k], ĥ[k];w[k])][1:(2J L+3)]×[1:(2J L+3)] , and the joint-

variable CRLB Bβ[k ](α̂[k], ĥ[k];w[k]) ∈ S
3J L+J +3 is given

by (47). We set the initial fusion precision Λ[0] = 0.

Outline of the BFR Stage: The BFR stage is to derive a refined

BF vector w [k + 1] for the next LCE stage at time slot (k + 1)
by minimizing an approximate long-term CRLB, i.e.,

A
(BFR)
SLAB : w[k + 1] = arg min

ω
trace

(
B̄β[k ](ᾱ[k],Σ;ω)

)

(28)

s.t. ‖ωj [n,m]‖2 ≤ 1, ∀j, n,m. (29)

A
(BFR)
SLAB is non-convex w.r.t. ω, and the BFR algorithm to

solve A
(BFR)
SLAB will be given later in Section V. As such, the

overall SLAB scheme is summarized in Algorithm 1. By alter-

nately repeating the LCE and BFR stages, the SLAB scheme

will yield a gradually-refined BF vector w[k] and location pa-

rameter estimate ᾱ[k], until w[k] and ᾱ[k] converge.

IV. THE PROPOSED LCE ALGORITHM

In this section we will elaborate the LCE algorithm to solve

A
(LCE)
SLAB and then we will elaborate the BFR algorithm to solve

A
(BFR)
SLAB in the next section.

A. Nature of the LCE Problem

It should be noted that A
(LCE)
SLAB is a non-convex optimization

problem w.r.t. (α,h[k]). A number of optimization methods can

be used to find the globally optimal solution to a non-convex

problem, e.g., the branch-and-band algorithm [32]. However,

such a global search algorithm usually has a high computational

5Note that we have assumed that h[k] is independently and identically dis-
tributed, and thus there is no channel estimate gain from the previous time slots.

Hence, the filtering of β̂[k] will equivalently reduce to the filtering of ᾱ[k]
(given by (25)) in conjunction with the independent estimate of h[k] (will be
given by (30)), without loss of filtering performance.
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Algorithm 1: The Proposed SLAB Scheme.

Input: The initial measurement z[k], k = 1, and

channel variance matrix Σ.

1: Determine the initial BF choice w[1].
2: While not satisfied do (for k = 1 : K)

3: Determine the geometric parameter estimate ᾱ[k]

and channel estimate ĥ[k] from z[k] associated

with BF choice w[k], by using Algorithm 2 (LCE).

4: Determine the BF vector w[k + 1] based on

B̄β[k ](ᾱ[k],Σ;ω), by using Algorithm 3 (BFR).

5: Receive new z[k + 1] dependent on w[k + 1].
6: End

Output: {ᾱ[k], ĥ[k]}, and w[k].

complexity. Hence, we propose a successive linear least square

(SLLS)-based low-cost algorithm to find a stationary solution

to A
(LCE)
SLAB via leveraging the hybrid convexity/non-convexity

structure.

Since the measurement function g(α,h[k];w[k]) in (13) is

linear w.r.t. the channel h[k], there is a hidden convex structure

w.r.t. h[k]. As a result, the LCE problem A
(LCE)
SLAB in (24) is

convex for h[k] (conditioned on ᾱ[k]) but non-convex for α.

B. The SLLS-Based LCE Algorithm

By exploiting such a hidden convex structure, we decompose

the LCE problem A
(LCE)
SLAB into two components, (convex) chan-

nel estimate and (non-convex) UE localization. Then, we solve

A
(LCE)
SLAB by alternately optimizing the convex component h[k]

and the non-convex component α.

1) Channel Estimate: For the convex component h[k], we

derive its least square solution (which is the optimal estimate

due to the linear Gaussian model (12)), depending on a fresh

guess α
♮
[i][k] of α (elaborated by (31)). At the ith iteration,

given α
♮
[i][k], h♮

[i][k] is given by

h
♮
[i][k] =

(
GH(α♮

[i][k])
)†

z[k], (30)

where † is the pseudo-inverse, and G(α♮
[i][k]) dependent on

α
♮
[i][k] is given by (14). Finally, when the iteration converges, we

have ĥ[k] = h
♮
[i][k]. The fresh guess α

♮
[i][k] at the ith iteration

within the kth time slot is determined as follows.

2) UE Localization: For the non-convex problem associated

with α, we employ the SLLS method to find a stationary solution

to A
(LCE)
SLAB for α, by exploiting a convex approximation to

the cost function in (24). Specifically, we iteratively solve the

convex subproblems A
(LCE)

SLAB ,[i] to first find a candidate update

α◦
[i+1][k], for i = 1 : MI ,

A
(LCE)

SLAB ,[i] : α◦
[i+1][k] = arg min

α
fS

(
α;α♮

[i][k],h♮
[i] [k]

)
, (31)

where fS

(
α;α♮

[i][k],h♮
[i] [k]

)
denotes the surrogate function of

the original cost function in (24), given by (32) shown at

the bottom of this page, where ∇α g
(
α

♮
[i][k];h♮

[i] [k],w[k]
)
∈

C
(2J L+3)×J M NU NC is given by (56) in Appendix B.

Note that fS(α;α♮
[i][k],h♮

[i] [k]) is different from the standard

gradient-based surrogate function fG

(
α;α♮

[i][k],h♮
[i] [k]

)
given

by (33) shown at the bottom of this page, that is usually adopted

in conventional localization methods, for instance [33] and [34].

In addition, fS(α;α♮
[i][k],h♮

[i] [k]) preserves the second-order

structure of the original cost function in (24). Therefore, it can

lead to a faster convergence speed than conventional gradient-

based methods, which will be elaborated and confirmed later by

theorem 2 and also verified by simulations.

At each iteration, since A
(LCE)

SLAB ,[i] is strictly convex, we can

give the closed-form expression of α◦
[i+1][k] as in (34) shown

at the bottom of this page, where p[i][k] is its update direction

that is different from the gradient.

Then, given p[i][k], the new update α
♮
[i+1][k] is given by

α
♮
[i+1][k] = α

♮
[i][k] + γ[i]p[i][k], (35)

where γ[i] is the step size subject to the Armijo rule (36) shown

at the bottom of the next page, in which f(α;h♮
[i][k]) = ‖z[k] −

g(α;h♮
[i][k],w[k])‖2

2 is the cost function depending on h
♮
[i][k],

and ∇αf(α♮
[i][k];h♮

[i] [k])=∇H
α g(α♮

[i][k];h♮
[i] [k],w[k])(g(α♮

[i]

[k];h♮
[i] [k],w[k]) − z[k]) ∈ R

2J L+3 is the gradient vector of

fS

(
α;α♮

[i][k],h♮
[i] [k]

)
=
∥∥z[k] − g

(
α

♮
[i][k];h♮

[i] [k],w[k]
)
−∇H

α g
(
α

♮
[i][k];h♮

[i] [k],w[k]
)(

α − α
♮
[i][k]

)∥∥2

2
(32)

fG

(
α;α♮

[i][k],h♮
[i] [k]

)
= ‖z[k] − g

(
α

♮
[i][k];h♮

[i] [k],w[k]
)
‖2

2 + ‖α − α
♮
[i][k]‖2

2

− 2
(
z[k] − g

(
α

♮
[i][k];h♮

[i] [k],w[k]
))H∇H

α g
(
α

♮
[i][k];h♮

[i] [k],w[k]
)(

α − α
♮
[i][k]

)
. (33)

α◦
[i+1][k] = α

♮
[i][k] +

(
∇H

α g
(
α

♮
[i][k];h♮

[i] [k],w[k]
))†(

z[k] − g
(
α

♮
[i][k];h♮

[i] [k],w[k]
))

︸ ︷︷ ︸
p [ i ] [k ]

. (34)
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the original cost function f(α♮
[i][k];h♮

[i] [k]) w.r.t. α around α =

α
♮
[i][k]. A legal γ[i] can be obtained by starting from a certain

γ[i] > 0 and repeatedly trying γ[i] = νγ[i] with ν ∈ (0, 1) until

(36) is satisfied.

The obtained solution in (34) combined with (35) and (25)

will finally result in a closed-form undate of ᾱ[k] for the non-

convex problem A
(LCE)
SLAB , as summarized in Algorithm 2.

C. Analysis of SLLS-Based Location Update

We shall analyze the convergence of SLLS-based localization

and quantify the associated convergence rate.

Theorem 1 (Convergence of SLLS-based Localization): If

the gradient matrix ∇αg(α♮
[i][k];h♮

[i] [k],w[k]) is full-column-

rank, then α
♮
[i][k] will converge to a stationary point of the

problem A
(LCE)
SLAB in (24), as the iteration number i → ∞.

Proof: See Appendix C. �

It should be noted that the update direction of the LCE-based

localization, i.e., p[i][k], is different from that of the traditional

gradient descent (GD)-based methods [33], [34], and this can

achieve a second-order convergence rate as given in the follow-

ing theorem. Intuitively, this is because the proposed surrogate

function retains part of the second-order structure of the original

objective function.

Theorem 2 (Second-Order Convergence Rate of SLLS): If

the gradient matrix ∇αg(α♮
[i][k];h♮

[i] [k],w[k]) is full-column-

rank and the initial point α
♮
[0][k] is sufficiently close to an

arbitrary locally optimal solution α•[k] to A
(LCE)
SLAB , then the

convergence of the SLLS-based location parameter estimate

error is quadratic, i.e.,
∥∥α•[k] − α

♮
[i+1][k]

∥∥
2

= O
(∥∥α•[k] − α

♮
[i][k]

∥∥2

2

)
. (37)

Proof: See Appendix D. �

D. Summary of LCE Algorithm

Given an initial point α
♯
[0][k], the inner iterations of LCE stage

can find a stationary solution of (α♯
[i][k],h♯

[i] [k]) to A
(LCE)
SLAB

in (24), as i → ∞. Once inner iterations converge, the fresh

estimate of α and h[k] is determined by α̂[k] = α
♮
[i][k] and

ĥ[k] = h
♮
[i][k], respectively. Then, based on α̂[k] and the pre-

vious result ᾱ[k − 1], the geometric parameter estimate will be

updated to be ᾱ[k] as per (25). The pseudo-code of the LCE

approach for parameter fusion is summarized in Algorithm 2.

In addition, at the initial time slot, we use multiple parameter

samples to generate a good initial point α
♯
[0][1]. Namely, we

randomly generate multiple samples over the parameter space

of α, try all samples and then choose the best sample with the

minimum cost function value (see (24)) as the initial point. In

the following time slot k ≥ 2, the initial point is chosen to be

result of the last time slot, i.e., α
♯
[0][k] = ᾱ[k − 1].

Algorithm 2: The Proposed SLLS-based LCE Algorithm.

Input: The measurements z[k] and ᾱ[k − 1].

1: Initialize α
♮
[i][k] (for i = 0).

2: While not converge do (for i = 1 : MI)

3: Determine the channel state h
♮
[i][k] based on (30).

4: Find the best solution α
♮
[i][k] to A

(LCE)
SLAB ,[i] based on

the closed-from update equation (35), given the

previous-iteration result α
♮
[i−1][k] and h

♮
[i−1][k].

5: End

6: Determine the fresh estimate α̂[k] = ℜ{α♮
[i][k]}.

7: Update the location parameter ᾱ[k] by fusing α̂[k] and

ᾱ[k − 1] based on (25).

8: Determine the channel estimate ĥ[k] = h
♮
[i][k].

Output: The geometric parameter estimate ᾱ[k] and

channel estimate ĥ[k].

V. THE PROPOSED BFR ALGORITHM

In this section, we will elaborate the BFR algorithm to solve

subproblem A
(BFR)
SLAB in the proposed SLAB scheme. Let’s start

to explicate the motivation and then we give an outline of the

proposed BFR algorithm to explain how it addresses the chal-

lenge in subproblem A
(BFR)
SLAB .

A. Outline of the Proposed BFR Method

For the non-convex optimization in power allocation, conven-

tional algorithms, e.g., [31], resort to optimizing the BF vector

ω to maximize the localization FIM, where the FIM constraint

is formulated as an LMI form. However, due to the semidefi-

nite positive approximation and rank relaxation, there will be a

non-ignorable performance loss in these methods.

To address the con-convex problem A
(BFR)
SLAB in (28), in this

section, we propose a novel successive concave optimization

algorithm (named BFR) to iteratively optimize ω, which will

achieve a stationary solution to A
(BFR)
SLAB (as elaborated later).

We will show that at each time slot, the best BF vector for UE

localization is the principal eigenvector (one with the largest

eigenvalue) of the certain BFR feature matrix that is dependent

on the LCE result ᾱ[k].
Specifically, let w[i][k] be the BF solution at the ith iter-

ation of the BFR algorithm, and let κ(ω) be the cost func-

tion of A
(BFR)
SLAB , i.e., κ(ω) = trace((J̄ β[k ](ᾱ[k],Σ;ω))−1),

where J̄ β[k ](ᾱ[k],Σ;ω) ∈ S
3J L+J +3 is the FIM of β[k],

given by (38) shown at the bottom of the next page, where

B̄h[k ](ᾱ[k],Σ;w[0]) and B̄h[k ](ᾱ[k],Σ;w[0]) are given by

(23). The surrogate function at the (i + 1)th iteration, de-

noted as κS(ω;w[i][k]), is chosen to be a concave approxi-

mation of cost function κ(ω) around w[i][k], given by (39)

shown at the bottom of the next page, where the informative

f(α♮
[i][k] + γ[i]p[i][k];h♮

[i] [k]) ≤ f(α♮
[i][k];h♮

[i] [k]) + aγ[i]ℜ{∇H
αf(α♮

[i][k];h♮
[i] [k])p[i] [k]}, for some a > 0. (36)
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term Gj,n (ᾱ[k];w[i] [k]) ∈ S
NB , called the feature matrix of

LCE, is given by (40) shown at the bottom of this page,

where C(ᾱ[k];w[i] [k]) is a constant independent to ω, while

Gj,n (ᾱ[k];w[i] [k])∈ S
NB and Hj,n (ᾱ[k];w[i] [k])∈ S

NB is

given by (60) and (61), respectively, in Appendix E.

This surrogate κS(ω;w[i] [k]) in (39) is based on the first-

order Taylor expansion of κ(ω) around J̄ β[k ](ᾱ[k],Σ;ω) =
J̄ β[k ](ᾱ[k],Σ;w[i][k]). Its properties, which are useful for un-

derstanding the structure of the proposed BFR algorithm and its

convergence behavior, are summarized as follows.

Lemma 2: [Properties of κS(ω;w[i] [k])] The surrogate func-

tion κS(ω;w[i][k]) is locally tight around ω = w[i][k], i.e.,

(i) κS(w[i][k];w[i] [k]) = κ(w[i][k]), and (ii) its gradient vec-

tor satisfies ∇ωκS(w[i][k];w[i] [k]) = ∇ωκ(w[i][k]), where

∇ωj [n,m ]κ(w[i][k]) ∈ C
NB is given by (46), ∀j, n,m.

Proof: These properties can be directly verified based on

(28), (39) and (46), by letting ω = w[i][k]. �

Note that we have used a concave surrogate function, instead

of a convex one as in conventional SCA methods. This is because

κS(ω;w[i][k]) preserves some structure of the original problem

A
(BFR)
SLAB . Hence, it is a better approximation of κ(ω) with faster

convergence. Moreover, we can obtain a closed-form BF update

in (44) even if κS(ω;w[i][k]) is non-convex. Thus, the resulting

algorithm has a low computational cost.

B. Determination of the BF Update Direction

At the (i + 1)th iteration of the BFR algorithm, given the

previous BF vector w[i][k], the following minimization problem

is first solved to obtain the candidate update w
♯
[i+1][k]:

A
(BFR)

SLAB ,[i+1] : w
♯
[i+1][k] = arg min

ω
κS(ω;w[i][k])

s.t. ‖ωj [n,m]‖2 ≤ 1,∀j, n,m, (41)

and w
♯
[i+1][k] is used to determine a feasible update direction

vector d[i+1][k] ∈ C
NB J NC M for BF as follows,

d[i+1][k] = w
♯
[i+1][k] − w[i][k]. (42)

Since the channel coefficients {hl,j [k]|∀l,∀j} are identically

and independently distributed, A
(BFR)

SLAB ,[i+1] in (41) can be de-

composed into a series of subproblems {A (BFR)
j,[i+1] |j = 1 : J}

associated with all BSs, as given in (43) shown at the bottom of

this page. As a result, the BFR problem A
(BFR)

SLAB ,[i+1] associated

with various BSs can be solved in a parallel manner, which will

significantly reduce the calculation time. In addition, although

the subproblem A
(BFR)

j,[i+1] is non-convex w.r.t. ω, we find that it

is identical to Rayleigh quotient maximization [35], and thus

each component w
♯
j,[i+1][k, n,m] of w

♯
[i+1][k] in (41) is exactly

the principal eigenvector (the eigenvector associated with the

largest eigenvalue) of Gj,n (ᾱ[k];w[i] [k]).

C. Update of the BF Vector

Once obtaining d[i+1][k] via (42), the BF vector will be up-

dated based on the Armijo rule as follows,

wj,[i+1][k, n,m] = wj,[i][k, n,m] + γ′
[i]dj,[i+1][k, n,m],

(44)

where γ′
[i] > 0 is the step length determined by the Armijo

rule [40] in (45) shown at the bottom of the next page, where

∇ωj [n,m ]κ(wj,[i][k, n,m]) is the derivative of κ(ωj [n,m])
w.r.t. ωj [n,m] at ωj [n,m] = wj,[i][k, n,m], which is given

by (46) shown at the bottom of the next page, and INB
is the

NB × NB identity matrix. Specifically, starting with a certain

step size γ′
[i] > 0, the Armijo rule repeatedly decreases γ′

[i] as

γ′
[i] = νγ′

[i] for some ν ∈ (0, 1) until the condition in (45) is

satisfied.

J̄ β[k ](ᾱ[k],Σ;ω) = σ−2
∑

r,n,m

⎡
⎣K

(r)
n,m

(
ᾱ[k];ω

)
Σ
(
K

(r)
n,m

(
ᾱ[k];ω

))H
0(2J L+3)×J (L+1)

0H
(2J L+3)×J (L+1)

(
G

(r)
n,m (ᾱ[k];ω)

)H
G

(r)
n,m (ᾱ[k];ω)

⎤
⎦ . (38)

κS(ω;w[i][k]) = C(ᾱ[k];w[i] [k]) −
∑

n∈Θ j ,
j=1:J,

m=1:M

ω⊤
j [n,m]Gj,n (ᾱ[k];w[i] [k])ω∗

j [n,m]. (39)

Gj,n (ᾱ[k];w[i] [k]) = Gj,n (ᾱ[k];w[i] [k])
︸ ︷︷ ︸

UE localization feature matrix

+ Hj,n (ᾱ[k];w[i] [k])
︸ ︷︷ ︸

Channel estimate feature matrix

. (40)

A
(BFR)

j,[i+1] : w
♯
j,[i+1][k, n,m] = arg max

ωj [n,m ]

ω⊤
j [n,m]Gj,n (ᾱ[k];w[i] [k])ω∗

j [n,m]

‖ωj [n,m]‖2
2

. (43)
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Algorithm 3: The Proposed BFR Algorithm.

Input: LCE result ᾱ[k] and channel variance matrix Σ.

1: Determine an initial point ŵ[0][k],
2: While not converge do (for i = 1 : MI )

3: Determine the feature matrix Gj,n (ᾱ[k];w[i] [k])
based on w[i][k] and ᾱ[k], ∀n, j.

4: Determine w
♯
j,[i][k, n,m] based on the spectral

decomposition of Gj,n (ᾱ[k];w[i] [k]), ∀n,m, j.

5: Determine the BF direction dj,[i+1][k, n,m] based

on (42), ∀n,m, j.

6: Determine the step length γ′
[i] as per (45).

7: Update the BF solution w[i][k] based on (44).

8: End

9: Return w[k + 1] = w[i][k] for the next round of LCE.

Output: The best BF choice w[k + 1].

This will finally result in a closed-form update of w[k] for

the non-convex BFR problem A
(BFR)
SLAB in (28), via combining

with (44), as summarized in Algorithm 3.

If d[i+1][k] is a descent direction, (i.e., the inner product

∇H
ω κ
(
w[i][k]

)
d[i+1][k] < 0 for any non-stationary w[i][k]), this

Armijo rule will ensure a sufficient reduction of cost function

value such that the obtained BF solution w[i][k] converges to a

stationary solution to the overall BFR problem A
(BFR)
SLAB . How-

ever, it is highly non-trivial to prove that d[i+1][k] is a descent

direction when the surrogate function is non-convex. This chal-

lenge will be addressed in Section VI.

D. Summary of the Overall BFR Algorithm

The pseudo-code of the novel BFR algorithm is summa-

rized in Algorithm 3. Start from an initial point wj,[0][k, n,m],
∀j, n,m. The proposed BFR algorithm will first determine

w
♯
j,[i+ 1][k, n,m] based on the spectral decomposition of fea-

ture matrix Gj,n (ᾱ[k];w[i][k]) dependent on the previous BF

solution w[i][k], and then determine the feasible BF update di-

rection dj,[i+ 1][k, n,m] as per (42), and finally update the BF

vector as per (44). Once obtaining the new BF choice w[k + 1],
each BS will transmit the new symbols based on w[k + 1], and

thus the new measurement z(k+ 1) used for the next LCE stage

is dependent on w[k + 1].
The Characteristics of our BFR Solution: The BFR-related

feature matrix Gj,n (ᾱ[k];w[i] [k]) is the combination of two

individual features Gj,n (ᾱ[k];w[i] [k]) and Hj,n (ᾱ[k];w[i] [k])
w.r.t. the UE localization and channel estimate, respectively, as

given in (40). This structure explicitly shows how the physical

nature of UE localization and channel estimate (characterized

by their respective feature matrices) affect the BFR result. In

addition, we can also see from (40) that the localization-based

BF optimization and the channel-estimate-based BF optimiza-

tion in the BFR problem can be decoupled from each other

due to the problem-specific surrogation function design in (39).

Furthermore, the obtained BF solution is adaptive to the pilot

symbols. In addition, unlike the traditional gradient-descent al-

gorithm where the Taylor expansion is directly applied w.r.t. the

variable (say ω), we apply the first-order expansion w.r.t. the

information matrix J̄ β[k ](ᾱ[k],Σ;ω), rather than ω. Hence,

our surrogate function κS(•) preserves the inherent structure

of J̄ β[k ](ᾱ[k],Σ;ω). This will lead to a more accurate ap-

proximation and thus result in a fast convergence of the BF

optimization.

VI. CONVERGENCE ANALYSIS

By using the proposed SLAB scheme above, we can obtain

two sequences {ᾱ[k]|∀k = 1 : K} and {w[k]|∀k = 1 : K} of

the UE location parameter and the BF vector, respectively. In this

section, we shall establish their convergence behaviors, which

justifies the proposed SLAB scheme.

A. Challenges and Assumptions

Challenges. It is not easy to establish the convergence of the

SLAB scheme, due to the following challenges.
� Uniqueness of the Globally Optimal Solution: The unique-

ness of the globally optimal solution of β[k] to the LCE

problem A
(LCE)
SLAB is not clear, due to the nonlinear system

model. This issue concerns the solvability of the mmWave

MIMO-based localization problem and the stability of the

obtained BF sequence.
� Coupling Dynamics: In the proposed SLAB scheme, the

channel estimate and BF refinement are coupled with each

other. Thus, the coupled dynamics of h[k] and w[k] will

affect the convergence of the SLAB scheme.

Assumptions. To facilitate the SLAB convergence analysis,

we have the following assumptions on the SLAB system.

(A1) NCNUJM ≥ 3JL + J + 3 is satisfied.

(A2) Gradient matrix ∇β[k ]g(βtrue [k];w[k]) is full-column-

rank, where βtrue [k] denotes the true value of β[k].
(A3) The mean of measurement error ǫ[k] is zero.

The first assumption means the number of pilots should be

not less than the number of unknown parameters in the SLAB

scheme, which is satisfied by usual mmWave MIMO systems.

The second assumption means the rank of the gradient matrix

should be equal to the number of unknown parameters, which

κ
(
wj,[i][k, n,m] + γ′

[i]dj,[i+1][k, n,m]
)
≤ κ
(
wj,[i][k, n,m]

)
+ aγ′

[i]ℜ{∇H
ωj [n,m ] κ

(
wj,[i][k, n,m]

)
dj,[i+1][k, n,m]}. (45)

∇ωj [n,m ]κ
(
wj,[i][k, n,m]

)
= −2

(
‖wj,[i][k, n,m]‖2

2INB
− w∗

j,[i][k, n,m]w⊤
j,[i] [k, n,m]

)
Gj,n (ᾱ[k];w[i][k])w∗

j,[i] [k, n,m]

‖wj,[i][k, n,m]‖4
2

.

(46)
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is usually true for the mmWave system (due to A1) and can be

verified by numerical results.

We also assume a global search method, e.g., a branch-and-

bound algorithm [32], is used for the LCE problem such that a

globally optimal solution to A
(LCE)
SLAB is obtained at each LCE

step. It should be noted that although the convergence is estab-

lished for the case of a high-complexity global LCE algorithm,

simulation results show that the proposed SLAB scheme with

the low-cost SLLS-based LCE algorithm in Section IV still

achieves a large performance gain over baselines.

B. Convergence Behavior

1) Convergence of LCE: We give the following Lemma 3 to

address the first challenge above.

Lemma 3 (Uniqueness of the Globally Optimal Solution):

If A1 is satisfied, there is a unique globally optimal solution

(α⋆ [k],h⋆ [k]) to A
(LCE)
SLAB in (24) at each LCE stage.

Proof: The proof is given in Appendix F. �

Lemma 3 ensures the mmWave MIMO-based localization

problem is solvable. We further have the following theorem to

quantify the order of ‖β⋆ [k] − βtrue [k]‖2 w.r.t. ‖ǫ[k]‖2 .

Theorem 3 (Bounded LCE Error): Assume A1–A2 are sat-

isfied. At each time slot k, the LCE error is bounded from

above, i.e., ‖β⋆ [k] − βtrue [k]‖2 ∼ O( ‖ǫ[k ]‖2

‖∇H
β[k ]

g(β[k ],w [k ])‖2
).

Proof: The proof is presented in Appendix G. �

This means, if those conditions are satisfied, the LCE error is

finite and proportional to the noise power.

2) Convergence of BFR: Since the first-order optimality

condition [36] presents the necessary condition of the optimal

solution, we use the mismatch of this condition w.r.t. the ob-

tained BF solution to characterize its optimality and to quantify

the order of this mismatch w.r.t. measurement errors. Prior to

this, we give a theorem to show that the obtained BF solution

at each time slot k is a stationary solution to the BFR problem

A
(BFR)
SLAB , for a given ᾱ[k].
Theorem 4 (Stationary Solution to BFR Problem): Assume

A1–A3 are satisfied. At each time slot k, the BFR algorithm

converges to a stationary solution w[k] to problem A
(BFR)
SLAB , as

the iteration number i → ∞.

Proof: The proof is presented in Appendix H. �

Due to the inevitable LCE error in ᾱ[k], the optimality of the

BF solution w[i][k] will be affected, which is quantified by the

first-order optimality condition mismatch as follows.

Theorem 5 (Bounded Optimality Condition Mismatch): If

A1–A3 are satisfied, at time slot k, the obtained stationary BF

solution w[k] approximately satisfies the first-order optimality

condition associated with αtrue , with a deviation Wmis :

ℜ{∇H
ωtrace

(
B̄β[k ]

(
αtrue ,Σ;w[k]

))
(ω − w[k])} ≥ Wmis

holds ∀ω such that ‖ωj [n,m]‖2 ≤ 1, ∀j, n,m; and meanwhile

the optimality deviation follows Wmis ∼ O(‖ǫ[k]‖2), where

∇ωtrace
(
B̄β[k ]

(
ᾱ[k],Σ;w[k]

))
∈ C

NB J NC M is the deriva-

tive of trace
(
B̄β[k ]

(
ᾱ[k],Σ;ω

))
w.r.t. ω at ω = w[k].

Proof: The proof is presented in Appendix I. �

This implies that the UE-location-error-caused beam mis-

alignment will be gradually mitigated, due to the gradually

decreased UE location estimate error via parameter filtering. For

a finite UE location error (or equivalently a finite ‖ǫ[k]‖2), the

beam misalignment is bounded. Thus, the proposed BFR algo-

rithm will achieve a robust BF solution against the measurement

noise. Therefore, the overall convergence of the SLAB scheme

is established.

VII. NUMERICAL RESULTS

In this section we shall provide numerical results to demon-

strate the performance of the proposed SLLS algorithm for UE

localization and also to verify the performance gain of the pro-

posed BFR algorithm for BF optimization.

A. Simulation Settings

We choose the number of BSs to be J = 3 and the num-

ber of subcarriers to be N ′
C = 30. We set L = 1, M = 20,

SNR = 20 dB, NB = NU = 4, carrier frequency fC = 6 GHz,

sampling period Ts = 10 ns and light speed c = 3 ∗ 108 m/s.

Thus, λn and dA can be determined via λn = c
n

N ′
C

T s
+fC

and

dA = c/fC/2, respectively. We assume the locations of UE and

BSs are at random within a squared area of 103 × 103 m2 , and

their orientation angles are also at random. We assume a sim-

ple path loss model for each channel, i.e., hl,j =
h ′

l , j

℘3
l , j

, where

h′
l,j ∼ CN (0, 1) is the small-scale fading and ℘l,j is the path

length, namely, ℘0,j = ‖x − uj‖2 for l = 0 and ℘l,j = ‖uj −
vl,j‖2 + ‖x − vl,j‖2 for l = 1 : L. Based on this model, we

have that Σ = E{h[k]h⊤[k]} = IJ ⊗ diag
[
η2

l |∀l = 0 : L
]
,

where ηl = ℘−3
l,j , for each realization of BS locations and scat-

terer locations in simulations.6 For LCE, we consider the fol-

lowing algorithms as baselines.
� (GD-based LCE [33]): This directly updates the unknown

parameters by using the gradient of the LCE problem.
� (LS-based LCE [34]): This uses the gradient with an

Armijo-type line search (LS) to update the estimates of

unknown parameters.

For the BFR, we consider the following baseline methods.
� (GD-based BFR [33]): This directly uses the gradient of

the BFR problem to update BF vectors.
� (LMI-based BFR [31]): This optimizes BF vectors to

maximize the localization FIM, (i.e., inverse CRLB) by

formulating the FIM constraint as an LMI form.

B. Simulation Results

1) The Achieved RMSE of LCE: The root mean squared er-

rors (RMSEs), at the first time slot with random BF vector,

achieved by various localization algorithms are presented in

Fig. 4. We can see that the proposed SLLS algorithm can achieve

a localization error of 0.028 [m]. In addition, the SLLS algo-

rithm has a faster convergence than baseline algorithms, due to

our problem-specific parameter estimate rule design.

6We have assumed in this paper that the channel variance matrix Σ is known
and we adopt the value of Σ conditioned on the path loss ℘−3

l ,j
, while the

instantaneous channel vector h[k] and scatterer locations are unknown and
need to be estimated. In practice, the state of Σ can be estiamted by using the
variance matrix estimation method [37], [38] or alternatively using the stochastic
geometry modeling-based analystical analysis [39].
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Fig. 4. The achieved localization RMSEs of various algorithms.

Fig. 5. The achieved localization error with various BFR strategies.

Fig. 6. The achieved BFR gain v.s. the number of antennas (i.e. NB ).

2) Gain of BFR: As shown in Fig. 5, there will be a

localization error reduction owing to BFR. In addition, the

proposed BFR algorithm can achieve a satisfactory perfor-

mance gain in localization accuracy. The achieved BFR gains

v.s. the number of transceiver antennas (assuming NU = NB )

are shown in Fig. 6, where the BFR gain is defined as the

ratio between the initial CRLB (without the BFR process)

and the minimized CRLB (via using a certain BFR algo-

rithm). As expected, the more antennas lead to the larger

BFR gain. In addition, due to the non-convex rank-one con-

straint in the LMI-based BFR baseline method, there will be

some performance loss in their BF results. In addition, due to

our problem-specific surrogate function design, in which the

Fig. 7. The CDF of the achieved localization performance gain from BFR.

inherent structure of localization information matrix is pre-

served, our obtained BF update is more informative than the

gradient descent-based baseline, and hence achieves a larger

localization performance gain. The proposed BFR algorithm

thus outperforms the LMI- and GD-based methods, as shown in

Fig. 6.

In addition, we evaluate the achieved BFR gain of our pro-

posed BFR algorithm and the BFR baseline methods in diverse

scenarios. Specifically, the SNR is set as a random value rang-

ing from −20 dB to 60 dB in simulations. In addition, the

BS locations are uniformly distributed within the localization

area of 103 × 103 m2 , and the BS orientation angles are also

uniformly setup within [0, 2π), while NB and NU are fixed at

6. The settings of other parameters are the same as those in

Section VII-A. The cumulative distribution function (CDF) of

the achieved BFR gains by different BFR methods is presented

in Fig. 7. It is shown that the overall BFR gain of the proposed

BFR method is larger than that of BFR baselines under the di-

verse parameter settings given above, which implies to some

extent that the proposed BFR method can also achieve a better

performance in some worst-case scenarios with extremely poor

SNR conditions or BS deployment.

VIII. CONCLUSIONS

In this paper, localization-oriented BF for mmWave MIMO

systems is studied. A novel SLAB scheme is proposed to deter-

mine the best BF vector for UE localization and to simultane-

ously achieve the joint UE localization and channel estimate. A

closed-form CRLB is obtained to provide a performance bench-

mark for UE localization and is also used for BF optimiza-

tion. The convergence of the proposed SLAB scheme has been

established. It is shown that the proposed SLAB scheme can

achieve a huge performance gain over existing localization/BFR

approaches.

APPENDIX A

PROOF OF LEMMA 1

As per the estimate theory [30], the LCE-based CRLB Bβ[k ]

(α,h[k];ω) will be finally given by

Bβ[k ](α,h[k];ω) =
(
J β[k ](α,h[k];ω)

)−1
, (47)
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where J β[k ](α,h[k];ω) is the FIM given by (48) shown

at the bottom of the page, and the derivative K
(r)
n,m (α;ω) ∈

C
(2J L+3)×J (L+1) is given by

K(r)
n,m (α;ω) = [ς

(r)
l,j [n,m]|∀l = 0 : L,∀j = 1 : J ]. (49)

In addition, vector ς
(r)
l,j [n,m] ∈ C

2J L+3 is structured as

ς
(r)
l,j [n,m] =

⎡
⎢⎢⎢⎢⎣

∑
t=1:NB

ω
(t)
j [n,m]μ

(r,t)∗
l,j,n ̺

(r,t)
l,j,n

∑
t=1:NB

ω
(t)
j [n,m]μ

(r,t)∗
l,j,n ρ

(r,t)
l,j,n

∑
t=1:NB

ω
(t)
j [n,m]μ

(r,t)∗
l,j,n ῠ

(r,t)
l,j ,n

⎤
⎥⎥⎥⎥⎦

,

where μ
(r,t)
l,j,n is given by (19), and ω

(t)
j [n,m] is the tth element

of ωj [n,m]. Furthermore, ̺
(r,t)
l,j,n ∈ R

2 and ρ
(r,t)
l,j,n ∈ R are given

by (50) and (51) shown at the bottom of the page, respectively,

and ῠ
(r,t)
l,j,n ∈ R

2J L is given by[
ῠ

(r,t)
l,j,n

]
2l ′−1:2l ′

=

{
υ

(r,t)
l,j,n , if (l′ mod J)

.
= l,

02×1 , otherwise,
, (52)

∀l′ = 1 : JL, where υ
(r,t)
l,j ,n ∈ R

2 is given by (53) shown at the

bottom of this page, and G
(r)
n,m

(
α;ω

)
∈ C

J×J (L+1) is given by

G(r)
n,m

(
α;ω

)
= diag[g

(r)H
j [n,m]|∀j = 1 : J ], (54)

where g
(r)
j [n,m] is given by (16).

Based on (48), Eh[k ]{Bβ[k ](α,h[k];ω)} follows (55) shown

at the bottom of the next page, as per Jensen’s inequality for

the inverse function, where we have considered that h[k] is

independent to α and has zero-mean with variance matrix Σ.

Thus, Eǫ[k ]{‖β[k] − β̂[k]‖2
2} ≥ trace

(
Bβ[k ](α,h[k];ω

)
, and

Lemma 1 is proved.

APPENDIX B

GRADIENT MATRIX

The gradient matrix in (32) is given by

∇α g
(
α

♮
[i][k];h♮

[i] [k]
)

=

⎡
⎢⎢⎣

√
NBNUDH

x (α)BH(h♮
[i][k])

√
NBNUdH

ϑ (α)BH(h♮
[i][k])

√
NBNUDH

v (α)BH
(
h

♮
[i][k]

)

⎤
⎥⎥⎦

(56)

and each term is elaborated as follows.

Firstly, B(h♮
[i][k]) ∈ C

J M NU NC ×J M NU NC NB (L+1) is given

by B(h♮
[i][k]) = diag[b⊤

j [k, n,m]|∀r, n, j,m], where bj [k, n,

m] = (INB
⊗ H

♮
j,[i][k])(wj [k, n,m] ⊗ 1(L+1)) and H

♮
j,[i][k]=

diag[h♮
l,j,[i][k]|∀l = 0 : L], in which h♮

l,j,[i][k] is the (l, j)th ele-

ment of h
♮
[i][k], and 1(L+1) is the (L + 1)-dimensional full-one

vector.

J β[k ](α,h[k];ω) = σ−2
∑

r,n,m

[
K

(r)
n,m

(
α;ω

)
h∗[k]h⊤[k]

(
K

(r)
n,m

(
α;ω

))H
K

(r)
n,m

(
α;ω

)
h∗[k]G

(r)
n,m

(
α;ω

)
(
G

(r)
n,m

(
α;ω

))H
h⊤[k]

(
K

(r)
n,m

(
α;ω

))H (
G

(r)
n,m

(
α;ω

))H
G

(r)
n,m

(
α;ω

)

]
. (48)

̺
(r,t)
l,j,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j2π n
cN ′

C Ts

x−uj

‖x−uj ‖2
− j dB π

λn
(t − 1)

‖x−uj ‖2
2 eY −(x−uj )(x−uj )H eY

‖x−uj ‖3
2

+ j dU π
λn

(r − 1)
cos

(
arccos

(
(x−u j )H eX

‖x−u j ‖2

)
−ϑ

)

√

1−
(

(x−u j )H eX
‖x−u j ‖2

)2

‖x−uj ‖2
2 eX −(x−uj )(x−uj )H eX

‖x−uj ‖3
2

,
l = 0,

j2π n
cN ′

C Ts

x−v l , j

‖x−v l , j ‖2

+ j dU π
λn

(r − 1)
cos

(
arccos

(
(x−v l , j )H eX

‖x−v l , j ‖2

)
−ϑ

)

√

1−
(

(x−v l , j )H eX
‖x−v l , j ‖2

)2

‖x−v l , j ‖2
2 eX −(x−v l , j )(x−v l , j )H eX

‖x−v l , j ‖3
2

,
l > 0

(50)

ρ
(r,t)
l,j,n =

⎧
⎪⎪⎨
⎪⎪⎩

j dU π
λn

(r − 1) cos

(
arccos

(
(x−uj )H eX

‖x−uj ‖2

)
− ϑ

))
, l = 0

j dU π
λn

(r − 1) cos

(
arccos

(
(x−v l , j )H eX

‖x−v l , j ‖2

)
− ϑ

))
, l > 0

. (51)

υ
(r,t)
l,j,n = − j2π

n

cN ′
CTs

x − vl,j

‖x − vl,j‖2
− j2π

n

cN ′
CTs

uj − vl,j

‖uj − vl,j‖2
+ j

dBπ

λn
(t − 1)

‖uj − vl,j‖2
2 eY − (uj − vl,j )(uj − vl,j )

HeY

‖uj − vl,j‖3
2

− j
dUπ

λn
(r − 1)

cos
(

arccos
(

(x−v l , j )H eX

‖x−v l , j ‖2

)
− ϑ
)

√
1 −
(

(x−v l , j )H eX

‖x−v l , j ‖2

)2

‖x − vl,j‖2
2 eX − (x − vl,j )(x − vl,j )

HeX

‖x − vl,j‖3
2

. (53)
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Secondly, Dx(α) ∈ C
J M NC NU NB (L+1)×2 = 1(M ) ⊗ vec

[(˜̺
(r,t)
l,j,n )H |∀l, t, r, n, j], where ˜̺

(r,t)
l,j,n =μ

(r,t)∗
l,j,n ̺

(r,t)
l,j,n , while μ

(r,t)
l,j,n

and ̺
(r,t)
l,j,n are given by (19) and (50), respectively. Thirdly,

dϑ (α) = vec[μ
(r,t)
l,j,nρ

(r,t)∗
l,j,n |∀l, t, r, n, j], where ρ

(r,t)
l,j,n is given

by (51). Fourthly, Dv(α) ∈ C
J M NC NU NB (L+1)×2L = 1(M ) ⊗

vec[(υ̃
(r,t)
l,j,n )H |∀l, t, r, n, j], where υ̃

(r,t)
l,j,n ∈ C

2L = μ
(r,t)∗
l,j,n ῠ

(r,t)
l,j,n ,

and ῠ
(r,t)
l,j,n is given by (52), ∀l = 0 : L,∀j.

APPENDIX C

PROOF OF THEOREM 1

By inner product calculation, it can be verified that p[i][k] is a

descent direction, i.e., ∇H
α f(α♮

[i][k];h♮
[i] [k])p[i][k] < 0 for any

non-stationary α
♮
[i][k], Thus, the SLLS-based location update

(35) subject to the Armijo rule (36) will converge to a stationary

point to A
(LCE)
SLAB , as per the line search method [40]–[42].

APPENDIX D

PROOF OF THEOREM 2

We first elaborate the convergence rate of α◦
[i+1][k]. Applying

the second-order approximation to g(α,h♯
[i][k]), we have

z[k] = g(α♮
[i] [k],h♯

[i] [k]) + ∇H
αg(α♮

[i] [k],h♯
[i] [k])

(
α• [k]

− α
♮
[i] [k]

)
+ s(α•[k];α♮

[i][k],h♯
[i] [k]) + ς, (57)

where the second-order term s(α•[k];α♮
[i][k],h♯

[i] [k]) is given

by (58) shown at the bottom of this page, and ς is the higher-

order residual error. In addition, Ψ
(r)
n,m,j = ∇αψ

(r)
n,m,j (α

♮
[i][k])

∇H
αψ

(r)
n,m,j (α

♮
[i][k]), where ψ

(r)
n,m,j (α

♮
[i][k]) = (g

(r)
j,[i][k, n,m])H

h
♯
[i][k], and g

(r)
j,[i][k, n,m] is the value of g

(r)
j [n,m] (given by

(16)) conditioned on α
♮
[i][k]. In (57), we use ∇H

αg(α♮
[i][k],h♯

[i]

[k])∇αg(α♮
[i][k],h♯

[i] [k]) to approximate the Hessian matrix

for computational ease (only gradient is needed). Ignoring

the residual error, we have (59) shown at the bottom of the

next page. If ∇αg(α♮
[i][k],h♯

[i] [k]) is full-column-rank, then

‖α•[k] − α◦
[i+1][k]‖2 = O(‖α•[k] − α

♮
[i][k]‖2

2).

Based on (36), α
♮
[i+1][k] is a more efficient update than

α◦
[i+1][k], since it can lead to a sufficient decrease in cost func-

tion value f(α♮
[i+1][k];h♮

[i] [k]). Thus, convergence of α
♮
[i+1][k]

is at least quadratic. Theorem 2 is proved.

APPENDIX E

EXPRESSION OF FEATURE MATRICES

Gj,n (ᾱ[k];w[i] [k]) and Hj,n (ᾱ[k];w[i] [k]) are given by (60)

and (61) shown at the bottom of next page, where Σ = IJ ⊗
diag

[
η2

l |∀l = 0 : L
]

with η2
l being its elementary variance,

while B̄α

(
w[i][k]

)
and B̄hj [k ]

(
w[i][k]

)
are CRLBs (dependent

on w[i][k]) associated with α and hj [k], respectively, given by

(62) and (63) shown at the bottom of the next page. In addi-

tion, R
(r)
l,j,n (ᾱ[k]) ∈ C

(2J L+3)×NB = vec[u
(r,t)
l,j,n |∀t = 1 : NB ]

and U
(r)
j,n (ᾱ[k]) ∈ C

NB ×(L+1) = [µ
(r)
l,j,n |∀l = 0 : L], where

u
(r,t)
l,j,n =

⎡
⎢⎢⎣

μ
(r,t)∗
l,j,n ̺

(r,t)
l,j,n

μ
(r,t)
l,j,nρ

(r,t)∗
l,j,n

μ
(r,t)∗
l,j,n ῠ

(r,t)
l,j,n

⎤
⎥⎥⎦ ,

and ̺
(r,t)
l,j,n , ρ

(r,t)
l,j,n , ῠ

(r,t)
l,j,n and μ

(r,t)
l,j,n is given by (50), (51), (52)

and (19), respectively.

APPENDIX F

PROOF OF LEMMA 3

1) Uniqueness of h⋆ [k]: Since the system model is linear

w.r.t. h[k] as shown in (13), h⋆ [k] is unique at each LCE stage.

2) Uniqueness of x⋆ [k]: For easy notation, we use g(x)
to denote g(x, ϑ,v,h[k];ω) (given by (13)) with any point

ϑ, v and h[k], use f(x) = ‖z[k] − g(x)‖2
2 to denote the

LCE cost function of x, and we use x = x⋆ [k] + ψχ to de-

note any point of x, where χ is a unit direction vector

and ψ is the length. Then, f(x) is cast as f(x⋆ [k] + ψχ) =
‖g(x⋆ [k] + ψχ) − g(x⋆ [k]) − υ⋆ [k]‖2

2 , where υ⋆ [k] = z[k] −
g(x⋆ [k]) (independent of x and ψ). Let f̃(x⋆ [k] + ψχ) =
f(x⋆ [k] + ψχ)|τ l , j =0,∀l,j , which is a tight lower bound of

f(x⋆ [k] + ψχ), as verified later.

Example. Consider a case of J = M = NU = NB = NC =
1 and L = 0. Then, f(x⋆ [k] + ψχ) and f̃

(
x⋆ [k] + ψχ

)

Eh[k ]{Bβ[k ](α,h[k];ω)} = σ2
Eh[k ]

{(
∑

r,n,m

[
K

(r)
n,m

(
α;ω

)
h[k]hH [k]

(
K

(r)
n,m

(
α;ω

))H
K

(r)
n,m

(
α;ω

)
h[k]G

(r)
n,m (α;ω)

(
K

(r)
n,m

(
α;ω

)
h[k]G

(r)
n,m (α;ω)

)H (
G

(r)
n,m (α;ω)

)H
G

(r)
n,m (α;ω)

])−1}

� σ2

(
∑

r,n,m

[
K

(r)
n,m

(
α;ω

)
Σ
(
K

(r)
n,m

(
α;ω

))H
0(2J L+3)×J (L+1)

0H
(2J L+3)×J (L+1)

(
G

(r)
n,m (α;ω)

)H
G

(r)
n,m (α;ω)

])−1

︸ ︷︷ ︸
B̄β[k ] (α,Σ ;ω)

. (55)

s(α•[k];α♮
[i][k],h♯

[i] [k]) = vec[(α•[k] − α
♮
[i][k])⊤Ψ

(r)
n,m,j (α

•[k] − α
♮
[i][k])|∀n, r,m, j]. (58)
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reduce to that in (64) and (65) shown at the bottom of this page,

respectively. �

It can be verified by the above simple case that f̃ (x⋆ [k] + ψχ)
satisfies (i) f̃(x⋆ [k]) = f(x⋆ [k]) and (ii) f̃(x⋆ [k] + ψχ) <
f(x⋆ [k] + ψχ), ∀χ : ‖χ‖2 = 1 and ψ �= 0. That is to say,

f̃(x⋆ [k] + ψχ) is a tight lower bound of f(x⋆ [k] + ψχ).
Moreover, f̃(x⋆ [k] + ψχ) also satisfies (i) f̃(x⋆ [k] + ψχ) =

f̃(x⋆ [k]) for ψ = 0; and (ii) f̃(x⋆ [k] + ψχ) > f̃(x⋆ [k]) for ψ �=
0, since the modulus (or hl,j [k]) is reduced with transmission

distance due to path loss. That is, except x⋆ [k], there is no other

point such that f̃(x) is lower than f̃(x⋆ [k]), i.e., x⋆ [k] is the

unique optimal solution to A
(LCE)
SLAB .

3) Uniqueness of v⋆ [k]: Its proof is similar to that of x.

4) Uniqueness of ϑ⋆ [k]: We use f(ϑ⋆ [k] + ν) with ν ∈
(−π, π] to denote the LCE cost function ‖z[k] − g(ϑ)‖2

2 (de-

tailed in (66) shown at the bottom of this page) with any point

x, v, h[k], where ϑ⋆ [k] is one optimal solution of ϑ at each

LCE stage. Consider again that simple case. Then, f
(
ϑ⋆ [k] + ν

)

will reduce to (66), where C
(r,t)
LOS,n

(
h0,j [k],x

)
is the constant

independent of ϑ⋆ [k] and ν. Thus, we have f
(
ϑ⋆ [k] + ν

)
>

f
(
ϑ⋆ [k]

)
, for any ν �= 0 and ν ∈ (−π, π]. Hence, ϑ⋆ [k] is

unique, and lemma 3 is proved.

APPENDIX G

PROOF OF THEOREM 3

To prove theorem 3, we need to give a lemma regrading the

continuity of the LCE system.

Lemma 4: If A1–A2 are satisfied, ‖β[k] − βtrue [k]‖2 ≤ C1
‖g(β[k ])−g(βt r u e [k ])‖2

‖∇H
β[k ]

g(βt r u e [k ])‖2
holds, ∀β[k], for C1 ≥ 0.7

Proof: We have that ‖g(βtrue [k] + ∆β) − g(βtrue [k])‖2

= ‖∇H
β[k ]g(βtrue [k])∆β + O(‖∆β‖2

2)‖2 , and hence we have

‖g(βtrue [k] + ∆β) − g(βtrue [k])‖2 ≥ ‖∇H
β[k ]g(βtrue [k])∆

β‖2 −O(‖∆β‖2
2). As a result, we have the following inequality:

‖∇H
β[k ]g(βtrue [k])∆β‖2 ≤‖g(βtrue [k]+∆β)−g(βtrue [k])‖2

+O(‖∆β‖2
2). In addition, there must be C1 ≥ 0 such that

‖∇H
β[k ]g(βtrue [k])∆β‖2 ≥ C1‖∇H

β[k ]g(βtrue [k])‖2‖∆β‖2 .

Thus, C1‖∇H
β[k ]g(βtrue [k])‖2‖∆β[k]‖2≤ ‖g(βtrue [k] + ∆β)

−g(βtrue [k])‖2 + O(‖∆β‖2
2). Then, we arrive at ‖∆β‖2 ≥

‖∆g(βt r u e [k ])‖2 +O(‖∆β‖2
2 )

C1 ‖∇H
β[k ]

g(βt r u e [k ])‖2
, in which ∆g(βtrue [k]) = g(βtrue [k]

+ ∆β) − g(βtrue [k]) denotes the range variation.

Based on lemma 3, when there is no measurement error,

(α⋆ [k],h⋆ [k]) is equal to (αtrue ,htrue [k]). This means that for

any ξ > 0, there exists ζ > 0 such that ‖β⋆ [k] − βtrue [k]‖2 < ξ
must hold if ‖ǫ[k]‖2 < ζ. Thus, O(‖β⋆ [k] − βtrue [k]‖2

2) can be

safely ignored, and lemma 4 is proved.

Thus, based on lemma 4 we have ‖β⋆ [k] − βtrue [k]‖2 ≤
‖g(β⋆ [k ])−g(βt r u e [k ])‖2 +O(‖β⋆ [k ]−βt r u e [k ]‖2

2 )

C1 ‖∇H
β[k ]

g(βt r u e [k ])‖2
. In addition, since β⋆

[k] is the optimal solution and g(βtrue [k]) is noiseless, ‖g
(β⋆ [k]) − g(βtrue [k])‖2 ≤ ‖z[k] − g(βtrue [k])‖2 = ‖ǫ[k]‖2 .

7We drop w[k] in g(•) for brevity.

‖
(
∇H

αg(α♮
[i][k],h♯

[i] [k])
)†(

z[k] − g(α♮
[i][k],h♯

[i] [k])
)

+ α
♮
[i][k]

︸ ︷︷ ︸
α◦

[ i + 1 ]
[k ]

−α•[k]‖2 = ‖
(
∇H

αg(α♮
[i][k],h♯

[i] [k])
)†

s(α•[k];α♮
[i][k],h♯

[i] [k])‖2

= ‖∇H
αg(α♮

[i][k],h♯
[i] [k])

(
α•[k] − α

♮
[i][k]

)
‖2

2 . (59)

Gj,n (ᾱ[k];w[i] [k]) =
∑

l=0:L
r=1:NU

η2
l R

(r)H
l,j,n

(
ᾱ[k]

)
B̄

H
α

(
w[i][k]

)
B̄α

(
w[i][k]

)
R

(r)
l,j,n

(
ᾱ[k]

)

σ2
, (60)

Hj,n (ᾱ[k];w[i] [k]) =
∑

r=1:NU

U
(r)
j,n

(
ᾱ[k]

)
B̄

H
hj [k ]

(
w[i][k]

)
B̄hj [k ]

(
w[i][k]

)
U

(r)H
j,n

(
ᾱ[k]

)

σ2
. (61)

B̄α

(
w[i][k]

)
=

⎛
⎝
∑

l,j,r,n,m

η2
l R

(r)
l,j,n (ᾱ[k])w∗

j,[i] [k, n,m]w⊤
j,[i] [k, n,m]R

(r)H
l,j,n (ᾱ[k])

⎞
⎠

−1

, (62)

B̄hj [k ]

(
w[i][k]

)
=

(
∑

r,n,m

U
(r)H
j,n (ᾱ[k])w∗

j,[i] [k, n,m]w⊤
j,[i] [k, n,m]U

(r)
j,n (ᾱ[k])

)−1

. (63)

f
(
x⋆ [k] + ψχ

)
=
∥∥ hl,j [k]ωj [n,m]︸ ︷︷ ︸

Equivalent modulus

e
−j 2 π n

N ′
C

T s

‖x ⋆ [k ]+ ψ χ−u j ‖2
c

︸ ︷︷ ︸
Equivalent phase

−hl,j [k]ωj [n,m]e
−j 2 π n

N ′
C

T s

‖x ⋆ [k ]−u j ‖2
c − υ

(r)⋆
j,n [k]

∥∥2

2
, (64)

f̃
(
x⋆ [k] + ψχ

)
=
∥∥hl,j [k]ω

(t)
j [n,m] − hl,j [k]ω

(t)
j [n,m] − υ

(r)⋆
j,n [k]

∥∥2

2
. (65)

f
(
ϑ⋆ [k] + ν

)
=
∥∥∥C(r,t)

LOS,n

(
h0,j [k],x

)(
e j

d U π

λn
(r−1) sin(θU , l , j −ϑ⋆ [k ]−ν ) − ej

d U π

λn
(r−1) sin(θU , l , j −ϑ⋆ [k ])

)
− υ

(r)⋆
j,n [k]

∥∥∥
2

2
. (66)
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dH
j,[i+1][k, n,m]∇ωj [n,m ] κ

(
wj,[i][k, n,m]

)
=
(
w

♯
j,[i+1][k, n,m]

)H∇ωj [n,m ] κ
(
wj,[i][k, n,m]

)
(67)

= −2
(
w

♯
j,[i+1][k, n,m]

)H
(
‖wj,[i][k, n,m]‖2

2INB
− w∗

j,[i][k, n,m]w⊤
j,[i] [k, n,m]

)
Gj,n (ᾱ[k];w[i] [k])w∗

j,[i] [k, n,m]

‖wj,[i][k, n,m]‖4
2

(68)

=

(
w

♯
j,[i+1][k, n,m]

)H
w∗

j,[i][k, n,m]

‖wj,[i][k, n,m]‖2
2

·
( (

w⊤
j,[i][k, n,m]Gj,n (ᾱ[k];w[i] [k])w∗

j,[i] [k, n,m]

‖wj,[i][k, n,m]‖2
2︸ ︷︷ ︸

≤λ
′
m a x

−λ′
max

)
≤ 0. (69)

Thus, ‖β⋆ [k] − βtrue [k]‖2 ≤ ‖ǫ[k ]‖2 +O(‖β⋆ [k ]−βt r u e [k ]‖2
2 )

C1 ‖∇H
β[k ]

g(βt r u e [k ])‖2
, and

theorem 3 is proved.

APPENDIX H

PROOF OF THEOREM 4

We will prove ∇H
ωj [n,m ]κ

(
wj,[i][k, n,m]

)
dj,[i+1][k, n,m] ≤

0, ∀j, n,m, and the equality holds only if {wj,[i][k, n,m]} is

an optimal solution of A
(BFR)

SLAB ,[i+1] . Once this is proved, theo-

rem 4 will be proved by combining lemma 2, thus it directly

follows from the convergence of the feasible direction method

[42] subject to the Armijo rule [40].

Let λ′
max be the largest eigenvalue of Gj,n (ᾱ[k];w[i] [k]).

Since w
♯
j,[i+1][k, n,m] is its principal eigenvector, we

have
(
w

♯
j,[i+1][k, n,m]

)H
Gj,n (ᾱ[k];w[i] [k])wj,[i] [k, n,m] =

λ′
max

(
w

♯
j,[i+1][k, n,m]

)H
wj,[i][k, n,m]. In addition, combin-

ing with (46), we know wH
[i][k]∇ω κ

(
w[i][k]

)
= 0. Thus, we

have (67)–(69) shown at the top of this page, and the inequality

of the condition is verified.

From (69) we know the equality holds only if wj,[i][k, n,m]
is the principal eigenvector of Gj,n (ᾱ[k];w[i] [k]) which is the

optimal solution to the problem in (43) and hence A
(BFR)

j,[i+1] in

(41) equivalently. Hence, theorem 4 is proved.

APPENDIX I

PROOF OF THEOREM 5

Since g(α,h[k];ω) is twice differential w.r.t. ω for any point

ω such that ∇ωg(α,h[k];ω) is element-wise Lipschitz con-

tinuous w.r.t. ω, as per theorem 3, ᾱ[k] − αtrue = O(‖ǫ[k]‖2).
Thus, we have ∇ω trace(B̄β[k ](ᾱ[k],Σ;w[k]))=∇ω trace
(B̄β[k ](α

true ,Σ;w[k])) + O(‖ǫ[k]‖2). Note that ℜ{∇H
ω trace

(B̄β[k ](ᾱ[k],Σ;w[k]))(ω − w[k])} ≥ 0, ∀ω, since w[k]
is a stationary point of the BFR problem given ᾱ[k]. Thus,

ℜ{∇H
ω trace(B̄β[k ](α

true ,Σ;w[k]))(ω − w[k])} ≥ Wmis ,

where Wmis ∼ O(‖ǫ[k]‖2), and thus theorem 5 is proved.

REFERENCES

[1] R. D. Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and
H. Wymeersch, “Location-aware communications for 5G networks: How
location information can improve scalability, latency, and robustness of
5G,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 102–112, Nov. 2014.

[2] K. Witrisal et al., “High-accuracy localization for assisted living: 5G
systems will turn multipath channels from foe to friend,” IEEE Signal

Process. Mag., vol. 33, no. 2, pp. 59–70, Mar. 2016.

[3] J. A. del Peral-Rosado, J. A Lopez-Salcedo, S. Kim, and G. Seco-
Granados, “Feasibility study of 5G-based localization for assisted driv-
ing,” in Proc. Int. Conf. Localization GNSS, 2016, pp. 1–6.

[4] A. Guerra, F. Guidi, and D. Dardari, “On the impact of beamforming
strategy on mm-wave localization performance limits,” in Proc. IEEE Int.

Conf. Commun. Workshops, 2017, pp. 809–814.
[5] A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and H.

Wymeersch, “Position and orientation estimation through millimeter wave
MIMO in 5G systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3,
pp. 1822–1835, Mar. 2018.

[6] Y. Wang, Y. Wu, and Y. Shen, “Joint spatiotemporal multipath mitigation
in large-scale array localization,” IEEE Trans. Signal Process., vol. 67,
no. 3, pp. 783–797, Feb. 2019.

[7] A. Guerra, F. Guidi, and D. Dardari, “Single-anchor localization and orien-
tation performance limits using massive arrays: MIMO vs. beamforming,”
IEEE Trans. Wireless Commun., vol. 17, no. 8, pp. 5241–5255, Aug. 2018.

[8] Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, and H.
Wymeersch, “Error bounds for uplink and downlink 3D localization in
5G mmWave systems,” IEEE Trans. Wireless Commun., vol. 17, no. 8,
pp. 4939–4954, Aug. 2018.

[9] S. Jeong, O. Simeone, A. Haimovich, and J. Kang, “Beamforming design
for joint localization and data transmission in distributed antenna system,”
IEEE Trans. Veh. Technol., vol. 64, no. 1, pp. 62–76, Jan. 2015.

[10] A. J. Tenenbaum and R. S. Adve, “Improved sum-rate optimization in
the multiuser MIMO downlink,” in Proc. 42nd Annu. Conf. Inf. Sci. Syst.,
2008, pp. 984–989.

[11] A. Chelli, K. Kansanen, M. S. Alouini, and I. Balasingham, “On bit error
probability and power optimization in multihop millimeter wave relay
systems,” IEEE Access, vol. 6, pp. 3794–3808, 2018.

[12] K. G. Seddik, A. K. Sadek, W. Su, and K. R. Liu, “Outage analysis
and optimal power allocation for multinode relay networks,” IEEE Signal

Process. Lett., vol. 14, no. 6, pp. 377–380, Jun. 2007.
[13] V. Venkateswaran and A.-J. van der Veen, “Analog beamforming in MIMO

communications with phase shift networks and online channel estimation,”
IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4131–4143, Aug. 2010.

[14] Z. Han, Z. Ji, and K. J. Liu, “Power minimization for multi-cell OFDM net-
works using distributed non-cooperative game approach,” in Proc. Global

Telecommun. Conf., 2004, vol. 6, pp. 3742–3747.
[15] T. Zhang, A. F. Molisch, Y. Shen, Q. Zhang, H. Feng, and M. Z. Win,

“Joint power and bandwidth allocation in wireless cooperative localization
networks,” IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6527–6540,
Oct. 2016.

[16] H. Godrich, A. P. Petropulu, and H. V. Poor, “Power allocation strategies
for target localization in distributed multiple-radar architectures,” IEEE

Trans. Signal Process., vol. 59, no. 7, pp. 3226–3240, Jul. 2011.
[17] Y. Shen and M. Z. Win, “Energy efficient location-aware networks,” in

Proc. IEEE Int. Conf. Commun., 2008, pp. 2995–3001.
[18] W. H. Dai, Y. Shen, and M. Z. Win, “Energy efficient cooperative network

localization,” in Proc. IEEE Int. Conf. Commun., 2014, pp. pp. 4969–4974.
[19] Y. Shen, W. Dai, and M. Z. Win, “Power optimization for network localiza-

tion,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1337–1350, Aug. 2014.
[20] W. L. Li, Y. Shen, Y. J. Zhang, and M. Z. Win, “Robust power allocation

for energy-efficient location-aware networks,” IEEE/ACM Trans. Netw.,
vol. 21, no. 6, pp. 1918–1930, Dec. 2013.

[21] W. Dai, Y. Shen, and M. Z. Win, “Energy-efficient network navigation
algorithms,” IEEE J. Sel. Areas Commun., vol. 33, no. 7, pp. 1418–1430,
Jul. 2015.

[22] M. Razaviyayn, M. Hong, Z. Q. Luo, and J. S. Pang, “Parallel successive
convex approximation for nonsmooth nonconvex optimization,” in Proc.

Adv. Neural Inf. Process. Syst., 2014, pp. 1440–1448.



ZHOU et al.: SUCCESSIVE LOCALIZATION AND BEAMFORMING IN 5G mmWAVE MIMO COMMUNICATION SYSTEMS 1635

[23] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization
algorithms in signal processing, communications, and machine learning,”
IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, 2017.

[24] A. Liu, V. K. N. Lau, and M.-J. Zhao, “Stochastic successive convex op-
timization for two-timescale hybrid precoding in massive MIMO,” IEEE

J. Sel. Topics Signal Process., vol. 12, no. 3, pp. 432–444, Jun. 2018.
[25] J. Mairal, “Stochastic majorization-minimization algorithms for large-

scale optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2283–2291.

[26] B. Wang, J. Liu, and X. Sun, “Mixed sources localization based on sparse
signal reconstruction,” IEEE Signal Process. Lett., vol. 19, no. 8, pp. 487–
490, Aug. 2012.

[27] J. Werner et al., “Sectorized antenna-based DoA estimation and local-
ization: Advanced algorithms and measurements,” IEEE J. Sel. Areas

Commun., vol. 33, no. 11, pp. 2272–2286, Nov. 2015.
[28] J. H. Kotecha and A. M. Sayeed, “Transmit signal design for optimal

estimation of correlated MIMO channels,” IEEE Trans. Signal Process.,
vol. 52, no. 2, pp. 546–557, Feb. 2004.

[29] D. Lee et al., “Coordinated multipoint transmission and reception in
LTE-advanced: Deployment scenarios and operational challenges,” IEEE

Commun. Mag., vol. 50, no. 2, pp. 148–155, Feb. 2012.
[30] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. 2: Detec-

tion Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.
[31] T. Wang, G. Leus, and L. Huang, “Ranging energy optimization for ro-

bust sensor positioning based on semidefinite programming,” IEEE Trans.

Signal Process., vol. 57, no. 12, pp. 4777–4787, Dec. 2009.
[32] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”

Oper. Res., vol. 14, no. 4, pp. 699–719, 1966.
[33] A. Beck and M. Teboulle, “Gradient-based algorithms with applications

to signal recovery,” in Convex Optimization in Signal Processing and

Communications, 2009, pp. 42–88.
[34] Y.-H. Dai, “Conjugate gradient methods with Armijo-type line searches,”

Acta Mathematicae Applicatae Sinica, vol. 18, no. 1, pp. 123–130, 2002.
[35] L.-H. Zhang, “On optimizing the sum of the Rayleigh quotient and the

generalized Rayleigh quotient on the unit sphere,” Comput. Optim. Appl.,
vol. 54, no. 1, pp. 111–139, 2013.

[36] J.-J. Ruckmann and A. Shapiro, “First-order optimality conditions in gen-
eralized semi-infinite programming,” J. Optim. Theory Appl., vol. 101,
no. 3, pp. 677–691, 1999.

[37] V. Savaux, F. Bader, and Y. Louet, “A joint MMSE channel and noise vari-
ance estimation for OFDM/OQAM modulation,” IEEE Trans. Commun.,
vol. 63, no. 11, pp. 4254–4266, Nov. 2015.

[38] Y. Sun, P. Babu, and D. P. Palomar, “Robust estimation of structured
covariance matrix for heavy-tailed elliptical distributions,” IEEE Trans.

Signal Process., vol. 64, no. 14, pp. 3576–3590, Jul. 2016.
[39] M. D. Renzo, “Stochastic geometry modeling and analysis of multi-

tier millimeter wave cellular networks,” IEEE Trans. Wireless Commun.,
vol. 14, no. 9, pp. 5038–5057, Sep. 2015.

[40] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[41] Z.-J. Shi, “Convergence of line search methods for unconstrained opti-
mization,” Appl. Math. Comput., vol. 157, no. 2, pp. 393–405, 2004.

[42] L. Zhang, W. Zhou, and D. Li, “Global convergence of a modi-
fied Fletcher–Reeves conjugate gradient method with Armijo-type line
search,” Numerische Mathematik, vol. 104, no. 4, pp. 561–572, 2006.

Bingpeng Zhou (S’16–M’17) received the B.Eng.
degree from the Zhongyuan University of Technol-
ogy, Zhengzhou, China, in 2010 and the Ph.D. de-
gree from Southwest Jiaotong University, Chengdu,
China, in 2016. He is currently a Postdoctoral Fel-
low with the Department of Electronic and Com-
puter Engineering, Hong Kong University of Science
and Technology (HKUST), Hong Kong. Prior to this,
he was a visiting scholar with the HKUST for six
months. He was also a visiting Ph.D. student with the
5G Innovation Centre, University of Surrey, Guild-

ford, U.K., for three months in 2015. His current research interests include
wireless localization and tracking for smart city, Bayesian signal processing,
and autonomous vehicular networks.

An Liu (S’07–M’09–SM’17) received the Ph.D. and
B.S. degree in electrical engineering from Peking
University, Beijing, China, in 2011 and 2004, respec-
tively. From 2008 to 2010, he was a visiting scholar
with the Department of Electrical, Computer, and En-
ergy Engineering, University of Colorado Boulder.
He was a Postdoctoral Research Fellow from 2011to
2013, a Visiting Assistant Professor in 2014, and a
Research Assistant Professor from 2015 to 2017, with
the Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and Tech-

nology. He is currently a Distinguished Research Fellow with the College of In-
formation Science and Electronic Engineering, Zhejiang University, Hangzhou,
China. His research interests include wireless communications, stochastic opti-
mization, and compressive sensing.

Vincent Lau (SM’04–F’12) received the B.Eng. (dis-
tinction first Hons.) degree from The University of
Hong Kong, Hong Kong, in 1992 and the Ph.D.
degree from the Cambridge University, Cambridge,
U.K., in 1997. He was with the Bell Labs from
1997 to 2004 and with the Department of Electronic
and Computer Engineering, Hong Kong University
of Science and Technology (HKUST), Hong Kong,
in 2004. He is currently a Chair Professor and the
Founding Director of the Huawei-HKUST Joint In-
novation Laboratory, HKUST. He is also elected as

an HKIE Fellow, a Croucher Senior Research Fellow, and the Changjiang Chair
Professor. He has authored/coauthored more than 300 IEEE journal and confer-
ence papers and has contributed to 50 US patents on various wireless systems.
His current research interests include stochastic optimization and analysis for
wireless systems, massive MIMO, compressed sensing, networked control sys-
tems as well as PHY-caching for wireless networks.


