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Abstract: In this study, successful synthesis of ZnO nanoparticles (NPs), CuO NPs, and ZnO/CuO
nanocomposite through an eco-friendly method using Corriandrum sativum leaf extract as a capping
agent is reported. Using XRD, FTIR, UV-Vis, and SEM techniques, the synthesized materials were
characterized for structural analysis, functional groups identification, spectroscopic measurements,
and morphological analysis. The percentage composition and purity of the samples were determined
by using Energy Dispersive X-ray (EDX), which showed the synthesis of materials. Morphological
analysis was done by Scanning Electron Microscopy (SEM) which reflected that the CuO NPs, ZnO
NPs and ZnO/CuO nanocomposite were spherical, and the average size calculated by using Image J
software was around 25 nm, 55 nm, and 11 nm, respectively. FTIR and UV-Vis analyses were used for
synthetic confirmation through characteristic peaks of materials. The synthesized (ZnO, CuO, and
CuO/ZnO) nanomaterials were evaluated for photocatalytic activity using methylene blue (MB) dye.
Among all three photocatalysts, the composite showed maximum photodegradation compared to the
other two materials. The present work could lead to a pathway for the decontamination of harmful
dyes of wastewater released from different industries.

Keywords: zinc oxide; copper oxide; photocatalysis; visible light; green synthesis

1. Introduction

An advancement in the field of nanotechnology is the fabrication of NPs with en-
vironmentally friendly techniques, unique properties, and high efficiency for usage in a
variety of fields [1]. For the fabrication of metal oxides, several chemical and physical
procedures have been developed, including sol–gel, microwave irradiation, chemical vapor
deposition, co-precipitation, wet impregnation, and mechanical alloying [2,3]. Among these
approaches, the green method remains the most cost-effective, non-toxic, and ecologically
friendly. Bio-synthesis, often known as green synthesis, has recently become a popular
method for the synthesis of metal oxide nanostructures [4]. Chemical approaches can result
in the accumulation of many hazardous compounds on the surface of NPs, which can have
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negative consequences in catalytic applications [5,6]. This issue can be solved by using
environmentally friendly methods to synthesize NPs [7]. Due to the promising applications
of NPs in the field of science and technology, different forms of mixed metal oxides (MO)
NPs received considerable attention. Prospective materials can have their chemical and
physical properties improved by adding metals to an oxide matrix, which will lead to better
performance in a range of applications. The metal in an oxide matrix system with matching
band potentials may function as an isolated entity or have a variety of features as a result of
the interactions between the metal and oxygen [8–10]. This might significantly improve the
material’s functionality and charge separation effectiveness [11]. It is critical to understand
that the majority of single-phase mixed oxides display constituent oxide properties [12].
Antibacterial activity, photocatalysis, electrochemical sensors, and other applications have
all made use of multiphase nanocomposite materials [13–17]. Metal oxide NPs such as
CeO2–MnOx [18], CuO–ZnO [19], ZnO–NiO [20], ZnO–MgO [21], TiO2–WO3 [2], and
Co3O4–ZnO [22] have been synthesized by several research groups by using various syn-
thesis methods. Nonetheless, the green synthesis method has attracted huge attention as
compared to other methods because of its simplicity, single-step nature, and less usage
of energy features. Because of the excellent loading separation efficiency of metal oxide
NPs, a great deal of attention has been paid to multiphase oxides [23–25]. Zinc oxide (ZnO)
NPs, an exciting n-type semiconductor with direct bandgap, have piqued interest among
metal oxides due to their appealing green qualities characteristics, exceptional stability,
one-step synthesis process, and low-slung cost [26–28]. ZnO NPs have drawn interest due
to their biological activities. Biological activity and quantitative evaluation of several metal
oxide NPs against Escherichia coli and Staphylococcus aureus were both studied by J Sawai
et al., who observed that ZnO NPs prevent the growth of bacteria by rupturing the cell
membrane [29]. The nanotoxicity of ZnO NPs and their interaction with bacterial cells has
been studied by several research groups [30–33]. Zinc oxide is used in a wide range of
cosmetics and personal care products, including makeup, nail products, baby lotions, bath
soaps, and foot powders. Zinc oxide is also used in skin protectants, such as diaper rash
ointments and sunscreen products [16,34,35]. Zinc oxide is also used as a buffer layer in
CIGS (Copper Indium Gallium Selenide) solar cells. Some current experiments focus on
the effect of the thickness of ZnO on maximum power output for the cells [36–41]. Copper
oxide (CuO) NPs are p-type semiconductor materials that have narrow band gaps and have
been extensively used for a variety of applications because of their special environmentally
friendly, anti-inflammatory, and anti-bacterial properties [10,16,31,42,43]. CuO has been
extensively used for photoelectrochemical water reduction, photodegradation reactions,
photovoltaic applications, solar hydrogen synthesis, and catalytic processes [16,31,44]. Nu-
merous, natural, and synthetic dyes are widely utilized in the leather, textile, food, and
plastic sectors. Dye-contaminated water has become a major pollutant from industries,
posing a huge threat to aquatic/marine life. As a result, reducing the primary effluent
colors before the harmful water enters water bodies is critical. Methyl red, one of the com-
monly used dyes, is released into the water reservoirs and causes water pollution [45–50].
CuO/ZnO, hierarchical metal oxide NPs, can be used as an amazingly effective photo-
catalyst for methyl red dye degradation. These metal oxide NPs are also employed in a
variety of applications, including photovoltaic devices such as solar cells, sensing, and
photocatalysis, due to their important properties, such as strong adsorption ability, extra
sites for functional moieties, high porosity, etc. [51,52]. Biocides and disinfectants are also
made with metal-oxide nanoparticles [53–56]. In this report, Corriandrum sativum plant
is used for the green synthesis of ZnO, CuO, and ZnO/CuO nanocomposite. Alkaloids,
glycosides, tannins, phenolic chemicals, flavonoids, and terpenoids are abundant in the
plant, and can act as stabilizing and reducing agents according to previous studies [57].
Additionally, the above-mentioned plant is economic and abundant, and, to the best of
our knowledge, the synthesis of ZnO, CuO NPs, and ZnO/CuO nanocomposite has not
been done using Corriandrum sativum leaf extract until now. The synthesized ZnO, CuO
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NPs, and ZnO/CuO nanocomposite were investigated as a potential photocatalyst against
methylene blue dye.

2. Materials and Methods
2.1. Materials

To make 0.1 M solution of copper sulphate salt, 6.2 g of copper sulphate (II) (CuSO4.5H2O)
(99.00 % pure, Guangdong, Guanghua chemical factory Co. Ltd., Shantou, Guangdong,
China) was dissolved in 250 mL of distilled water. 0.1 M solution of zinc acetate (99.99%
pure, acquired from Duksan Pure Chemicals Co., Ltd., Ansan, Republic of Korea) was made
by dissolving 5.48 g of Zn(CH3CO2)2 in 250 mL of distilled water. For later usage, both
prepared solutions were safely stored in screw-top bottles that were covered with aluminum
foil and kept at room temperature in a dark cupboard. Sodium hydroxide (NaOH) was
purchased from Alfa Aesar. The green Corriandrum sativum leaves were collected from the
local market (Muzaffarabad, Pakistan). The collected green leaves underwent a thorough
deionized water wash before being allowed to air dry for four days at room temperature.
To make the extract, 50 g of leaves were taken into 1000 mL (distilled water) and boiled at
80 ◦C for 3 h until the aqueous part turned a brown color. The extract was filtered by using
the Whatmann filter paper. The filtrate was poured into a measuring flask and stored in the
refrigerator for further use. Without additional purification, all substances were utilized
exactly as received.

2.2. Synthesis of ZnO

Green synthesis of ZnO NPs was conducted by adding 20 mL of Coriandrum sativum
plant extract into 50 mL of salt solution and kept on constant stirring using a thermostat
at 700 rpm and 80 ◦C. Sodium hydroxide was added after every 20 min to maintain the
pH at 13. The reaction was conducted until the bright peach-colored precipitates appeared.
Precipitates were allowed to settle down and were washed with distilled water 3–4 times.
Precipitates were dried out in an oven at 100 ◦C for an hour and converted into fine
powder with the help of a mortar and pestle. The powder was washed again with distilled
water 3–4 times. Calcination was done at 350 ◦C for 3 h and converted into a fine and
homogeneous powder with the help of a mortar and pestle.

2.3. Synthesis of CuO

Synthesis of CuO NPs was done by adding 20 mL of Coriandrum sativum plant extract
into 50 mL of salt solution with constant stirring of 900 rpm at 90 ◦C. Sodium hydroxide
was added after every 20 min to maintain the pH at 13. The reaction was conducted until
the black-colored precipitates appeared. Precipitates were allowed to settle down and
washed with distilled water 3–4 times. Precipitates were dried out in an oven at 100 ◦C and
were converted into a fine powder with the help of a mortar and pestle. The powder was
washed again with distilled water 3–4 times. Calcination was done at 350 ◦C for 3 h and
converted into a fine and homogeneous powder with the help of a mortar and pestle.

2.4. Synthesis of ZnO/CuO Nanocomposite

ZnO/CuO nanocomposite was synthesized by taking a 50 mL solution of both zinc
sulphate and copper sulphate in the 500 mL flask. Following that, 40 mL of Corriandrum
sativum plant extract was added and reactions were kept on constant stirring at 700 rpm
and 80 ◦C for 3 h. Reactions were carried out until precipitates appeared. The precipitate
formation was the indication of ZnO/CuO nanocomposite synthesis. Precipitates were
allowed to settle down and washed with distilled water 3 to 4 times. Precipitates were
dried in an oven at 100 ◦C and converted into a fine powder with the help of a mortar and
pestle. The powder was washed again with distilled water 3–4 times. Calcination was done
at 350 ◦C for 3 h and converted into very fine and homogeneous powder with the help of a
mortar and pestle.
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2.5. Photocatalytic Activity

The photocatalytic activity of the ZnO, CuO, and ZnO/CuO was evaluated by pho-
todegradation of an aqueous MB textile dye. The experiment was carried out in an open
atmosphere under the UV-Vis light coming from the Sun. The catalyst material used in
the catalytic tests included 5 mg each of ZnO, CuO, and ZnO/CuO NPs under continual
stirring in a 50 mL solution of MB (15 × 10−6 M). Following that, 4 mL aliquots were
taken from each reaction mixture at predetermined intervals (10 min), centrifuged, and the
decrease in absorbance values was recorded using spectrophotometry.

2.6. Characterization of ZnO, CuO and ZnO/CuO Nanocomposite

UV spectroscopic analysis was performed using a Shimadzu UV-1700 UV spec-
trophotometer outfitted with tungsten and deuterium lamps. The light source’s variable
wavelength was set to 340.8 nm, and the spectrophotometer’s wavelength range was
190–1100 nm with a 1 nm width. For spectral investigations, a quartz crystal with a length
of 10 mm was employed. In this publication, UV-Vis spectra of ZnO NPs, CuO NPs,
and ZnO/CuO nanocomposite were studied. The size and shape of produced NPs and
nanocomposite were characterized using the Nova Nano SEM, which has a 20–200,000×
magnification range and a resolution of up to 1 nm. EDX analysis of powder samples was
done by FEI NOVA nano SEM 450 equipped with an Oxford EDX detector. The X-ray
diffraction pattern of ZnO NPs, CuO NPS, and ZnO/CuO nanocomposite was recorded,
with Bruker D8 Advance instrument having (Cu) Kα radiation of wavelength λ = 1.5406 Å.
The 2θ viewing range was 20◦–70◦ and the generator setting was 30 mA at 40 kV. A cus-
tomized high-temperature Box Muffle Furnace (KSL-1800X-KA-UL) by MTI Corporation
was used for the calcination of samples. Using the Shimadzu FTIR-8400S Spectrometer,
FTIR investigations were carried out. The peak-to-peak S/N ratio of the spectrometer was
20,000:1, and its resolution was 0.85 cm−1. ZnO, CuO, and ZnO/CuO nanocomposite
transmittance were tested in the 500–4000 cm–1 range. Different functional groups in ZnO,
CuO, and ZnO/CuO Nanocomposite were identified using FT-IR.

3. Results and Discussion
3.1. ZnO NPs

ZnO nanoparticles were characterized by FT-IR spectroscopy, UV-Vis spectroscopy,
X-ray diffraction analysis (XRD), and scanning electron microscopy studies (Figure 1). FT-IR
spectrum of ZnO NPs (Figure 1a) shows different peaks in the range of 4000–400 cm−1. The
main absorption band at 3455 cm−1 is assigned to the O–H group stretching vibrations [58].
The range between 1700–1545.02 cm−1 represents the stretching modes of C=O and Zn-O
bonds [59]. Peaks in the range of 1000–1200 cm−1 are attributed to M-O bond formation in
the presence of NaOH [60]. The peak at 617.9 cm−1 represented Zn-O stretching vibrations
which was the confirmation of the synthesis of ZnO NPs. UV–Vis spectrum (Figure 1b) of
ZnO NPs dispersed in water showed the absorption band at 372 nm. In the spectrum, the
band at 372 nm was due to surface plasmon absorption of metal oxide. The absorption
band at 372 nm confirmed the zinc oxide NPs formation [61]. Figure 1c shows the XRD
spectrum of ZnO NPs. The XRD was taken at a scanning step of 0.020◦, in 2θ range from
20◦ to 70◦ with mono-chromatic Cu-Kα radiation (λ = 0.51418 nm). The diffraction patterns
were analyzed from the standard diffraction files of ZnO (Ref. Code 00-001-1136). The
characteristic peaks at 2θ values, 31.85◦, 36.35◦, 47.55◦, 56.65◦, 62.95◦, 66.35◦, 68.05◦, 69.15◦,
72.6, and 79.95◦, corresponded to the (100), (002), (101), (102), (110), (103), (200), (201),
(004), (202), and (104) Miller indices, respectively, that match to the standard structural
values. Using the X’Pert HighScore software, it was found that the D-spacing and density
of crystallite from the XRD spectrum were at 3.56 and 5.66 gcm−3, respectively [62].

Morphology and sizes of ZnO NPs were analyzed at the magnifications of 500 nm,
with the help of Nova Nano SEM (Figure 1d). It showed various irregular shapes of ZnO
NPs. At some points, NPs were combined to form agglomeration and cavities were also
seen at various points. The average crystallite size of ZnO NPs calculated from the XRD
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pattern using the Sherrer equation was 54.7 nm, and the SEM image using Image J software
was found to be averaged at 55 nm. The surface was smooth with clear boundaries, except
for agglomerated points [63]. EDX analysis (Figure 1e) showed that the powder sample
consisted of Zn, O, C, and Ca constituents with weight percentages of 73.21, 21.73, 4.29, and
0.77, respectively. EDX confirmed the signal characteristic of Zn and O with a very small
negligible amount of C and Ca in the sample. This spectrum correctly identified the presence
of Zn and O. All the above-obtained results confirmed the synthesis of ZnO NPs [28].
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Figure 1. (a) FT-IR spectrum of ZnO NPs, (b) UV absorption spectrum of ZnO NPs, (c) XRD pattern
of ZnO NPs, (d) HRSEM image of ZnO NPs, (e) EDX image of ZnO NPs.

3.2. CuO NPs

Figure 2 shows various characterizations such as FT-IR spectroscopy, UV-Vis spec-
troscopy, X-ray Diffraction analysis (XRD), and scanning electron microscope images of
CuO nanoparticles. Figure 2a shows the FT-IR spectrum of CuO NPs with different peaks
in the range of 4000–400 cm−1. The band between 3615.3–3286.0 cm−1 was attributed to
the stretching vibrations of the hydrogen-bonded O-H group [58]. The peak at 1627 cm−1

represented the stretching vibrations of C=O [64]. The presence of O-H with the formation
of Cu-O bond was represented at 1382 cm−1 [60]. Peaks in the range of 522–1200 cm−1 were
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attributed to Cu bond formation in the presence of NaOH. Strong sharp peaks were seen at
694.4 cm−1 and 786 cm−1 that were attributed to CuO [60]. Cu-O stretching vibration was
observed at 522 cm−1, which matched the stretching mode of vibration [60,64]. The UV-Vis
spectra of the CuO NPs are shown in Figure 2b, with water absorption occurring at 386 nm.
The metal oxide’s surface plasmon absorption resulted in the absorption at 386 nm in the
spectrum. In metal oxide nanoparticles (NPs), surface plasmon absorption is linked to the
collective oscillation of free conduction band electrons that are activated by electromagnetic
radiation. When the wavelength of the incident light is bigger than the particle’s diameter,
this form of resonance takes place. CuO NPs were formed, as shown by a surface plasmon
absorption band with a peak at 386 nm [65]. Figure 2c shows the XRD spectrum of CuO
nanoparticles. The diffraction patterns were analyzed from the standard diffraction files of
CuO (Ref. Code 00-001-1117) giving the characteristic peaks at 2θ at about 35.65◦, 38.9◦,
48.9◦, 53.9◦, 58.35◦, 61.7◦, 66.2◦, 68.1◦, 72.15◦, and 75.35◦, corresponding to the (−111), (111),
(−202), (020), (202), (−113), (022), (220), (311), and (004) Miller indices, respectively, that
match the standard values with the D-spacing value of 3.84 A0 and density of crystallite
6.10 gcm−3 [62].
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The SEM image of CuO NPs is shown in Figure 2d. SEM images at the magnification
of 200 nm were employed to give the morphology of the CuO NPs, where the majority
of the CuO NPs possess spherical shapes [29]. The average crystallite size of CuO NPs
calculated from the XRD pattern using the Sherrer equation was 23 nm, and it was found
to be 25 nm from SEM using image j software. The surface of nanoparticles is smooth
with clear boundaries. Analysis by Energy dispersive X-ray spectroscopy (EDX) of CuO
is given in (Figure 2e), which confirmed that the prepared powder sample contained
constituents, namely Cu, O, C, and Ca, with weight percentages of 72.38, 23.59, 3.58, and
0.45%, respectively. The amount of calcium and carbon is negligible. Both calcium and
carbon come from leaf extracts. Carbon content could be removed by hot water washing.

3.3. ZnO/CuO Nanocomposites

Figure 3 shows various characterizations such as FT-IR spectroscopy, UV-Vis spec-
troscopy, X-Ray diffraction analysis (XRD), and scanning electron microscope images of
CuO NPs. Figure 3a represents the FT-IR spectrum of ZnO/CuO obtained by IR spectropho-
tometer in terms of % transmittance. The broad band at 3652.8–3170.9 cm−1 represents the
O-H bond [58]. The peak at 1645.19 cm−1 is attributed to stretching vibrations of C=O [64].
The peak at 1500.47 cm−1 is attributed to bending vibrations of the H2O molecule [66].
Peaks in the range of 1000–1200 cm−1 are attributed to M-O bond formation in the pres-
ence of NaOH [60]. The stretching mode of the Zn-O bond is given at 495 cm−1. Zn-O
stretching vibrations are shifted to 495 cm−1 from 485 cm−1 with the addition of Cu-O Peak
at 485 cm−1, which is attributed to the stretching mode by the combination of Zn-O and
Cu-O [66]. Synthesized ZnO/CuO NPs were subjected to UV–Visible spectrophotometer
analysis which confirmed the formation of particles in the initial stage. The solid greyish,
black-colored samples of ZnO/CuO nanocomposite synthesized using Corriandrum sativum
were subjected to a scan UV-Spectrophotometer in the range of 200–1000 nm. Figure 3b
shows the UV–Vis spectra of the as-synthesized ZnO/CuO nanocomposite dispersed in
water exhibiting the maximum absorption peaks at about 374 nm and 438 nm, respectively.
In the spectrum, the peaks at 374 nm and 438 nm confirmed the formation of nanocompos-
ite [3]. The diffraction patterns were analyzed from the standard diffraction files of ZnO
(Ref. Code 00-001-1136) and CuO (Ref. Code 00-001-1117). The characteristic peak at 2θ at
about 31.85◦, 34.6◦, 35.8◦, 36.4◦, 38.85◦, 47.6◦, 48.75◦, 53.8◦, 56.75◦, 58.35◦, 61.85◦, 63.05◦,
66.7◦, 68.45◦, 69◦.15, 72.75◦, 72.7◦, 75.25◦, 76.8◦, and 79.95◦ correspond to the (100), (002),
(−111), (101), (111), (102), (−202), (020), (110), (202), (−113), (110), (022), (200), (220), (112),
(201), (311), (004), and (004) Miller indices, respectively, that match to the standard values.

Figure 3d illustrates the morphology and size of the ZnO/CuO nanocomposite that
was analyzed at high magnification (500 nm). Elongated and irregularly shaped small parti-
cles are seen on the surface with smooth unclear boundaries. At some points, nanocompos-
ites are seen to agglomerate and form chunks and cavities. In the case of the nanocomposite,
the average crystallite size calculated from the XRD pattern using the Sherrer equation was
11.3 nm, and it was found to be 11 nm from SEM using image j software. The results of
Energy Dispersive X-ray Spectroscopy are given in (Figure 3e), which show the presence
of Zn, Cu, O, C, Si, S, and C constituents with weight percentages of 36.87, 27.65, 21.32,
12.92, 0.34, 0.34, and 0.56%, respectively. By the presence of Zn, Cu, and O, the formation of
ZnO/CuO nanocomposite could be predicted. The sample is synthesized from the green
method by using plant extracts, so the presence of C could be justified. A minute amount
of calcium, sulfur, and silicon is also present. Calcium and sulfur come from leaf extracts,
while silicon is due to calcination holder.
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the presence of Zn, Cu, O, C, Si, S, and C constituents with weight percentages of 36.87, 

27.65, 21.32, 12.92, 0.34, 0.34, and 0.56%, respectively. By the presence of Zn, Cu, and O, 

the formation of ZnO/CuO nanocomposite could be predicted. The sample is synthesized 

from the green method by using plant extracts, so the presence of C could be justified. A 

minute amount of calcium, sulfur, and silicon is also present. Calcium and sulfur come 

from leaf extracts, while silicon is due to calcination holder. 

 

Crystals 2023, 13, x FOR PEER REVIEW 9 of 15 
 

 

 

Figure 3. (a) FT-IR spectrum of ZnO/CuO, (b) UV absorption spectrum of ZnO/CuO, (c) XRD pattern 

of ZnO/CuO, (d) HRSEM image of ZnO/CuO, (e) EDX image of ZnO/CuO nanocomposite. 

3.4. Photocatalytic Activity 

Barzegar et al. reported methylene blue (MB) dye degradation photo catalytically by 

CdS nanoparticles when exposed to UV light [67]. In the present study, the comparative 

photocatalytic activity of ZnO, CuO, and ZnO/CuO was done using MB dye. The photo 

decolorization of the MB dye, when exposed to sunlight, served as a measurement of the 

dye’s degradation. The absorbance spectra for the photocatalysts ZnO, CuO, and 

ZnO/CuO at a concentration of 5 mg are shown in Figure 4a–c, respectively. The photo-

decolorization process makes it abundantly evident that the absorbance gradually lowers 

with rising exposure duration. It is also observed that the photocatalytic activity of the 

ZnO/CuO catalyst is higher as compared to CuO and ZnO NPs. In addition, the close 

intercalation of CuO and ZnO NPs in the ZnO/CuO nanocomposite should be essential in 

boosting photo reactivity [68]. ZnO/CuO NPs are generally tightly packed, which speeds 

up electron flow between the surfaces and prevents photogenerated electrons and holes 

from recombining. Superoxide radical anions, photogenerated holes, and hydroxyl radi-

cals all play active roles in the photocatalytic degradation of MB dye solution [31,68]. Ac-

cording to findings from the literature, OH and holes play a significant role in the photo-

catalytic destruction of organic pollutants by ZnO and CuO, and ZnO/CuO NPs under 

UV light. 

Figure 3. (a) FT-IR spectrum of ZnO/CuO, (b) UV absorption spectrum of ZnO/CuO, (c) XRD
pattern of ZnO/CuO, (d) HRSEM image of ZnO/CuO, (e) EDX image of ZnO/CuO nanocomposite.

3.4. Photocatalytic Activity

Barzegar et al. reported methylene blue (MB) dye degradation photo catalytically by
CdS nanoparticles when exposed to UV light [67]. In the present study, the comparative
photocatalytic activity of ZnO, CuO, and ZnO/CuO was done using MB dye. The photo
decolorization of the MB dye, when exposed to sunlight, served as a measurement of
the dye’s degradation. The absorbance spectra for the photocatalysts ZnO, CuO, and
ZnO/CuO at a concentration of 5 mg are shown in Figure 4a–c, respectively. The photo-
decolorization process makes it abundantly evident that the absorbance gradually lowers
with rising exposure duration. It is also observed that the photocatalytic activity of the
ZnO/CuO catalyst is higher as compared to CuO and ZnO NPs. In addition, the close
intercalation of CuO and ZnO NPs in the ZnO/CuO nanocomposite should be essential in
boosting photo reactivity [68]. ZnO/CuO NPs are generally tightly packed, which speeds
up electron flow between the surfaces and prevents photogenerated electrons and holes
from recombining. Superoxide radical anions, photogenerated holes, and hydroxyl radicals
all play active roles in the photocatalytic degradation of MB dye solution [31,68]. According
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to findings from the literature, OH and holes play a significant role in the photocatalytic
destruction of organic pollutants by ZnO and CuO, and ZnO/CuO NPs under UV light.
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3.5. Comparison of Photocatalytic Degradation

The photocatalytic degradation process makes it abundantly evident that the ab-
sorbance steadily lowers with increasing exposure time [35]. The photodegradation and
photocatalytic activity of different catalysts for the photodegradation of MB dye under
irradiation are displayed in Figure 5a. This demonstrates that during the irradiation pe-
riod, ZnO/CuO’s photocatalytic performance was more intense than that of the other two
catalysts. Figure 5a shows the comparative photodegradation of as-synthesized samples,
namely ZnO, CuO, and ZnO/CuO in MB under UV irradiation. From this comparative
study, it was observed that ZnO/CuO nanocomposite exhibited better photodegradation
performance than ZnO and CuO NPs. The linear fitting of the absorbance spectra of the
MB dye solution containing 5 mg of ZnO, CuO NPs, and ZnO/CuO nanocomposite is
shown in Figure 5b. The highest photocatalytic activity was attained using a ZnO/CuO
nanocomposite that had a concentration of 5 mg. Moreover, the nanocomposite outper-
forms the other two catalysts in terms of degrading efficiency. The degradation efficiency
can be calculated using Equation (1).

η =
C0 − C

C0
× 100 =

A0 − A
A0

× 100 (1)
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Figure 5. (a) Variation of absorbance measured at 341 nm with sunlight exposure time, (b) the linear
fitting for the absorbance spectra of MB dye solution containing 5 mg of ZnO, CuO, and ZnO/CuO
nanocomposite.

The initial dye concentration in this case is C0, and the matching absorbance value is
A0 [69]. Following irradiation, the dye concentration is C, and the matching absorbance
value is A [30–32].

The plot of ln(A0/A) versus irradiation time for all samples is shown in Figure 5b.
According to first-order kinetics, the degradation rate constant (k) is determined from

the straight-line graph using linear fitting: ln(A0/A) = kt [70,71].
Table 1 shows the calculated k values and accompanying linear regression coefficients (R2).

Table 1. Photocatalytic reaction parameters of ZnO, CuO, and ZnO/CuO nanocomposite.

Sr. No Type of Catalyst Rate Constant (k) min−1 R2

1 ZnO/CuO 0.0148 0.9749
2 CuO 0.0025 0.9568
3 ZnO 0.0036 0.9696

The ZnO/CuO nanocomposite obviously exhibits improved photocatalytic perfor-
mance, according to the values of k and R2. The performance of the photocatalyst is
enhanced by the existence of more efficient ions (species), having a higher surface area
and active sites. The conclusion from the foregoing explanation is that ZnO/CuO has
significantly better photocatalytic activity than the other two catalysts.

4. Conclusions

It is concluded that the use of plant extract for the synthesis of NPs and nanocom-
posite proved to be one of the most effective, fast, affordable, and non-toxic methods.
The bioactive components of plant extract play a vital role in the synthesis of NPs and
nanocomposites that function as stabilizing or capping agents. Corriandrum sativum was
used for the synthesis of CuO and ZnO nanoparticles and ZnO/CuO nanocomposite to
degrade organic dye by photocatalysis. All the physiochemical properties of the samples
were examined through different characterization techniques such as EDX, SEM, and FTIR.
The EDX results of CuO NPs revealed that the given sample contained Cu (72.38%) and O
(23.59%), respectively. SEM showed that CuO NPs were found to have a spherical shape
with an average size of 25 nm, and FTIR indicates a stretching band at 522 cm−1 for CuO
that confirmed the formation of CuO NPs. The EDX results of ZnO confirmed that the
given sample contained ZnO (73.21%) and O (21.73%), respectively. SEM results showed
an irregular shape of ZnO NPs with an average size of 55 nm, and FTIR confirmed the
synthesis of ZnO NPs with the band at 372 cm−1. Percent composition of Zn, Cu, and O in
ZnO/CuO nanocomposite was found to be 36.87%, 27.65%, and 21.32%, respectively, by
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EDX analysis. Irregular and elongated shapes with an average of 11 nm were observed by
SEM, and the peak at 485 cm−1 by FTIR confirmed the synthesis of ZnO/CuO nanocom-
posite. The average crystallite size of CuO, ZnO, and ZnO/ZnO was 25 nm, 55 nm, and
11 nm, respectively. Among all three photocatalysts, the composite showed maximum pho-
todegradation. Because of the ease in the synthesis and biocompatibility of the materials,
these materials can be used for the photodegradation of many other hazardous organic
compounds present in both industrial and domestic water resources.
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