
International Journal of Computational Geometry & Applications

c
 World Scientific Publishing Company

SUCCESSIVE MAPPINGS: AN APPROACH TO POLYGONAL MESH

SIMPLIFICATION WITH GUARANTEED ERROR BOUNDS

JONATHAN COHEN, � DINESH MANOCHA, y AND MARC OLANO z

Department of Computer Science

Sitterson Hall, CB 3175

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175, USA

ABSTRACT

We present the use of mapping functions to automatically generate levels of detail with known

error bounds for polygonal models. We develop a piece-wise linear mapping function for each simpli-

fication operation and use this function to measure deviation of the new surface from both the previous

level of detail and from the original surface. In addition, we use the mapping function to compute

appropriate texture coordinates if the original model has texture coordinates at its vertices. Our overall

algorithm uses edge collapse operations. We present rigorous procedures for the generation of local

orthogonal projections to the plane as well as for the selection of a new vertex position resulting from

the edge collapse operation. The algorithm computes guaranteed error bounds on surface deviation

and produces an entire continuum of levels of detail with mappings between them. We demonstrate

the effectiveness of our algorithm on several models: a Ford Bronco consisting of over 300 parts and

70; 000 triangles, a textured lion model consisting of 49 parts and 86; 000 triangles, a textured, wrin-

kled torus consisting of 79; 000 triangles, a dragon model consisting of 871; 000 triangles, a Buddha

model consisting of 1,000,000 triangles, and an armadillo model consisting of 2; 000; 000 triangles.

Keywords: surface approximation, simplification, levels-of-detail, orthogonal projection, mapping,

error bounds, linear programming

1. Introduction

Automatic generation of levels of detail for polygonal data sets has become a task of

fundamental importance for real-time rendering of large polygonal environments on current

graphics systems. Detailed models are obtained by a variety of methods, including range

scanning of physical objects and modeling of new objects within CAD systems. In addition

to surface geometry, these models often contain additional information such as normals,

texture coordinates, color etc. As such models become commonplace, many applications

desire high quality simplifications, with error bounds of various types across the surface

being simplified.

�Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218-2694, USA,

cohen@cs.jhu.edu
yDepartment of Computer Science Sitterson Hall, CB 3175 University of North Carolina at Chapel Hill Chapel

Hill, North Carolina 27599-3175, USA, dm@cs.unc.edu
zM/S 590, Silicon Graphics Incorporated, 2011 North Shoreline Boulevard, Mountain View, California, 94043,

olano@engr.sgi.com

1

Jonathan D. Cohen
Note: page numbers, provided here for your convenience, are not those of the actual IJCGA publication.



Most of the literature on simplification has focused purely on surface approximation.

Many of these techniques give guaranteed error bounds on the deviation of the simplified

surface from the original surface. Such bounds are useful for providing a measure of the

screen-space deviation from the original surface. A few techniques have been proposed

to preserve other attributes such as color or overall appearance. However, they are not

able to give tight error bounds on these parameters. At times the errors accumulated in

all these domains may cause visible artifacts, even though the surface deviation itself is

properly constrained. We believe the most promising approach to measuring and bounding

these attribute errors is to have a mapping between the original surface and the simplified

surface. With such a mapping in hand, we are free to devise suitable methods for measuring

and bounding each type of error.

Main Contribution: In this paper we present a new simplification algorithm, which

computes a piece-wise linear mapping between the original surface and the simplified sur-

face (portions of this work appear in 10 and extensions appear in 8). The algorithm uses the

edge collapse operation due to its simplicity, local control, and suitability for generating

smooth transitions between levels of detail. We also present rigorous and complete algo-

rithms for collapsing an edge to a vertex such that there are no local self-intersections and a

one-to-one mapping is guaranteed. The algorithm keeps track of both incremental surface

deviation from the current level of detail and total deviation from the original surface. The

main features of our approach are:

1. Successive Mapping: This mapping between the levels of detail is a useful tool.

We currently use the mapping in several ways: to measure the distance between

the levels of detail before and after an edge collapse, to choose a location for the

generated vertex that minimizes this distance, to accumulate an upper bound on the

distance between the new level of detail and the original surface, and to map surface

attributes to the simplified surface.

2. Guaranteed Error Bounds: Our approach can measure and minimize the incre-

mental error for surface deviation (ultimately bounding the total surface deviation)

and is extendible to other attributes. These error bounds give guarantees on the shape

of the simplified object and screen-space deviation.

3. Generality: The algorithm for collapsing an edge into a vertex is rather general

and does not restrict the vertex to lie on the original edge. Furthermore, portions of

our approach can be easily combined with other algorithms, such as simplification

envelopes9.

4. Surface Attributes: Given an original surface with texture coordinates, our algo-

rithm uses the successive mapping to compute appropriate texture coordinates for

the simplified mesh. We have recently extended our approach to provide guarantees

on the final shaded appearance of the simplified mesh by maintaining colors and nor-

mals in texture and normal maps and bounding the deviation of texture coordinates8.

Our approach can also be used to bound the error of any associated scalar fields46.

5. Continuum of Levels of Details: The algorithm incrementally produces an entire

spectrum of levels-of-details as opposed to a few discrete levels; the algorithm incre-

2



mentally stores the error bounds for each level. Thus, the simplified model can be

stored as a progressive mesh28 if desired.

The algorithm has been successfully applied to a number of models. These models consist

of hundreds of parts and millions of polygons, including a Ford Bronco with 300 parts,

textured models of a lion and a wrinkled torus, and highly-tessellated scanned models such

as a Buddha statue, a dragon, and a toy armadillo.

Organization: The rest of the paper is organized as follows. In Section 2, we survey

related work on model simplification. We give an overview of our algorithm in Section 3.

Section 4 discusses the creation of local mappings for the purpose of collapsing edges.

Using these mappings, we minimize the incremental surface deviation error and bound the

total deviation in Section 5. Section 6 describes how to compute new texture coordinates for

the new mesh vertices. The implementation is discussed in Section 7 and its performance

in Section 8. In Section 9 we compare our approach to some other algorithms, and we

conclude with some directions for future research in Section 10. Appendix A provides

more detail on the mathematical underpinings of our projection-based mapping algorithms.

2. Previous Work

Automatic simplification has been studied in both the computational geometry1;3;7;12;41

and computer graphics literature2;5;9;13;14;16;21;24;28;27;44;45;46;47;48;50;51;53 for several years.

Several informative surveys are available on the subject17;25.

It has been shown that computing the minimum-complexity simplification for a given

error bound is NP-hard for both convex polytopes12 and polyhedral terrains1. Thus, simpli-

fication algorithms have evolved around finding polynomial-time approximations that are

close to optimal or employ efficient, greedy heuristics.

Some of the earlier work in computer graphics by Turk51 and Schroeder48 employs

heuristics based on curvature to determine which parts of the surface to simplify to achieve

a model with the desired polygon count. One interesting aspect of Turk’s presentation is the

description of the topological constraints on a vertex for its removal to preserve the local

topology of a mesh. More recently, Dey et al.15 provide a formal mathematical description

of the topological constraints on an edge for its collapse to similarly preserve the local mesh

topology.

Other early work includes that of Rossignac and Borrel45, where vertices close to each

other are clustered and a vertex is generated to represent them. This algorithm has been

used in the Brush walkthrough system47.

Hoppe et al.27;28 posed the model simplification problem into a global optimization

framework, minimizing the least-squares error from a set of point-samples on the original

surface. Later, Hoppe extended this framework to handle other scalar attributes, explicitly

recognizing the distinction between smooth gradients and sharp discontinuities. He also

introduced the progressive mesh28, which is essentially a stored sequence of simplification

operations, allowing quick construction of any desired level of detail along the continuum

of simplifications. However, this algorithm provides no guaranteed error bounds. The

process measures the distance from a set of points on the original surface to the resulting

simplified surface, but not from the entire original surface to the simplified surface.

3



An efficient approach to measuring error as the distance between the simplified vertices

and the planes of the original surface is presented in 44 and further refined in 19 to repre-

sent the error as a quadratic form. Although this error measure also does not bound the

surface-to-surface distance from the original to the simplified model, it provides a fast met-

ric to guide the simplification process. Lindstrom and Turk37;38 have experimented with

a purely local variant of this approach, incorporating volume preservation as well, demon-

strating favorable results. The demonstration involves a post-simplification measure of the

actual error in the simplified models. The error quadric approach has also been extended to

measure the error of other attributes, such as vertex colors and normals.20;29.

There is considerable literature on model simplification providing guaranteed surface-

to-surface error bounds, which is an important component of this paper. Cohen and Varsh-

ney et al.9;52 have used envelopes to preserve the model topology and obtain tight error

bounds for a single simplification (within about 2 percent6), but they do not produce an

entire spectrum of levels of detail. Klein32;31 and Kobbelt et al. 33 measure a one-sided

Hausdorff distance between the original and simplified surfaces. This measure can produce

tighter bounds than the mapping-based measure we present, but the one-sided formulation

does not provide a true guarantee of surface-to-surface distance. Guéziec21;22 has pre-

sented an algorithm for computing local error bounds inside the simplification process by

maintaining tolerance volumes. This approach optimizes the simplified vertices to preserve

volume. However, the approach described does not generate a mapping between levels of

detail. Bajaj and Schikore2;46 have presented an algorithm for producing a mapping be-

tween approximations and measure the error of scalar fields across the surface based on

vertex-removals. Some of the results presented in this paper extend this work non-trivially

to the edge collapse operation. A detailed comparison with some of these approaches is

presented in Section 9.

An elegant solution to the polygon simplification problem has been presented14;16 in

which arbitrary polygonal meshes are first subdivided into patches with subdivision con-

nectivity and then multiresolution wavelet analysis is used over each patch. These methods

preserve global topology, give error bounds on the simplified object and provide a map-

ping between levels of detail. They have been further extended5 to handle colored meshes.

However, the initial mesh is not contained in the level of detail hierarchy, but can only

be recovered to within an �-tolerance. In some cases this is undesirable. Furthermore,

the wavelet based approach can be somewhat conservative and for a given error bound;

algorithms based on vertex removal and edge collapses9;28 have been empirically able to

simplify more (in terms of reducing the polygon count). This problem has recently been

alleviated somewhat by Lee et al.35. Their approach allows the specification of feature

constraints, such as sharp edges, before the simplification begins. These constraints affect

the initial shape of the subdivision patches. Still, the simplification process is locked into a

fairly rigid optimization path from this point onward.

The field of simplification has grown to be quite diverse, including research areas which

are beyond the scope of this paper. In particular, several simplification algorithms allow

dynamic, view-dependent simplification of objects or scenes during an interactive visual-

ization session.18;26;30;39;54 Recently, Guskov et al.23 have even described simplification

as a member of a suite of signal processing operations designed for operation on meshes.

4



3. Overview

Our simplification approach may be seen as a high-level algorithm which controls the

simplification process with a lower-level cost function based on local mappings. Next we

describe this high-level control algorithm and the idea of using local mappings for cost

evaluation.

3.1. High-level Algorithm

At a broad level, our simplification algorithm is a generic greedy algorithm. Our simpli-

fication operation is the edge collapse. We initialize the algorithm by measuring the cost of

all possible edge collapses, then we perform the edge collapses in order of increasing cost.

The cost function represents local error bounds on surface deviation and other attributes.

After performing each edge collapse, we locally re-compute the cost functions of all edges

whose neighborhoods were affected by the collapse. This process continues until none of

the remaining edges can be collapsed.

The output of our algorithm is the original model plus an ordered list of edge collapses

and their associated cost functions. This progressive mesh28 represents an entire continuum

of levels of detail for the surface. Section 7.2 discusses how we use these levels of detail to

render the model with the desired quality or speed-up.

3.2. Local Mappings

The edge collapse operation we perform to simplify the surface contracts an edge (the

collapsed edge, e) to a single, new vertex (the generated vertex, vgen). Most of the earlier

algorithms position the generated vertex to one of the end vertices or mid-point of the col-

lapse edge. These choices for the generated vertex position are reasonable heuristics, and

may reduce storage overhead. However, these choices may not minimize the surface devi-

ation or other attribute error bound and can result in a local self-intersection. We choose

a vertex position in two dimensions to avoid local self-intersections and optimize in the

third dimension to minimize incremental error. This optimization of the generated ver-

tex position and measurement of the error are the keys to simplifying the surface without

introducing significant error.

For each edge collapse, we consider only the neighborhood of the surface that is mod-

ified by the operation (i.e. those faces, edges and vertices adjacent to the collapsed edge).

There is a natural mapping between the neighborhood of the collapsed edge and the neigh-

borhood of the generated vertex (see Figure 1). Most of the triangles incident to the col-

lapsed edge are stretched into corresponding triangles incident to the generated vertex.

However, the two triangles that share the collapsed edge are themselves collapsed to edges.

These natural correspondences are one form of mapping.

This natural mapping has two weaknesses.

1. The degeneracy of the triangles mapping to edges prevents us from mapping points

of the simplified surface back to unique points on the original surface. This also

implies that if we have any sort of attribute field across the surface, a portion of it

disappears as a result of the operation.

5



Figure 1: The natural mapping primarily maps triangles to triangles. The two grey triangles

map to edges, and the collapsed edge maps to the generated vertex

2. The error implied by this mapping may be larger than necessary.

We measure the surface deviation error of the edge collapse operation as the distances

between corresponding points of our mapping. Using the natural mapping, the maximum

distance between any pair of corresponding points is defined as:

E = max(distan
e(v1; vgen); distan
e(v2; vgen)); (1)

where v1 and v2 are the vertices of e.

If we place the generated vertex at the midpoint of the collapsed edge, this distance

error will be half the length of the edge. If we place the vertex at any other location, the

error will be even greater.

We can create mappings that are free of degeneracies and often imply less error than the

natural mapping. For simplicity, and to guarantee no local self-intersections, we perform

our mappings using orthogonal projections of our local neighborhood to the plane. Because

they are applied one after another as we simplify the mesh, we refer to them as successive

mappings.

4. Successive Mapping

In this section we present an algorithm to compute the mappings we use to compute

error bounds and to guide the simplification process. We present efficient and complete

algorithms for computing a planar projection, finding a generated vertex in the plane, and

creating a mapping in the plane. These algorithms employ well-known techniques from

computational geometry and are efficient in practice. The correctness of these algorithms

is proven in Appendix A.

4.1. Computing a Planar Projection

Given a set of triangles in 3D, we present an efficient algorithm to compute a planar

projection which is fold-free. Such a fold-free projection contains no pair of edge-adjacent

triangles which overlap in the plane. This fold-free characteristic is a necessary, but not

sufficient, condition for a projection to provide a one-to-one mapping between the set of

6



triangles and a portion of the plane. In practice, most fold-free projections provide such

a one-to-one mapping. We later perform an additional test to verify that our fold-free

projection is indeed one-to-one (see Section 4.3).

The projection we seek should be one-to-one to guarantee that the operations we per-

form in the plane are meaningful. For example, suppose we project a connected set of

triangles onto a plane and then re-triangulate the polygon described by their boundary. The

resulting set of triangles will contain no self-intersections, so long as the projection is one-

to-one. Many other simplification algorithms, such as those by Turk51, and Schroeder48

also use such projections for vertex removal. However, they simply choose a likely di-

rection, such as the average of the normal vectors of the triangles of interest. To test the

validity of the resulting projection, these earlier algorithms project all the triangles onto the

plane and check for self-intersections. This process can be relatively expensive and does

not provide a robust method for finding a one-to-one projecting plane.

We improve on earlier brute-force approaches in two ways. First, we present a simple,

linear-time algorithm for testing the validity of a given direction, ensuring that it produces

a fold-free projection. Second, we present a slightly more complex, but still expected

linear-time, algorithm which will find a valid direction if one exists, or report that no such

direction exists for the given set of triangles. We defer until Section 4.3 a final, linear-time

test to guarantee that our fold-free projection provides a one-to-one mapping.

4.1.1. Validity Test for Planar Projection

We begin by describing a simple validity test to determine if a given direction of pro-

jection produces a fold-free planar projection for a given set of triangles. (Note that this

fold-free projection may not be one-to-one in rare cases - see Appendix A for a more de-

tailed discussion). Assume that we can calculate a consistent set of normal vectors for the

set of triangles in question (if we cannot, the local surface is non-orientable and cannot be

mapped onto a plane in a one-to-one fashion). If the angle between a given direction of

projection and the normal vector of each of the triangles is less than 90o, then the direction

of projection is valid and defines a fold-free mapping from the 3D triangles to a set of tri-

angles in the plane of projection (any plane perpendicular to the direction of projection).

Note that for a given direction of projection and a given set of triangles, this test involves

only a single dot product and a sign test for each triangle in the set. The correctness of this

test is demonstrated in Appendix A.

To develop some intuition, we examine a 2D version of our problem, shown in Figure 2.

We would like to determine if the projection of the curve onto the line is fold-free. Without

loss of generality, assume the direction of projection is the y-axis. Each point on the curve

projects to its x-coordinate on the line. If we traverse the curve from its left-most endpoint,

we will project onto a previously projected location if and only if we reverse our direction

along the x-axis. This can only occur when the y-component of the curve’s normal vector

goes from a positive value to a negative value. This is equivalent to our statement that the

invalid normal will be more than 90o from the direction of projection.

4.1.2. Finding a valid direction

7



Direction of Projection

Bad

Normals

Not one-to-one on this interval

Figure 2: A 2D example of an invalid projection due to folding.

n2n1
n1

n2

(a) (b)

Figure 3: A 2D example of the valid projection space. (a) Two line segments and their

normals. (b) The 2D Gaussian circle, the planes corresponding to each segment, and the

space of valid projection directions (shaded in grey).

The validity test in the previous section provides a quick method of testing the validity

of a likely direction as a fold-free projection (such as the average normal of the local tri-

angles). Unfortunately, the wider the spread of the normal vectors of our set of triangles,

the less likely we are to find a valid direction by using any sort of heuristic. It is possible,

in fact, to compute the set of all valid directions of projection for a given set of triangles.

However, to achieve greater efficiency and to reduce the complexity of the software system,

we choose to find only a single valid direction, which is typically all we require.

The Gaussian sphere4 is the unit sphere on which each point corresponds to a unit

normal vector with the same coordinates. Given a triangle, we define a plane through the

origin with the same normal as the triangle. For a direction of projection to be valid with

respect to this triangle, its point on the Gaussian sphere must lie on the correct side of this

plane (i.e. within the correct hemisphere). If we consider two triangles simultaneously

(shown in 2D in Figure 3) the direction of projection must lie on the correct side of each

of the two planes determined by the normal vectors of the triangles. This is equivalent to

saying that the valid directions lie within the intersection of half-spaces defined by these

two planes. Thus, the valid directions of projection for a set of N triangles lie within the

intersection of N half-spaces.

8



This intersection of half-spaces forms a convex polyhedron. This polyhedron is a cone,

with its apex at the origin and an unbounded base (shown as a shaded, triangular region in

Figure 3). We can force this polyhedron to be bounded by adding more half-spaces (we

use the six faces of a cube containing the origin). By finding a point on the interior of this

cone and normalizing its coordinates, we shall construct a unit vector in a valid direction

of projection.

Rather than explicitly calculating the boundary of the cone, we simply find a few cor-

ners (vertices) and average them to find a point that is strictly inside. By construction, the

origin is definitely such a corner, so we just need to find three more unique (and linearly

independent) corners to calculate an interior point. We can find each of these corners by

solving a 3D linear programming problem (described below). Linear programming allows

us to find a point that maximizes a linear objective function subject to a collection of linear

constraints34. The equations of the half-spaces serve as our linear constraints. We maxi-

mize in the direction of a vector to find the corner of our cone that lies the farthest in that

direction.

As stated above, the origin is our first corner. To find the second corner, we try maxi-

mizing in the positive-x direction. If the resulting point is the origin, we instead maximize

in the negative-x direction. To find the third corner, we maximize in a direction orthogo-

nal to the line containing the first two corners. If the resulting point is one of the first two

corners, we maximize in the opposite direction. Finally, we maximize in a direction orthog-

onal to the plane containing the first three corners. Once again, we may need to maximize

in the opposite direction instead. Note that it is possible to reduce the worst-case number

of optimizations from six to four by using the triangle normals to guide the selection of

optimization vectors.

To solve these linear programming problems in linear time, we use Seidel’s randomized

algorithm49 (although deterministic linear time solutions also exist40). A public domain

implementation of this algorithm by Hohmeyer is available

(see http://graphics.lcs.mit.edu/˜seth/geomlib/lp.tar). It is very fast in practice.

4.2. Placing the Vertex in the Plane

In the previous section, we presented an algorithm to compute a valid plane. The edge

collapse, which we use as our simplification operation, merges the two vertices of a particu-

lar edge into a single vertex. The topology of the resulting mesh is completely determined,

but we are free to choose the position of the vertex, which will determine the geometry of

the resulting mesh.

When we project the triangles neighboring the given edge onto a valid plane of projec-

tion, we get a triangulated polygon with two interior vertices, as shown in Figure 4. The

edge collapse will reduce this edge to a single vertex. There will be edges connecting this

generated vertex to each of the vertices of the polygon. We would like the set of triangles

around the generated vertex to have a one-to-one mapping with our chosen plane of pro-

jection, and thus to have a one-to- one mapping with the original edge neighborhood as

well.

In this section, we present linear time algorithms both to test a candidate vertex position

for validity, and to find a valid vertex position, if one exists.

9



v1

v2

edge

Figure 4: The neighborhood of an edge as projected into 2D

(a) (b)

Figure 5: (a) An invalid 2D vertex position. (b) The kernel of a polygon is the set of valid

positions for a single, interior vertex to be placed. It is the intersection of a set of inward

half-spaces.

4.2.1. Validity test for Vertex Position

The edge collapse operation leaves the boundary of the polygon in the plane unchanged.

For the neighborhood of the generated vertex to have a one-to-one mapping with the plane,

its edges must lie entirely within the polygon, ensuring that no edge crossings occur.

This 2D visibility problem has been well-studied in the computational geometry literature42.

The generated vertex must have an unobstructed line of sight to each of the surrounding

polygon vertices (unlike the vertex shown in Figure 5(a)). This condition holds if and only

if the generated vertex lies within the polygon’s kernel, shown in Figure 5(b). This kernel

is the intersection of inward-facing half-planes defined by the polygon’s edges.

Given a candidate position for the generated vertex in 2D, we test its validity by plug-

ging it into the implicit-form equation of each of the lines containing the polygon’s edges.

If the position is on the interior with respect to each line, the position is valid; otherwise it

is invalid.

4.2.2. Finding a Valid Position

The validity test described above is useful if we wish to test out a likely candidate for

the generated vertex position, such as the midpoint of the edge being collapsed. If such

10



Collapsed

Edge

Generated

Vertex

(a) (b)

Figure 6: (a) Edge neighborhood and generated vertex neighborhood superimposed. (b) A

mapping in the plane, composed of 25 polygonal cells (each cell contains a dot). Each cell

maps between a pair of planar elements in 3D.

a heuristic choice succeeds, we can avoid the work necessary to compute a valid position

directly.

Given the kernel definition for valid points, it is straightforward to find a valid vertex

position using 2D linear programming. Each of the lines provides one of the constraints

for the linear programming problem. Using the same methods as in Section 4.1.2, we can

find a point in the kernel with no more than four calls to the linear programming routine

(deterministic linear time solutions also exist for finding the kernel of a polygon36). The

first and second corners are found by maximizing in the positive- and negative-x directions.

The final corner is found using a vector orthogonal to the first two corners.

4.3. Guaranteeing a One-to-One Projection

While rare in practice, it is possible in theory for us to find both a fold-free projection

and a vertex position within the planar polygon’s kernel, yet still have a projection which

is not one-to-one. Figure A.5 shows an example of such a projection.

As proved in Appendix A, we can verify that both the neighborhoods of the generated

vertex and the collapsed edge have one-to-one projections with the plane with a simple,

linear-time test. Given our edge, e, its two vertices, v1 and v2, and the generated vertex,

vgen, these projections are one-to-one if and only if the orientations of the triangles sur-

rounding the vgen are consistent and the triangles surrounding v1, v2, and vgen each cover

angular ranges in the plane which sum to 2�.

We can verify the orientations of vgen’s triangles by performing a single cross product

for each triangle. If the signed areas of all the triangles have the same sign, they are

consistently oriented, and the projections are one-to-one. We verify the angular sums of

triangles surrounding v1, v2, and vgen using a vector normalization, dot product, and arccos

operation for each triangle to compute its angular range. Each floating point sum will be

within some small tolerance of an integer multiple of 2�, with 1 being the valid multiplier.

4.4. Creating a Mapping in the Plane

After mapping the edge neighborhood to a valid plane and choosing a valid position

11



for the generated vertex, we define a mapping between the edge neighborhood and the

generated vertex neighborhood. We shall map to each other the pairs of 3D points which

project to identical points on the plane. These correspondences are shown in Figure 6(a)

by superimposing these two sets of triangles in the plane.

We can represent the mapping by a set of map cells, shown in Figure 6(b). Each cell is

a convex polygon in the plane and maps a piece of a triangle from the edge neighborhood

to a similar piece of a triangle from the generated vertex neighborhood. The mapping

represented by each cell is linear.

The vertices of the polygonal cells fall into four categories: vertices of the overall

polygon in the plane, vertices of the collapsed edge, the generated vertex itself, and edge-

edge intersection points. We already know the locations of the first three categories of

cell vertices, but we must calculate the edge-edge intersection points explicitly. Each such

point is the intersection of an edge adjacent to the collapsed edge with an edge adjacent

to the generated vertex. The number of such points can be quadratic (in the worst case) in

the number of neighborhood edges. If we choose to construct the actual cells, we may do

so by sorting the intersection points along each neighborhood edge and then walking the

boundary of each cell. However, this is not necessary for computing the surface deviation.

5. Measuring Surface Deviation Error

Up to this point, we have projected the collapsed edge neighborhood onto a plane,

collapsed the edge to the generated vertex in this plane, and computed a mapping in the

plane between these two local meshes. The generated vertex has not yet been placed in 3D.

We will choose its 3D position to minimize the incremental error in surface deviation.

Given the overlay in the plane of the collapsed edge neighborhood, Mi�1, and the

generated vertex neighborhood,Mi, we define the incremental surface deviation between

them:

Ei;i�1(x) = kF
�1
i (x) � F�1i�1(x)k (2)

The function, Fi :Mi ! P , maps points on the 3D mesh,Mi, to points, x, in the plane.

Fi�1 : Mi�1 ! P acts similarly for the points on Mi�1. Ei;i�1 measures the distance

between the pair of 3D points corresponding to each point, x, in the planar overlay.

Within each of our polygonal mapping cells in the plane, the incremental deviation

function is linear, so the maximum incremental deviation for each cell occurs at one of its

boundary points. Thus, we bound the incremental deviation using only the deviation at the

cell vertices, V :

Ei;i�1(P) = max
x2P

Ei;i�1(x) = max
vk2V

Ei;i�1(vk) (3)

5.1. Distance Functions of the Cell Vertices

To preserve our one-to-one mapping, it is necessary that all the points of the generated

vertex neighborhood, including the generated vertex itself, project back into 3D along the

direction of projection (the normal to the plane of projection). This restricts the 3D position

of the generated vertex to the line parallel to the direction of projection and passing through

the generated vertex’s 2D position in the plane. We choose the vertex’s position along this

line such that it minimizes the incremental surface deviation.

12



t

minimum

upper

envelope

E(v1) E(v4)

E(v3)

E(v2)

tmin

Figure 7: We parameterize the position of the generated vertex along the direction of pro-

jection by t. The incremental surface deviation at each cell vertex varies linearly with t, so

the minimum of maximum deviations over all the cell vertices occurs at tmin, the value of

t at the minimum of the upper envelope.

We parameterize the position of the generated vertex along its line of projection by

a single parameter, t. As t varies, the distance between the corresponding cell vertices

in 3D varies linearly. Notice that these distances will always be along the direction of

projection, because the distance between corresponding cell vertices is zero in the other

two dimensions (those of the plane of projection). The distance function for each cell

vertex, vk, has the form (see Figure 7):

Ei;i�1(vk) = jmkt+ bkj; (4)

where mk and bk are the slope and y-intercept of the signed distance function for vk as t

varies.

5.2. Minimizing the Incremental Surface Deviation

Given the distance function, we would like to choose the parameter t that minimizes

the maximum distance between any pair of mapped points. This point is the minimum of

the so-called upper envelope, shown in Figure 7. For a set of k functions, we define the

upper envelope function as follows:

U(t) = ffi(t) j fi(t) � fj(t) 8 i; j 1 � i; j � k; i 6= jg: (5)

For linear functions with no boundary conditions, this function is convex. We convert

the distance function for each cell vertex to two linear functions, then use linear program-

ming to find the t value at which the minimum occurs. We use this value of t to calculate the

3D position for the generated vertex which minimizes the maximum incremental surface

deviation.

5.3. Bounding Total Surface Deviation

13



(a)

0

i�

�

(b)

0

i

i+1

�

�

�

Figure 8: 2D illustration of the box approximation to total surface deviation. (a) A curve

has been simplified to two segments, each with an associated box to bound the deviation.

(b) As we simplify one more step, the approximation is propagated to the newly created

segment.

While it is straightforward to measure the incremental surface deviation and choose the

position of the generated vertex to minimize it, this is not the error we eventually store with

the edge collapse. To know how much error the simplification process has created, we need

to measure the total surface deviation of the meshMi:

Si(X) = Ei;0(Fi(X)) = kX � F�10 (Fi(X))k (6)

Unfortunately, our projection formulation of the mapping functions provides only F�1i�1

and F�1i when we are performing edge collapse i; it is more difficult to construct F�10 , and

the complexity of this mapping is at least as complex as the original surface.

We approximate Ei;0 by using a set of axis-aligned boxes (other possible choices for

these approximation volumes include triangle-aligned prisms and spheres). This provides

a convenient representation of a bound on Si(X) that we can update from one simplified

mesh to the next without having to refer to the original mesh. Each triangle, 4k, in Mi,

has its own axis-aligned box, bi;k such that at every point on the triangle, the Minkowski

sum of the 3D point with the box gives a region that contains the corresponding point on

the original surface.

8X 2 4k; F
�1
0 (Fi(X)) 2 X � bi;k (7)

Figure 8(a) shows an original surface (curve) and a simplification of it, consisting of

two thick lines. Each line has an associated box. As the box slides over the line it is applied

to each point along the way; the corresponding point on the original mesh is contained

within the translated box. One such correspondence is shown halfway along the left line.

14



PropagateError():

foreach cell vertex, v

foreach triangle,4i�1, inMi�1 touching v

foreach triangle,4i, inMi touching v

PropagateBox(v,4i�1,4i)

PropagateBox(v,4i�1,4i):

Xi�1 = F�1
i�1(v); Xi = F�1

i (v)
Expand4i’s box so that4i’s box applied at Xi contains

4i�1’s box applied at Xi�1

Figure 9: Pseudo-code to propagate the total deviation from meshMi�1 toMi.

From (6) and (7), we produce ~Si(X), a bound on the total surface deviation, Si(X).

This is the surface deviation error reported with each edge collapse.

~Si(X) = max
X02X�bi;k

kX �X 0k � Si(X) (8)

~Si(X) is the distance from X to the farthest corner of the box at X . This will always

bound the distance fromX to F�1
0 (Fi(X)). The maximum deviation over an edge collapse

neighborhood is the maximum ~Si(X) for any cell vertex.

The boxes, bi;k, are the only information we keep about the position of the original

mesh as we simplify. We create a new set of boxes, bi+1;k, for mesh Mi+1 using an

incremental computation (described in Figure 9). Figure 8(b) shows the propagation from

Mi toMi+1. The two lines from Figure 8(a) have now been simplified to a single line. The

new box, bi+1;0, is constant as it slides across the new line. The size and offset is chosen

so that, at every point of application, bi+1;0 contains the box bi;0 or bi;1, as appropriate.

If X is a point on Mi in triangle k, and Y is the corresponding point on Mi+1, the

containment property of (7) holds:

F�1
0 (Fi+1(Y )) 2 X � bi;k � Y � bi+1;k0 (9)

For example, all three dots in Figure 8(b) correspond to each other. The dot on original

surface, M0 is contained in a small box, X � bi;0, which is contained in the larger box,

Y � bi+1;0.

Because each mapping cell in the overlay betweenMi andMi+1 is linear, we compute

the sizes of the boxes, bi+1;k0 , by considering only the box correspondences at cell vertices.

In Figure 8(b), there are three places we must consider. If bi+1;0 contains bi;0 and/or bi;1 at

all three places, it will contain them everywhere.

Together, the propagation rules, which are simple to implement, and the box-based

approximation to the total surface deviation, provide the tools we need to efficiently provide

a surface deviation for the simplification process.

5.4. Accommodating Bordered Surfaces

Bordered surface are those containing edges adjacent to only a single triangle, as op-

posed to two triangles. Such surfaces are quite common in practice. Borders create some

15



complications for the creation of a mapping in the plane. The problem is that the total shape

of the neighborhood projected into the plane changes as a result of the edge collapse.

Bajaj and Schikore2, who employ a vertex-removal approach, deal with this problem

by mapping the removed vertex to a length-parameterized position along the border. We

employ this technique for the edge-collapse operation by a simple extension. In their case,

a single vertex maps to a point on an edge. In ours, three vertices map to points on a chain

of edges.

6. Computing Texture Coordinates

The use of texture maps has become common over the last several years, as the hard-

ware support for texture mapping has increased. Texture maps provide visual richness to

computer-rendered models without adding more polygons to the scene.

Texture mapping requires 2D texture coordinates at every vertex of the model. These

coordinates provide a parameterization of the texture map over the surface. Surfaces with

complex geometric structure may be decomposed into polygonal patches, each with its own

parameterization. Our system can simplify surfaces composed of a connected network

of such polygonal patches, treating the patch boundaries as common borders which are

simplified consistently to avoid cracks.

As we collapse an edge, we must compute texture coordinates for the generated vertex.

These coordinates should reflect the original parameterization of the texture over the sur-

face. We use linear interpolation to find texture coordinates for the corresponding point on

the old surface, and assign these coordinates to the generated vertex.

This approach works well in many cases, as demonstrated in Section 8. However, there

can still be some sliding of the texture across the surface. We have recently extended our

mapping approach to also measure and bound the deviation of the texture coordinates8. In

this approach, the texture coordinates produce a new set of pointwise correspondences be-

tween simplifications, and the deviation measured using these correspondences measures

the deviation of the texture. This extension allows us to make guarantees about the com-

plete appearance of the simplified meshes, measuring not only the surface deviation (seen

at the silhouettes), but the texture coordinate deviation of all the interior pixels.

As we add more error measures to our system, it becomes necessary to decide how

to weight these errors to determine the overall cost of an edge collapse. Each type of

error at an edge mandates a particular viewing distance based on a user-specified screen-

space tolerance (e.g. number of allowable pixels of surface or texture deviation). We

conservatively choose the farthest of these. At run-time, the user can still adjust an overall

screen-space tolerance, but the relationships between the types of error are fixed at the time

of the simplification pre-process.

7. System Implementation

We divide our software system into two major components: the simplification pre-

process, which performs the automatic simplification described previously in this article,

and the interactive visualization application, which employs the resulting levels of detail to

perform high-speed, high-quality rendering.

16



Model Method # Evals # Collapses #E/#C CPU Time

Bunny complete 1,372,122 34,819 39.4 5:01

lazy 436,817 34,819 12.5 1:56

Torus complete 1,494,625 39,982 37.4 5:27

lazy 589,839 39,987 14.8 2:44

Table 1: Effect of lazy cost evaluation on simplification speed. The lazy method reduces

the number of edge cost evaluations performed per edge collapse operation performed,

speeding up the simplification process. Time is in minutes:seconds on a 195 MHz MIPS

R10000 processor.

7.1. Simplification Pre-Process

All the algorithms described in this paper have been implemented and applied to various

models. While the simplification process itself is only a pre-process with respect to the

graphics application, we would still like it to be as efficient as possible. The most time-

consuming part of our implementation is the re-computation of edge costs as the surface

is simplified, as described in Section 3.1. To reduce this computation time, we allow our

approach to be slightly less greedy by performing a lazy evaluation of edge costs as the

simplification proceeds.

Rather than recompute all the local edge costs after a collapse, we simply set a dirty

flag for these edges. When we pick the next edge to collapse off the priority queue, we

check to see if the edge is dirty. If so, we re-compute it’s cost, place it back in the queue,

and pick again. We repeat this until the lowest cost edge in the queue is clean. This clean

edge has a lower cost than the known costs of all the other edges, be they clean or dirty.

If the recent edge collapses cause an edge’s cost to increase significantly, we will find out

about it before actually choosing to collapse it. The potentially negative effect is that if the

cost of a dirty edge has decreased, we may not find out about it immediately, so we will not

collapse the edge until later in the simplification process.

This lazy evaluation of edge costs significantly speeds up the algorithm without much

effect on the error growth of the progressive mesh. Table 1 shows the number of edge cost

evaluations and running times for simplifications of the bunny and torus models with the

complete and lazy evaluation schemes. Figures 10 and 11 show the effect of lazy evaluation

on error growth for these models. The lazy evaluation has a minimal effect on error. In fact

in some cases, the error of the simplification using the lazy evaluation is actually smaller.

This is not surprising, because a strictly greedy choice of edge collapses does not guarantee

optimal error growth.

Given that the lazy evaluation is so successful at speeding up the simplification process

with little impact on the error growth, we still have room to be more aggressive in speeding

up the process. For instance, it may be possible to include a cost estimation method in our

prioritization scheme. If we have a way to quickly estimate the cost of an edge collapse, we

can use these estimates in our prioritization. Of course, we must still record the guaranteed

error bound when we finally perform a collapse operation. If our guaranteed bound is

too far off from our initial estimate, we may choose to put the edge back on the queue,

prioritized by its true cost.

17



0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000

E
rr

o
r 

(%
 o

f 
b
o
u
n
d
in

g
 b

o
x
 d

ia
g
o
n
al

)

Triangles

"complete cost evaluation"
"lazy cost evaluation"

Figure 10: Error growth for simplification of the bunny model.

0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000

E
rr

o
r 

(%
 o

f 
b
o
u
n
d
in

g
 b

o
x
 d

ia
g
o
n
al

)

Triangles

"complete cost evaluation"
"lazy cost evaluation"

Figure 11: Error growth for simplification of the wrinkled torus model.

18



7.2. Interactive Visualization Application

More important than the speed of the simplification itself is the speed at which our

graphics application runs. The simplification algorithm outputs a list of edge collapses and

associated error bounds. While it is possible to use this output to create view-dependent

simplifications on the fly in the visualization application (as described by Hoppe26), such

a system is fairly complex, requiring computational resources to adapt the simplifications

and immediate-mode rendering of the final triangles.

Our application is written to be simple and efficient. We first sample the progressive

mesh to generate a static set of levels of detail. These are chosen to have triangle counts

which decrease by a factor of two from level to level. This limits the total memory usage

to twice the size of the input model.

We next load these levels of detail into our visualization application, which store them

as display lists (often referred to as retained mode). On machines with high-performance

graphics acceleration, such display lists are retained in a cache on the accelerator and do

not need to be sent by the CPU over a bus to the accelerator every frame. On an SGI Onyx

with InfiniteReality graphics, we have seen a speedup of 2-3 times, just due to the use of

display lists.

Our interactive application is written on top of SGI’s Iris Performer library43, which

provides a software pipeline designed to achieve high graphics performance. The geometry

of our model, which may be composed of many individual objects at several levels of detail,

is stored in a scene graph. One of the scene graph structures, the LODNode, is used to store

the levels of detail of an object. This LODNode also stores a list of switching distances,

which indicate at what viewing distance each level of detail should be used (the viewing

distance is the 3D distance from the eye point to the center of the object’s bounding sphere).

We compute these switching distances based on the 3D surface deviation error we have

measured for each level of detail (using the total surface deviation, field of view, and screen

resolution). The bounding sphere radius is added to the computed distances to account for

Performer’s measuring of the distance to the sphere center (rather than the closest point on

the sphere).

The rendering of the levels of detail in this system involves minimal overhead. When

a frame is rendered, the viewing distance for each object is computed and this distance is

compared to the list of switching distances to determine which level of detail to render.

The application allows the user to set a 2D error tolerance, which is used to scale the

switching distances. When the error tolerance is set to 1.0, the 3D error for the rendered

levels of detail will project to no more than a single pixel on the screen. Setting it to 2.0

allows two pixels of error, etc. This screen-space surface deviation amounts to the number

of pixels the objects’ silhouettes may be off from a rendering of the original level of detail.

8. Results

We have applied our simplification algorithm to several distinct objects: a bunny rabbit,

a wrinkled torus, a lion, a Ford Bronco, a dragon, a Buddha statue, and an armadillo, com-

posed of a total of 393 parts (each simplified independently). Table 2 shows the total input

complexity of each of these objects as well as the time needed to generate a progressive

19



Model Parts Orig. Triangles CPU Time (Min:Sec)

Bunny 1 69,451 1:56

Torus 1 79,202 2:44

Lion 49 86,844 1:56

Bronco 339 74,308 1:29

Dragon 1 871,306 18:37

Buddha 1 1,087,474 23:56

Armadillo 1 1,999,404 42:27

Table 2: Simplifications performed. CPU time indicates time to generate a progressive

mesh of edge collapses until no more simplification is possible.

0

50

100

150

200

250

300

350

400

450

500

100 1000 10000 100000

P
ix

el
s 

o
f 

E
rr

o
r

Number of Triangles

"bunny"
"torus"
"lion"

"bronco"

Figure 12: Complexity vs. screen-space error for four models

mesh representation. All simplifications were performed on an SGI workstation running a

MIPS R12000 process.

Figure 12 graphs the complexity of each object vs. the number of pixels of screen-space

error for a particular viewpoint. Each set of data was measured with the object centered in

the foreground of a 1000x1000-pixel viewport, with a 45o field-of-view, like the Bronco in

Plates 2 and 3. This was the easiest way for us to measure the screen-space error, because

the lion and bronco models each have multiple parts that independently switch levels of

detail. Conveniently, this function of complexity vs. error at a fixed distance is proportional

to the function of complexity vs. viewing distance with a fixed error. The latter is typically

the function of interest.

Plate 1 shows the typical way of viewing levels of detail – with a fixed error bound and

levels of detail changing as a function of distance. Plates 2 and 3 show close-ups of the

Bronco model at full and reduced resolution.

Plates 4 and 5 show the application of our algorithm to the texture-mapped wrinkled

torus and lion models. If you know how to free-fuse stereo image pairs, you can fuse

the tori or any of the adjacent pairs of textured lion. Because the tori are rendered at an

appropriate distance for switching between the two levels of detail, the images are nearly

indistinguishable, and fuse to a sharp, clear image. The lions, however, are not rendered

at their appropriate viewing distances, so certain discrepancies will appear as fuzzy areas.

20



Each of the lion’s 49 parts is individually colored in the wire-frame rendering to indicate

which of its levels of detail is currently being rendered.

8.1. Applications of the Projection Algorithm

We have also applied the technique of finding a one-to-one planar projection to the

simplification envelopes algorithm9. The simplification envelopes method requires the cal-

culation of a vertex normal at each vertex that may be used as a direction to offset the vertex.

The criterion for being able to move a vertex without creating a local self-intersection is

the same as the criterion for being able to project to a plane. The algorithm presented by

Cohen, Varshney, et al.9 used a heuristic based on averaging the face normals.

By applying the projection algorithm based on linear programming (presented in Sec-

tion 4.1) to the computation of the offset directions, we were able to perform more drastic

simplifications. The simplification envelopes method could previously only reduce the

bunny model to about 500 triangles, without resulting in any self-intersections. Using the

new approach, the algorithm can reduce the bunny to 129 triangles, with no local self-

intersections. Because we found valid offset directions where previous heuristics failed,

the envelopes were displaced more, allowing more room for simplification between the

envelopes.

8.2. Video Demonstration

We have produced a video demonstrating the capabilities of the algorithm and smooth

switching between different levels-of-details for different models (IJCGA does not publish

a video proceedings, but the video appears as 11. It shows the speed-up in the frame rate

for eight circling Bronco models (about a factor of six) with almost no degradation in

image quality (the error tolerance was 6 pixels of deviation in screen space). The video

also highlights the performance on simplifying textured models, showing smooth switching

between levels of detail. The texture coordinates were computed using the algorithm in

Section 6.

9. Comparison to Previous Work

While concrete comparisons are difficult to make without careful implementations of

all the related approaches readily available, we compare some of the features of our algo-

rithm with those of a few others. The efficient and complete algorithms for computing the

planar projection and placing the generated vertex after edge collapse should improve the

performance of many earlier algorithms that use vertex removals or edge collapses.

We have directly compared our implementation with that of the simplification en-

velopes approach9. We generated levels of detail of the Stanford bunny model (70,000

triangles) using the simplification envelopes method, then generated levels of detail with

the same number of triangles using the successive mapping approach. Visually, the models

were comparable. The error bounds for the simplification envelopes method were smaller

by about a factor of two for a given number of triangles, because the error bounds for the

two methods measure different things. Simplification envelopes only bounds the surface

deviation in the direction normal to the original surface, while the mapping approach pre-

21



22



23



vents the surface from sliding around as well. Also, simplification envelopes created local

creases in the bunnies, resulting in some shading artifacts. The successive mapping ap-

proach discourages such creases by its use of planar projections. At the same time, the

performance of the simplification envelopes approach (in terms complexity vs. error) has

been improved by our new projection algorithm.

Hoppe’s progressive mesh28 implementation is more complete than ours in its handling

of colors, textures, and discontinuities. However, this technique provides no guaranteed

error bounds, so there is no simple way to automatically choose switching distances that

guarantee some visual quality.

The multi-resolution analysis approach to simplification14;16;35 does, in fact, provide

strict error bounds as well as a mapping between surfaces. However, the requirements of

its subdivision topology and the coarse granularity of its simplification operation do not

provide the local control of the edge collapse. The earlier approaches14;16 do not deal well

with sharp edges. Hoppe28 had previously compared his progressive meshes with the multi-

resolution analysis meshes. For a given number of triangles, his progressive meshes provide

much higher visual quality. However, recent advances35 have improved the quality of the

multi-resolution analysis meshes by allowing the specification of constraints (e.g. along

sharp edges). Like our algorithm, their approach uses a sequence of local planar mappings

to compute error bounds during a simplification process. They use a conformal mapping

to the plane rather than a projection as employed by our algorithm. Their conformal map

always exists and optimizes the preservation of angles and areas.

Guéziec’s tolerance volume approach21;22 also uses edge collapses with local error

bounds. Whereas the boxes used by the successive mapping approach are maintained in a

global object space, Guéziec’s error volume is defined using spheres centered at the sim-

plified vertices. One possible disadvantage of this approach is that the error volume may

grow as the simplified surface fluctuates closer to and farther away from the original sur-

face. This is due to the fact that the newer spheres must always contain the older spheres.

The boxes used by our successive mapping approach are not centered on the surface and

do not grow as a result of such fluctuations. However, his approach has the advantage that

the locations of the new vertices are truly optimized in 3D rather than in 1D. This could

result in tighter bounds, but this cannot be determined without a side-by-side comparison

of results. Also, the tolerance volume approach does not generate mappings between the

surfaces for use with other attributes. It may be possible to incorporate a mapping proce-

dure into this approach, but it would probably not be an inherent part of the optimization

procedure. Thus some of the optimized vertices may not have bijective mappings.

We have made several significant improvements over the simplification algorithm pre-

sented by Bajaj and Schikore2;46. First, we have replaced their projection heuristic with

a robust algorithm for finding a valid direction of projection. Second, we have general-

ized their approach to handle more complex operations, such as the edge collapse. Finally,

we have presented an error propagation algorithm which correctly bounds the error in the

surface deviation. Their approach represented error as infinite slabs surrounding each tri-

angle. Because there is no information about the extent of these slabs, it is impossible to

correctly propagate the error from a slab with one orientation to a new slab with a different

orientation.

24



10. Future Work

There are several apparent areas for future work. These involve improvements in

running time, space requirements, tightness of error bounds, generality, and appearance-

preservation.

As described in Section 7.1, there is great potential for speed improvements using cost

estimation in place of many of the guaranteed cost computations. If the estimates are often

close to the true costs, it should be possible to keep the error growth down while providing

significant speed improvements along with guaranteed error bounds on the final results.

We have focused on vertex placements that are more general than most current edge

collapse algorithms. However, these general-position vertices have greater storage require-

ments than more restricted placements, such as the end- or mid-points of an edge. It may

be useful to use the general position vertices only when they produce sufficiently smaller

error bounds than any of the restricted positions.

There are cases where the projection onto a plane produces mappings with unnecessar-

ily large error. We only optimize surface position in the direction orthogonal to the plane of

projection. It would be useful to generate and optimize mappings directly in 3D to produce

better simplifications, with tighter error bounds. Such mappings would also be capable of

measuring simplification error for edge neighborhoods that have no one-to-one projection

to the plane. However, it seems that an approach which optimizes mappings on the surface

may be significantly slower than our current approach.

Our system currently handles non-manifold topologies by breaking them into inde-

pendent surfaces, which does not maintain connectivity between the components. In our

appearance-preserving system8, however, we simplify a network of connected patches by

enforcing connectivity constraints on the patch boundaries. Handling non-manifold regions

in this way, preserving their connectivity, should provide higher visual fidelity for large

screen-space tolerances. This sort of generality in input models is desirable for dealing

with real-word data, such as those produced by CAD applications.

Finally, the true preservation of appearance with significant reduction in model com-

plexity is one of the major goals of simplification. We have pursued this goal with an

approach employing texture and normal maps to store the material color and surface cur-

vature properties of the input model8. This is the first work to provide guaranteed bounds

on the final, shaded appearance of simplified objects. However, it may also be desirable

to preserve these important appearance attributes in a per-vertex representation. Thus we

need better measures of how changes in the interpolated colors or normals across a surface

affect the final rendered images. Such measures must take into account the effect of an

object’s distance from the eye point, and allow increased simplification as an object gets

farther away, while guaranteeing some measure of final appearance.

Acknowledgments

We would like to thank Stanford Computer Graphics Laboratory for the bunny, dragon,

and Buddha models, Stefan Gottschalk for the wrinkled torus model, Lifeng Wang and

Xing Xing Computer for the lion model from the Yuan Ming Garden, Division and View-

point for the Ford Bronco model, and Venkat Krishnamurthy, Marc Levoy, and Peter

25



Schröder for the armadillo model. Thanks to Michael Hohmeyer for the linear program-

ming library. We would also like to thank Jeff Erikson, Carl Mueller, and the UNC Walk-

through Group. This work was supported in part by an Alfred P. Sloan Foundation Fellow-

ship, ARO Contract DAAH04-96-1-0257, NSF Grant CCR-9319957, NSF Grant CCR-

9625217, ONR Young Investigator Award, Intel, DARPA Contract DABT63-93-C-0048,

NSF/ARPA Center for Computer Graphics and Scientific Visualization, and NIH/National

Center for Research Resources Award 2 P41RR02170-13 on Interactive Graphics for Molec-

ular Studies and Microscopy.

References

1. Pankaj K. Agarwal and Subhash Suri. Surface approximation and geometric partitions. In

Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 24–33, 1994.

2. C. Bajaj and D. Schikore. Error-bounded reduction of triangle meshes with multivariate data.

SPIE, 2656:34–45, 1996.

3. H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. In

Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 293–302, 1994.

4. M.P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.

5. A. Certain, J. Popovic, T. Derose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive

multiresolution surface viewing. In Proc. of ACM Siggraph, pages 91–98, 1996.

6. Paolo Cignoni, C. Rocchini, and Roberto Scopigno. Metro: Measuring error on simplified

surfaces. Computer Graphics Forum, 17(2):167–174, 1998. ISSN 1067-7055.

7. Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3rd

Workshop Algorithms Data Struct., volume 709 of Lecture Notes Comput. Sci., pages 246–

252. Springer-Verlag, 1993.

8. J. Cohen, M. Olano, and D. Manocha. Appearance preserving simplification. In Proc. of

ACM SIGGRAPH, pages 115–122, 1998.

9. J. Cohen, A. Varshney, D. Manocha, and G. Turk et al. Simplification envelopes. In Proc. of

ACM Siggraph’96, pages 119–128, 1996.

10. Jonathan Cohen, Dinesh Manocha, and Marc Olano. Simplifying polygonal models using

successive mappings. IEEE Visualization ’97, pages 395–402, November 1997. ISBN 0-

58113-011-2.

11. Jonathan Cohen, Dinesh Manocha, and Marc Olano. Simplifying polygonal models using

successive mappings. Video Proceedings of IEEE Visualization ’97, November 1997.

12. G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In Proc. 2nd

Canad. Conf. Comput. Geom., pages 296–301, 1990.

13. M. J. DeHaemer, Jr. and M. J. Zyda. Simplification of objects rendered by polygonal approx-

imations. Computers & Graphics, 15(2):175–184, 1991.

14. T. Derose, M. Lounsbery, and J. Warren. Multiresolution analysis for surfaces of arbitrary

topology type. Technical Report TR 93-10-05, Department of Computer Science, University

of Washington, 1993.

15. T. K. Dey, H. Edelsbrunner, S. Guha, and D. Nekhayev. Topology preserving edge contrac-

tion. Technical Report RGI-Tech-98-018, Raindrop Geomagic, 1999. http://www.cis.ohio-

state.edu/˜tamaldey/paper/simplify/paper.ps.gz.

16. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution

analysis of arbitrary meshes. In Proc. of ACM Siggraph, pages 173–182, 1995.

17. Carl Erikson. Polygonal simplification: An overview. Technical Report TR96-016, Depart-

26



ment of Computer Science, University of North Carolina at Chapel Hill, 1996.

18. Leila De Floriani, Paola Magillo, and Enrico Puppo. Building and traversing a surface at

variable resolution. In Roni Yagel and Hans Hagen, editors, IEEE Visualization ’97, pages

103–110. IEEE, November 1997.

19. Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics.

Proceedings of SIGGRAPH 97, pages 209–216, August 1997. ISBN 0-89791-896-7. Held in

Los Angeles, California.

20. Michael Garland and Paul S. Heckbert. Simplifying surfaces with color and texture using

quadric error metrics. IEEE Visualization ’98, pages 263–270, October 1998. ISBN 0-8186-

9176-X.

21. A. Gueziec. Surface simplification with variable tolerance. In Second Annual Intl. Symp. on

Medical Robotics and Computer Assisted Surgery (MRCAS ’95), pages 132–139, November

1995.

22. André Guéziec. Locally toleranced surface simplification. IEEE Transactions on Visualiza-

tion and Computer Graphics, 5(2):168–189, April - June 1999. ISSN 1077-2626.

23. Igor Guskov, Wim Sweldens, and Peter Schröder. Multiresolution signal processing for

meshes. Proceedings of SIGGRAPH 99, pages 325–334, August 1999. ISBN 0-20148-560-5.

Held in Los Angeles, California.

24. P. Heckbert and M. Garland. Multiresolution modeling for fast rendering. Proceedings of

Graphics Interface ’94, pages 43–50, May 1994.

25. Paul S. Heckbert and Michael Garland. Survey of polygonal surface simplification algorithms.

In SIGGRAPH 97 Course Notes, 1997.

26. H. Hoppe. View dependent refinement of progressive meshes. In SIGGRAPH 97 Conference

Proceedings, pages 189–198. ACM SIGGRAPH, 1997.

27. H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle. Mesh optimization. In

Proc. of ACM Siggraph, pages 19–26, 1993.

28. Hugues Hoppe. Progressive meshes. In SIGGRAPH 96 Conference Proceedings, pages

99–108. ACM SIGGRAPH, Addison Wesley, August 1996.

29. Hugues H. Hoppe. New quadric metric for simplifying meshes with appearance attributes.

IEEE Visualization ’99, pages 59–66, October 1999. ISBN 0-7803-5897-X. Held in San

Francisco, California.

30. Reinhard Klein. Multiresolution representations for surface meshes. Technical report, Wil-

helm Schickard Institut für Informatik, Universität Tübingen, 1997.

31. Reinhard Klein and Jörg Krämer. Building multiresolution models for fast interactive visual-

ization. In SCCG, 1997.

32. Reinhard Klein, Gunther Liebich, and Wolfgang Straßer. Mesh reduction with error control.

In IEEE Visualization ’96. IEEE, October 1996. ISBN 0-89791-864-9.

33. Leif Kobbelt, Swen Campagna, and Hans-Peter Seidel. A general framework for mesh deci-

mation. Graphics Interface ’98, pages 43–50, June 1998. ISBN 0-9695338-6-1.

34. B. Kolman and R. Beck. Elementary Linear Programming with Applications. Academic

Press, New York, 1980.

35. Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin.

MAPS: Multiresolution adaptive parameterization of surfaces. In Michael Cohen, editor,

SIGGRAPH 98 Conference Proceedings, Annual Conference Series, pages 95–104. ACM

SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.

36. D. T. Lee and F. P. Preparata. An optimal algorithm for finding the kernel of a polygon. J.

ACM, 26(3):415–421, July 1979.

27



37. Peter Lindstrom and Greg Turk. Evaluation of memoryless simplification. IEEE Transactions

on Visualization and Computer Graphics, 5(2):98–115, April - June 1999. ISSN 1077-2626.

38. Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal simplification. IEEE

Visualization ’98, pages 279–286, October 1998. ISBN 0-8186-9176-X.

39. David Luebke and Carl Erikson. View-dependent simplification of arbitrary polygonal envi-

ronments. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Con-

ference Series, pages 199–208. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN

0-89791-896-7.

40. N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems.

SIAM J. Comput., 12:759–776, 1983.

41. Joseph S. B. Mitchell and Subhash Suri. Separation and approximation of polyhedral surfaces.

In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 296–306, 1992.

42. J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.

43. John Rohlf and James Helman. IRIS performer: A high performance multiprocessing toolkit

for real-time 3D graphics. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Or-

lando, Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual Conference Se-

ries, pages 381–395. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

44. R. Ronfard and J. Rossignac. Full-range approximation of triangulated polyhedra. Computer

Graphics Forum, 15(3):67–76, 462, Aug. 1996. Proc. Eurographics ’96.

45. J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering. In Modeling

in Computer Graphics, pages 455–465. Springer-Verlag, June–July 1993.

46. D. Schikore and C. Bajaj. Decimation of 2d scalar data with error control. Technical report,

Computer Science Report CSD-TR-95-004, Purdue University, 1995.

47. B. Schneider, P. Borrel, J. Menon, J. Mittleman, and J. Rossignac. Brush as a walkthrough

system for architectural models. In Fifth Eurographics Workshop on Rendering, pages 389–

399, July 1994.

48. W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of triangle meshes. In Proc. of

ACM Siggraph, pages 65–70, 1992.

49. R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th Ann. ACM Conf.

on Computational Geometry, pages 211–215, Berkeley, California, 1990.

50. D. C. Taylor and W. A. Barrett. An algorithm for continuous resolution polygonalizations of

a discrete surface. In Proc. Graphics Interface ’94, pages 33–42, Banff, Canada, May 1994.

51. G. Turk. Re-tiling polygonal surfaces. In Proc. of ACM Siggraph, pages 55–64, 1992.

52. A. Varshney. Hierarchical Geometric Approximations. PhD thesis, University of N. Carolina,

1994.

53. J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-based rendering for

polygonal models. IEEE Transactions on Visualization and Computer Graphics, 3(2):171–

183, June 1997.

54. Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simplification for polygonal

models. In IEEE Visualization ’96. IEEE, October 1996. ISBN 0-89791-864-9.

Appendix A: Projection Theorems

The simplification algorithm we have presented depends on our ability to efficiently

compute orthogonal projections which provide one-to-one mappings between small por-

tions of triangle meshes. With this in mind, we now present the mathematical properties of

the mapping used in designing the projection algorithm.

28



(a) (c)(b)

Figure A.1: Polygons in the plane. (a) A simple polygon (with an empty kernel). (b)

A star-shaped polygon with its kernel shaded. (c) A non-simple polygon with its kernel

shaded.

θ0
θ5

θ4

θ3 θ2

θ1

θ9

θ8

θ7

θ6

θ0
θ5

θ4

θ3 θ2

θ1

θ9

θ8

θ7

θ6

(a) (b)

Figure A.2: Projections of a vertex neighborhood, visualized in polar coordinates. (a) No

angular intervals overlap, so the boundary is star-shaped, and the projection is a one-to-one

mapping. (b) Several angular intervals overlap, so the boundary is not star-shaped, and the

projection is not one-to-one.

Definition A.1 A simple polygon is a planar polygon in which edges only intersect at

their two endpoints (vertices) and each vertex is adjacent to exactly two edges (see Fig-

ure A.1(a)).

Definition A.2 The kernel of a simple polygon is the intersection of the inward-facing

half-spaces bounded by its edges (see Figure A.1(b)). For a non-simple polygon (see

Figure A.1(c)), the kernel is the intersection of a consistently-oriented set of half-spaces

bounded by its edges (i.e. if we traverse the edges in a topological order, the half-spaces

must be either all to our right or all to our left).

Definition A.3 A star-shaped polygon is a simple polygon with a non-empty kernel (see

Figure A.1(b)).

By construction, any point in the kernel of a star-shaped polygon has an unobstructed

line of sight to the polygon’s entire boundary.

Definition A.4 A complete vertex neighborhood, Nv, is a set of triangles which forms a

complete cycle around a vertex, v.

The triangles of Nv are ordered: 40;41; :::;4n�1;40. Each pair of consecutive

triangles in this ordering, (4i;4i+1), is adjacent, sharing a single edge, ei; one of the

vertices of ei is v.

29



Definition A.5 The angle space of an orthogonal projection of a complete vertex neigh-

borhood, Nv, is the �-coordinate space, [0; 2�℄, constructed by converting the projected

neighborhood to polar coordinates, (r; �), with v at the origin (see Figure A.2(a))).

Definition A.6 The angular interval covered by the orthogonal projection of triangle, 4i,

from a complete vertex neighborhood, Nv, is the interval [�i; �(i+1) mod n℄, where �i is the

theta-coordinate of edge ei.

Definition A.7 The angle space of an orthogonal projection of a complete vertex neigh-

borhood is multiply-covered if each angle, � 2 [0; 2�℄, is covered by the projections of

at least two triangles from Nv. It is k-covered if each angle is covered the projections of

exactly k such triangles. A k-covered angle space is exactly multiply-covered if k > 1.

Lemma A.1 The orthogonal projection of a complete vertex neighborhood, Nv, onto the

plane, P , provides a one-to-one mapping between Nv and a polygonal subset of P iff the

angular intervals of the projected triangles of Nv do not overlap.

Proof. Consider the projection of Nv in polar coordinates, with v at the origin, and e0
at � = 0 (see Figure A.2). Each triangle,4i, spans an angular interval in �, bounded by ei
on one side and e(i+1) mod n on the other. If the intervals of the triangles do not overlap ,

then the triangles cannot overlap, and the projection must be one-to-one. If the intervals do

overlap, the triangles themselves must overlap (near the origin, which they both contain),

and the projection cannot be one-to-one (see Figure A.2(b)). 2

Corollary A.1 The orthogonal projection of a complete vertex neighborhood, Nv, onto

the plane, P , provides a one-to-one mapping between Nv and a polygonal subset of P iff

the angle space of the projection of Nv is 1-covered.

Proof. Lemma A.1 shows that for a one-to-one mapping, the angle space cannot be

multiply-covered. Because the triangles of Nv form a complete cycle around v, the angle

space must be fully covered. Thus, each angle must be covered exactly once. 2

Lemma A.2 The orthogonal projection of Nv onto the plane, P , provides a one-to-one

mapping between Nv and a polygonal subset of P iff the projection of Nv’s boundary

forms a star-shaped polygon in P , with v in its kernel.

Proof. If the projection provides a one-to-one mapping, the angular intervals of the

triangles do not overlap, and the boundary forms a simple polygon, with the origin in the

interior. The entire boundary of the polygon is visible from the origin. This is by definition

a star-shaped polygon, with the origin, v, in its kernel. In the case where one or more

interval pairs overlap, portions of the boundary are typically occluded from the origin’s

point of view. Thus v cannot be in the kernel of a star-shaped polygon. Note that if the

angle space is exactly multiply-covered, and the boundaries of these coverings are totally

coincident, the entire boundary also seems to be visible from the origin. However, such a

polygon is not technically simple, thus the projection of Nv is not technically star-shaped.

2

Definition A.8 A fold in an orthogonal projection of a triangle mesh is an edge with two

adjacent triangles whose projections lie to the same side of the projected edge. A degener-

ate fold is an edge with at least one triangle with a degenerate projection, lying entirely on

the projected edge.

Lemma A.3 An orthogonal projection of a consistently-oriented triangle mesh is fold-free

iff the triangle normals either all lie less than 90o or all lie greater than 90o from a vector

in the direction of projection.

30



∆1
∆2

∆1
(∆2)

∆1

∆1

∆2

∆2

(a)

(c)

(b)

e

e e

e

Figure A.3: Three projections of a pair of edge-adjacent triangles. (a) The projected edge

is not a fold, because the normals of both triangles are within 90o of the direction of projec-

tion. (b) The projected edge is a degenerate fold, because the normal of42 is perpendicular

to the direction of projection. (c) The projected edge is a fold because the normal of42 is

more than 90o from the direction of projection.

Proof. We are given that the triangle mesh is orientable, with consistently oriented

triangles and consistent normal vectors. The orientation of a projected triangle depends

only on the relationship of its normal vector to the direction of projection (see Figure A.3).

When these two vectors are less than 90o apart, the projected triangle will have one orien-

tation, while if they are greater than 90o apart, the projected triangle will have the opposite

orientation. At exactly 90o, the projected triangle degenerates into line segment.

At a fold, the two triangles adjacent to the folded edge have opposite orientation in the

plane, while at a non-folded edge, they have the same orientation. If all the triangle normals

lie within the same hemisphere, either less than or greater than 90o from the direction of

projection, all the projected triangles will be consistently oriented, implying that none of

the edges are folded.

If the normals do not all lie in one of these two hemispheres, the projected triangles

may be divided into three groups according to their orientations in the plane (one group is

for degenerate projections). Because the triangle mesh is fully connected, there must exist

some edge which is adjacent to two triangles from different groups; this edge is a fold (or

degenerate fold). 2

Lemma A.4 The orthogonal projection of Nv onto P provides a one-to-one mapping iff

the projection is fold-free and its angle space is not exactly multiply-covered.

Proof. Again, consider the projection of Nv in polar coordinates. When a fold occurs,

the angular intervals of these triangles overlap. Thus a projection with a fold does not

provide a one-to-one mapping. On the other hand, if the projection is fold-free, every edge

around v has its triangles laid out to either side. Because the final triangle of Nv connects

to the initial triangle, this fold-free projection provides a k-covering of the angle space.

If k = 1, the projection provides a one-to-one-mapping (from Corollary A.1). If k > 1,

the projection is exactly multiply-covered, implying that angular intervals overlap, and the

projection does not provide a one-to-one mapping. 2

Lemma A.5 The orthogonal projection of Nv onto P provides a one-to-one mapping iff

the projected triangles are consistently oriented and the angle-space of the projection is

not exactly multiply-covered.

31



Nv1 ∩ Nv2

Nv1 − (Nv1 ∩ Nv2)

Nv2 − (Nv1 ∩ Nv2)

v1
v2

e

Ne = Nv1 ∪ Nv2 ∪

∪
Nv1

Nv2

Figure A.4: The edge neighborhood is the union of two vertex neighborhoods. If we re-

move the two triangles of their intersection, we get two independent polygons in the plane.

Proof. We must show that the consistent orientation criterion is equivalent to the fold-

free criterion of Lemma A.4. The projection of each of the edges, e0:::en, is either a fold

or not a fold. The two triangles adjacent to each non-folded edge are consistently oriented,

while those adjacent to each folded edge are inconsistently oriented (or degenerate). If none

of the edges are folded, all adjacent pairs of triangles are consistently oriented, implying

that all of Nv is consistently oriented. If any of the edges are folded, Nv is not consistently

oriented. 2

Theorem A.1 The following statements about the orthogonal projection of a complete ver-

tex neighborhood, Nv, onto the plane, P , are equivalent:

� The projection provides a one-to-one mapping between Nv and a polygonal subset

of P .

� The angular intervals of the projected triangles of Nv do not overlap.

� The angle space of the projection of Nv is 1-covered.

� The projection of Nv’s boundary forms a star-shaped polygon in P , with the vertex,

v, in its kernel.

� The normals of the triangles of Nv all lie within the same hemisphere about the line

of projection and the angle space of the projection is not exactly multiply-covered.

� The projection of Nv is fold-free and its angle space is not exactly multiply-covered.

� The projected triangles of Nv are consistently oriented in P and the angle space of

the projection is not exactly multiply-covered.

Proof. This equivalence list is a direct consequence of Lemmas A.1, A.2, A.3, A.4, and

A.5 and Corollary A.1. 2

Definition A.9 A complete edge neighborhood, Ne, is a set of triangles which forms a

complete cycle around an edge, e (see Figure A.4).

If v1 and v2 are the vertices of e, we can also write:

Ne = Nv1 [Nv2 (A.1)

Lemma A.6 Given an edge, e, and its vertices, v1 and v2, the orthogonal projection of Ne

onto the plane, P , is fold-free iff the projections of Nv1 and Nv2 onto P are fold-free.

Proof. The set of triangle edges in Ne is the union of the edges from Nv1 and Nv2 .

If neither Nv1 nor Nv2 contains a folded edge, then Ne cannot contain a folded edge.

32



Similarly, if either Nv1 or Nv2 contains a folded edge, Ne will contain that folded edge

as well. Also note that the projections of Nv1 and Nv2 must have the same orientation,

because they have two triangles and one interior edge (e) in common. 2

Lemma A.7 The orthogonal projection of Ne onto P provides a one-to-one mapping be-

tween Ne and a polygonal subset of P iff the projections of its vertices, v1 and v2, provide

one-to-one mappings between their neighborhoods and the plane, and the projection of the

boundary of Ne is a simple polygon in P .

Proof. The projection provides a one-to-one mapping between Nv1 and a star-shaped

subset of P , and between Nv2 and a star-shaped subset of P . The only way for Ne to not

have a one-to-one mapping with a polygon in the plane is if the projections of Nv1 and Nv2

overlap, covering some points in the plane more than once.

Let N 0
v1

and N 0
v2

be the neighborhoods Nv1 and Nv2 with the two common triangles

removed, as shown in Figure A.4:

N 0
v1

= Nv1 � (Nv1 \Nv2);N
0
v2

= Nv2 � (Nv1 \Nv2); (A.2)

The projections of N 0
v1

and N 0
v2

are two polygons in P . If the projections of Nv1 and

Nv2 are each one-to-one, and these two polygons do not overlap, then the projection of Ne

is one-to-one. If the two polygons do overlap, the projection is not one-to-one, because

multiple points on Ne are projecting to the same point in P . Given that the projections

of Nv1 and Nv2 are fold-free, the only way for the two polygons to overlap is for their

boundaries to intersect. This intersection implies that the projection of Ne is a non-simple

polygon.

So we have shown that if the projections of Nv1 and Nv2 provide one-to-one mappings

with polygons in P and the projection of Ne’s boundary is a simple polygon in P , then the

projection provides a one-to-one mapping between Ne and this simple polygon in P . Also,

if the projection covers a non-simple polygon, there can be no one-to-one mapping. 2

Theorem A.2 The orthogonal projection of Ne onto P provides a one-to-one mapping

between Ne and a polygonal subset of P iff the projection ofNe is fold-free, the projections

of the neighborhoods of its vertices, v1 and v2, are not exactly multiply covered, and the

projection of its boundary is a simple polygon in P .

Proof. Given Lemma A.7, we only need to show that the projections of Nv1 and Nv2

provide one-to-one mappings iff the projection of Ne is fold-free, and the projections of

Nv1 and Nv2 are not exactly multiply-covered. This is a direct consequence of Lemmas

A.6 and A.4. 2

Definition A.10 An edge collapse operation applied to edge e, with vertices v1 and v2,

merges v1 and v2 into a single, generated vertex, vgen. In the process, any triangles adja-

cent to e become degenerate and are deleted.

Lemma A.8 Given an edge, e, which is collapsed to a vertex, vgen, an orthogonal pro-

jection of Ne is a simple polygon iff the same orthogonal projection of Nvgen is a simple

polygon.

Proof. The collapse of e to vgen does not affect the vertices on the boundary of Ne,

so Ne and Nvgen have the same boundary. Thus the projection of the boundary of Ne is

simple iff the projection of the boundary of Nvgen is simple. 2

Lemma A.9 A planar polygon with a non-empty kernel is simple iff it is star-shaped.

Proof. A star-shaped polygon is defined as a simple polygon with a non-empty kernel.

Thus if a polygon with a non-empty kernel is simple, it is star-shaped by definition. If a

polygon with a non-empty kernel is not simple, it cannot be star-shaped. 2

33



(a) (b)

Ne NVgen

e

vgen

Figure A.5: A fold-free projection of an edge neighborhood, Ne, which is not one-to-one.

(a) The projection of Ne has a non-empty kernel. (b) The projection of Nvgen has a 2-

covered angle space. This can be detected by noting that the sum of the angular intervals

of the triangles of Nvgen sum to 4�.

Lemma A.10 Given an edge, e, which is collapsed to a vertex, vgen inside the kernel of e,

an orthogonal projection of Ne is simple iff the same projection of Nvgen is star-shaped.

Proof. Recall from Lemma A.8 that Ne and Nvgen have the same projected boundary.

We have been given that this projected boundary is a planar polygon with a non-empty

kernel. From Lemma A.9, we know that this polygon is simple iff it is star-shaped. Thus

the projection of the boundary of Ne is a simple polygon iff the projection of the boundary

of Nvgen is a star-shaped polygon. 2

Theorem A.3 Given an edge, e, which is collapsed to a vertex, vgen in the kernel of e,

an orthogonal projection of Ne onto P provides a one-to-one mapping between Ne and

a polygonal subset of P iff the projection of Ne is fold-free and the projected triangles of

Nvgen are consistently oriented and do not multiply-cover the angle space.

Proof. Theorem A.2 shows that the projection of Ne is one-to-one iff it is fold-free

and simple. Lemma A.10 shows that it is simple iff the projection of Nvgen is star-shaped.

Theorem A.1 shows that the projection of Nvgen is star-shaped iff its projected triangles are

consistently oriented and do not multiply-cover the angle space. 2

Figure A.5 shows an example of a fold-free edge projection that is not one-to-one and

collapses to a multiply-covered vertex neighborhood.

Edge Collapse in the Plane

Theorems A.1 and A.3 lead us to an efficient algorithm for performing an edge collapse

operation in the plane.

First, we find a fold-free projection for the edge, e. We can use linear programming

with the normals of Ne as constraints to find a direction that guarantees such a fold-free

projection, if one exists for this edge. We do not yet know if the projection is one-to-one,

but rather than check to see if the projection forms a simple polygon, we defer this test until

later.

Second, we find a point inside the kernel of the projection of Ne. Again, we can use

linear programming to find such a point, if one exists for this projection.

Third, we collapse e’s vertices, v1 and v2 to this point, vgen, in the kernel. We do not

know yet if the overall polygon is star-shaped, because even a non-simple polygon may

34



have a non-empty kernel. If the polygon is not simple, neither the projection of Ne nor the

projection of Nvgen provides a one-to-one mapping with a polygon in P .

Finally, we verify that projections of Nv1 , Nv2 , and Nvgen are all one-to-one. For Nv1

and Nv2 , we verify that they are not exactly multiply-covered by adding up the spans of

the angular intervals of their triangles. These spans should sum to 2� (within some floating

point tolerance). For Nvgen , we check not only the sum of the angular spans, but also

the orientations of the projected triangles. If the spans sum to 2� and the orientations are

consistent, Nvgen has a one-to-one mapping, and its boundary is star-shaped. These are

all simple, O(n) tests, with small constant factors. They guarantee that we have a one-to-

one mapping between Ne and the plane, and also between Nvgen and the plane; this also

provides a one-to-one mapping between Ne and Nvgen .

All the steps of the preceding algorithm run in O(n) time (though we will later find

O(n2) edge-edge intersections, which we will use in the error calculation and 3D vertex

placement). This algorithm for performing an edge-collapse in the plane is described in

more detail in Section 4.

35


