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Successive Refinement of Information 
William H. R. Equitz, Member, ZEEE , and Thomas M. Cover, Fellow, ZEEE 

Abstrocr -The successive refinement of information consists of first 
approximating data using a few bits of information, then iteratively 
improving the approximation as more and more information is supplied. 
The god is to achieve an optimal description at each stage. In general 
an ongoing description is sought which is rate-distortion optimal when- 
ever it is interrupted. It is shown that a rate distortion problem is 
successively refinable if and only if the individual solutions of the rate 
distortion problems can be written as a Markov chain. This implies in 
particular that tree structured descriptions are optimal if and only if the 
rate distortion problem is successively rethable. Successive refinement 
is shown to be possible for all fmite alphabet signals with Hamming 
distortion, for Gaussian signals with squared-error distortion, and for 
Laplacian signals with absolute-error distortion. However, a simple 
counterexample witb absolute error distortion and a symmetric source 
distribution shows that successive refinement is not always achievable. 

lnder Term -Rate distortion, refinement, progressive transmission, 
multiuser information theory, squared-error distortion, tree structure. 

I. INTRODUCTION 

ROBLEMS are characterized in which optimal descrip- P tions can be considered as refinements of previous opti- 
mal descriptions. For example, we may optimally describe a 
message with a particular amount of distortion and later 
decide that the message needs to be specified more accu- 
rately. Then, when an addendum to the original message is 
sent we hope that this refinement is as efficient as if the 
more strict requirements had been known at the start. In 
general, we ask whether it is possible to interrupt a transmis- 
sion at any time without loss of optimality. 

An example of successive refinement might be image 
compression in which one briefly describes a gross image and 
then follows with successive refinements of the description 
that further refine the image. The goal is to achieve the rate 
distortion bound at each stage. Similar remarks apply to 
voice compression. 

The difficulty with achieving this goal is that optimal 
descriptions are not always refinements of one another. 
Difficulties arise even in the simple case of describing a 
single random variable X drawn from a standard normal 
distribution where the problem is to minimize the average 
squared error resulting from using a few bits to describe 
X - N(0,l). If one bit of description is used, it is obvious that 
the optimal one bit description will specify whether X is 
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Fig. 1. Nonrefinable description. 

positive or negative. For instance one should send a “0” to 
indicate that X is negative and a, “1” otherwise, as indicated 
in Fig. 1. The reconstruction XI resulting from this 1, bit , 
description will be the ceFtroid of the partition. Thus XI = 

- \/2/.rr if X < 0, and X, = \/2/.rr if X 2 0. The resulting 
squared error distortion is D = E ( X  - X I 2  = (a - 2)/a = 
0.3634. 

If there are two bits available to describe X, then there is 
an optimal quantization [l] of the interval ( a, m). Here the 
interval is quantized into four regions, and X, is given by the 
centroid of the bin in which X happens to fall. Here it is 
clear that the two bit description is a refinement of the one 
bit description in the sense that one can merely append 
another bit to the optimal one bit description to transmit an 
optimal two bit description, i.e., the best four-cell partition is 
a refinement of the best two-cell partition. 

However, Fig. 1 shows that the optimal quantization levels 
for the three bit description is not a refinement of the 
optimal two bit description. Optimal use of three bits of 
information about X requires advance knowledge that three 
full bits will be available. 

This failure of successive refinement for the quantizGion 

of a single Gaussian random variable suggests that successive , 
refinement is rarely achievable. However, if we consider long 
blocks of i.i.d. Gaussian random variables, we will see that 
successive refinement is always possible. Nonetheless, suc- 
cessive refinement, even with large block sizes, is not possi- 
ble in general unless the solutions to the individual rate 
distortion problems obey a Markov relationship. 
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In Theorem 2 we prove that successive refinement from a 

coarse- description X ,  with distortion D ,  to a finer descrip- 
tion X ,  with distortion D ,  can be achieved if and only if the 
conditional distributions p(2 , lx )  and p(f21x) ,  which achieve 
Z(X; X i )  = R(Di),  i 1,2,$re Markov compatible in the sense 
that we can write X, + X ,  + X as a Markov chain. 

Section IV then uses these necessary and sufficient condi- 
tions to exhibit a counterexample for which successive refine- 
ment cannot be achieved. In Section V we prove that all 
finite alphabet distributions with Hamming distortion are 
successively refinable and also exhibit two specific continu- 
ous valued problems in which successive refinement is 
achievable. 

11. BACKGROUND AND STATEMENT OF THE PROBLEM 

We recall the definition of the rate distortion function. 
Definition 1 (Rate distortion function): For a probability 

mass function p ( x ) ,  x E x, and distortion function d(x ,  2 )  
on ,y X i, the rate distortion function R ( D )  is given by 

where the minimum is over all conditional pmfs p ( 2 l x )  

satisfying Cx,ip(x)p(21x)d(x,  2 )  I D.  The distortion rate 
function D ( R )  is the inverse function of R(D) ,  which can be 
characterized as 

D ( R )  = min E d ( X , J ? ) ,  (2) 
p ( f l x )  

where the m i n i y m  is over all conditional pmfs p ( 2 l x )  

satisfying Z(X; X )  2 R.  
The rate distortion theorem states that a rate ' R ( D )  de- 

scription of {Xi} ,  Xi independent and identically distributed 
(i.i.d.1, suffices to estimate the process to within distortion 
D.  We now describe what we mean by successive refinement. 

We consider a sequence of i.i.d. random variables 

X,, X,, a ,  X ,  where each Xi  is drawn from a source alpha- 
bet x. We are given a reconstruction alphabet = x, and 
consider the distortion measure 

d : , y x i - + 9 .  (3) 

The distortion measure on n-sequences in X" X i" is de- 
fined by the average per-letter distortion 

1 "  
d( x " ,  P") = - d(  xi, 2j), 

n j = 1  
(4) 

where x" =(x1,x2,.*.,x,), and 2"=(2,,2,,-~~,2,). 
We say that we are successively refining a sequence of 

random variables X , ,  a ,  X ,  when we use a two-stage de- 
scription that is optimal at each stage. First, as shown in Fig. 
2 we describe the X sequence at rate R ,  bits per symbol and 
incur distortion D, .  Then we provide an addendum to the 
first message at rate R ,  - R ,  bits per symbol so that the 
two-stage resulting message now has distortion D,. We shall 
say we have successively refined the sequence X , ;  a ,  X,, if 
R ,  = R ( D , )  and R ,  = R(D,).  In other words, we demand 
that we achieve the rate distortion limit at each of the two 
stages. In general, we will demand that we be able to achieve 
all points on the rate distortion curve. 

Definition 2 (Successiue refinement from distortion D, to 
distortion D2): We shall say that successiue re f i eme t  from 
distortion D ,  to distortion D ,  is achievable (Ill.> D,)  if 

Fig. 2. Successive refinement problem. 

%,Dl 

Fig. 3. Multiple descriptions problem. 

there exists a sequence of encoding functions in: x"+ 
(1,. . . , 2nRl} and j , :  X" + (1,. . . , 2"(Rz-R~)}, and reconstruc- 
tion functions g , , :  (I; .,2nRl) + i r  an: g,": {I; . . ,znRl)x 
(1; *;,2n(Rz-Rl)) + i;, such that for Xf = gl,,(in(X")) and 

for X ;  = gzn(in(Xn),j ,(X")),  

n lim +m supEd(X",J?f)SD(R1),  ( 5 )  

and 

lim sup Ed( X", A!;) I D( R , ) ,  (6) 
n + m  

where D ( R )  is the distortion rate function. 
Definition 3 (Successive refinement in general): We say that 

a problem defined by a source distribution p ( x )  and distor- 
tion measure d(x ,  2 )  is Successively refinable in general or 
simply successively refinable if successive refinement from 
distortion D ,  to distortion D ,  is achievable for every 
D ,  2 D2. 

A. Related Problems 

Our main tool is the achievable rate region for the multi- 
ple descriptions problem investigated by Gersho, Witsen- 
hausen, Wolf, Wyner, Ziv, Ozarow, El Gamal, Cover, Berger, 
Zhang, and Ahlswede [2]-[6]. In this problem a sender 
wishes to describe the same sequence of random variables 
X1,X2,*.*,Xn to more than one receiver. The ith receiver 
will receive description f i ( X l )  E !1,2; . . , ? " R i } ,  from which 
it will produce an estimate Xi , ,  Xi,,  . , Xi ,  of the original 
message. The distortion associated with representing the 
source symbol x with the symbol P is given by d ( x , P )  and 
the distortion between the sequences x" = ( x , ,  x,; * * ,  x,)  
and P" = (P,, 2,;. ., 2,) is given by (4). 

An important special case is shown in Fig. 3, where there 
are three receivers, two of which receive individual descrip- 
tions and the third of which has access to both descriptions. 
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Information about the source is transmitted to receivers 0 
and 1 at rates R ,  and R ,  respectively, andAthe two receivers 
individually generate estimates X ,  and X ,  with distortion 
Do and D, ,  respestively. When they pool their information, a 
third estimate X with distortion D ,  is generated (with 
D ,  I Do, D ,  I D J .  The rate distortion region is the set of 
achievable quintuhles (R , ,  R , ,  Do, D , ,  D,).  

The successive refinehefit problem is a special case of the 
multiple dessriptions problem in which there is no constraiflt 
on Ed(X,X , )  and in which we require R ,  = R ( D l )  and 
R,  + R ,  = R(D,).  

We require the following achievable region established by 
El Gama1 and Cover [5]. 

Theorem I: A rate-distortion quintuple is achievable if 
there exists a probability mass distribution 

P(X)P( io ,p , ,  221x) 

with 

Ed ( X ,  A?,,,) I D,,, , m = 0, 1 ,2,  

such that 

RO> z ( x ; 2 0 ) 7  ( 7) 

R ,  > I (  x ;  i,), (8) 

R ,  + R ,  > I ( X ;  io, RI, i,) + I(k,; A?,). (9) 

Ahlswede [71 showed in the “no-excess-rate case,” i.e., 
R ,  + R ,  = R(D,),  that the conditidns given by El Gama1 and 
Cover are necessary as well as sufficient. (Zhang and Berger 
161 exhibit a simple coudierexample that shows that the 
conditions of El Gama1 and Cover are sometimes not tight 
when R ,  + Rl  > R(D,) . )  However, successive refihement is 
indeed the case of no edqels rate, which is the constraint 
under which (7)-(9) yield the entire rate region. 

Also relevant to the successive refinement problem is the 
closely related conditional rate distortion problem formu- 
lated by R. M. Gray [8]-[iOl, which deals with the question 
of determining the minimum rate needed to describe a 
source at distortion D ,  when side information Y is present. 
See also Gray add Wyher [lll. Gray defines the conditional 
rate distortiori function R x l y (  D )  as 

where the minimum is over all p ( P l x ,  y )  stltisfying 

C ~ , , , , p ( f l x ,  Y ) P ( X ,  y )d (x ,  2 )  I D .  Conditional tate-distor- 
tion theory is relevant to our question because one might say 
that in successive refinement R ,  = R ( D , )  and R,*- R ,  = 

R?,p,(D2). Of course, R x I p ,  is defined only when X ,  is an 
i.1.d. sequence, which in general is not the case. Also relevant 
is the work of Yamamoto [121 and Kaspi and Berger [13]. 

111. ACHIEVABILITY OF SUCCESSIVE REFINEMENT 

A. The Markou Conditions 

Here we p p e  that successive refinement from coaye 
description Xi with distortion D ,  to fine description X, 
with distortion D2 is achievable if and only if the individual 
rate distortion solutions p(f,lx) and p(f,lx) for D ,  2 D ,  

are such that we can write X -+ 2, -+ A?, as a Markov chain. 
We do this by considering the successive refinement problem 
as a special case of the multiple descriptions problem and by 

applying theorems from [5]  and [71. Let the source distribu- 
tion p ( x )  and the distortion d ( x , 2 )  be given. Let R ( D )  be 
defined as in (1). ‘ 

Theorem 2 (Markouian characterization of successive re- 
finement): Successive refinement with distortions D ,  and D ,  
( D ,  2 D,)  can be achieved if and only if there exists a 
conditional distribution p ( 2 , ,  2 , l x )  with 

Ed( X ,  2,) I D , ,  

E d ( X , i 2 )  I D , ,  (12) 

I (  x ;  2,) = R ( D , ) ,  

I ( X ; k , )  = R ( D , ) ,  ( 14) 

(11) 

and 

such that 

(13) 

and 

P( 217 2 2 l x )  = P( - f z l x ) P (  21122). (15) 

RgmaIk: The last condition is equivalent to sayipg thtt 
X, X , ,  X ,  can be wriiten a: the Markov chain X -+ X ,  -+ X ,  
or, equivalently, as X ,  -+ X ,  -+ X .  

Proofi 
(Su[ficiency )-Let p ( 2  , I x )  and p(4,l x )  satisfy (1 0 4 1 4 ) .  

Let X ,  be a dummy symbol (some constant). Fix the joint 
pmf p(x )p (2 ,X2 ,  I x ) p ( f  I 2,). The joint description achiev- 
able region of Theorem 1 becomes 

R ,  > I (  X ;  A?,) = 0, 

R ,  > I ( X ;  2,) = R( D l ) ,  

(16) 

(17) 

R ,  + R ,  > I (  X ;  A?,, A?,, A?,) + I( A?,; A?,) (18) 

= Z ( X ; . ? , ) = R ( D , ) ,  (19) 

where we have used (13) and (14). But the total rate R ,  is 
given by R ,  = R ,  + R, .  Thus ( R , ,  R , )  = (R(D, ) ,  R(D,) )  is 
achievable. 

(Necessity )-Successive refinement requires R ,  = R( D , )  
and R ,  + R ,  = R(D,) .  This is the “no excess rate” condition 
of Ahlswede for which the region of Theorem 1 is the entire 
achievable rate region. Thus therc must exist a coqditional 
pmf p(2 , ,  4,, 2,lx) with Ed(X,  X , )  s D , ,  Ed(X ,  X , )  I D ,  
such that 

R I  = R( 0,)  2 I ( X ;  A?,), 

Ro = R( 0 2 )  - R( 01) 2 I( x ;  i o ) ,  

(20) 

(21) 

and 

R , +  R , =  R ( D 2 )  ~ I ( X ; ~ o , ~ 1 , ~ 2 ) + Z ( A ? o ; A ? 1 ) .  (22) 

The definition of the rate-distortion function implies th!t 
I ( X ;  2,) 1 R(D,) ,  so (20) is satisfied if and only if I ( X ;  X , )  
= R(D, ) .  Expanding (22) by the chain rule yields 

R( D , )  2 I (  X ;  io, A?,, A?,) + I (  To; 2,) (23) 

= I (  x; &) + I (  x ;  A?,IA?,) 

1 I (  x ;  22) (25) 

2 R ( D , ) ,  ( 26) 

+ I (  X ; A?,[ R,, i2) + I (  io; A?,) (24) 

~ ~.__-  - 
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where the last inequality follows from the definition of the 
rate-distortion function, and inequality (25) follows from the 
nonnegativity of mutual information. Since the start and end 
of the chain are equal, all inequalities must be satisfied with 
equality, which implies that 

I (  2,; 2,) = 0, 

z( x; 2,l2,, 2,) = 0, 

I (  X ;  k112,) = 0, 

I (  X ;  2,) = R( 0,). 

(27) 

(28) 

(29) 

(30) 

and 

Equation (29) is equivalent to the Markovity o,f XA+ 2,? 
XI, while (28) forces the Markovity of X + (Fl, X2,) + <,. 
Thus from the above we must have X + X ,  + XI + X,. 

Finally, (27) requires 2, to be independent of 2,. We 
conclude that the achievability of ( R , ,  R , )  = (R(Dl), R(D2) )  
guarantees the existence of a pmf p(x)p(fl, P,lx) satisfying 
(15). Thus successive refinement is achievable only by joint 
pmfs of the form p(x)p(P21x)p(Pl~P2)p~~), i.e., only if 

0 there exists p(P1lP,) such that X + X ,  + X,. 

B. Codes for Successive Refinement 

Let p(P,) and p(P,lP1) be probability mass functions 
achieving the bound in Theorem 2. To generate the code- 
book for the first refinement, we draw 2nRl i.i.d. code vectors 
according to the distribution 17F='=lp(f,i).  We index these 
code vectors Pr(i), i E (1,. .,2nRl}. Then, for each i we 
generate a codebook for the second refinement with 2n(R2-Rl) 
codewords drawn according to the conditional distribution 
17~=1p(P2k(Plk(i)). We index these code vectors P;(i, j), 
iE{1, . . . ,2nR1},  j E ( 1 , .  * . ,~"(R~-RI)} .  

We describe the first refinement of a source vector X" 

with the index i of the codeword that minimizes d(x", P r ( i ) ) .  
Next we describe the second refinement of x" by the index 
j E {l; .,2n(R2-Rl)} that minimizes d(x", P;( i , j ) ) .  Because 
successive refinement is a special case of the multiple de- 
scriptions problem, the proof of Theorem l [5] establishes 
that this method of encoding will achieve the desired rates 
and distortions. 

We can now see that the codes which achieve successive 
refinement have a "tree structure," where the coarse de- 
scriptions occur near the root of the tree and the finer 
descriptions near the leaves. Although these tree structured 
codes will usually only be optimal asymptotically in the limit 
as the block length n grows to infinity, it is possible to use 
the idea of tree structured codes in practical finite block 
length schemes for describing messages with successive re- 
finements. One such method is described in [14], [15]. 

IV. COUNTEREXAMPLE 

In this section we show that not all problems are succes- 
sively refinable. We now provide a sketch of a counterexam- 
ple that has its roots in a problem described by Gerrish [16], 
which forms the basis for an, exercise in Berger's textbook 
[17, p. 611. A detailed analysis of this counterexample can be 
found in 1181. Let ,y = = {1,2,3}, 

L 3 Symbols 

D2 Dl 

D 

I 

Fig. 4. Choice of D, and D, in counterexample. 

with 0 < p < 1, and d ( x ,  2 )  = I X  - PI. We assume, for this 
example, that p < 3 - 2 f i .  Let 

(32) = eR'(D) 

where R'(D) is the derivative of the rate distortion function 
at D .  Then by the Kuhn Tucker conditions, it can be shown 
that the solution to the rate distortion problem for distortion 
D is 

, [ 1 z ( 1 - z )  z q  

and 

1 - p  - z - p z  p - 2 + pz + z 2  

2(1- z ) ,  ' ( 1 -  z ) ,  ' 2( 1 - z ) ,  

1 - p  - z - p z  

(34) 

P? = 

if Iz -(1/2X1- p)I2 I (1/4Xp2 - 6 p  + 1); and 

and 

P,q = [1/2,0,1/21, (36) 

if Iz -(1/2X1- p)I2 > (1/4Xp2 - 6 p  + 1). 
Let D ,  be in the region for which p(P)=(1/2,0,1/2). 

Specifically, let 2, = eR'(Dz) = (1/2X1- p ) .  Let D ,  > D2 be 
chosen to lie in the 3-symbol active region, i.e., let z1 = eRYDl) 
satisfy 

1 1 - P  

2 l + P  
-( 1 - p )  + 4- < z1 < - . (37) 

See Fig. 4. 

transition matrix p(P21P,) such that 
We shall argue that we cannot find a (necessarily) 3 X 2 

P( Xlf , )  = CP( XlP,)P( &If,). (38) 
2 2  

This is because there is a bottleneck in J?, -+ 2, -+ X, since 
X ,  has only two states, thus preventing p ( x l 2 , )  from having 
the degrees of freedom necessary to satisfy (33). We consider 
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the matrix equation 

PXIR, = ~ ~ z ~ k l ~ x 1 2 * ~  (39) 

which we rewrite as 

r (1-P)Z,2 1 
= [ B  A 

C 

Finally, we 

1 - A  
1- B 
1 - c  

observe 

- .  
1+ z2" 

1+ z;  

11 ( l - P > z , 2  

from (40) that 

. (40) I 
the form 

F E 1 - F - E .  (41) I 
D E 1 - D - E  

G E 1 - E - G  

Note the equal entries in the second column. Thus, by 
inspecting the left-hand side of (40), we see that Px,2, has 
the above form only if z,(1 - z , )  = 1 - z,, i.e., z 1  = 1. But 

Thus there exists no Markov chain 8, + 8, + X satisfy- 
ing the rate distortion conditional marginals p(xl.2,) and 

p(xlP,) given in (33) and (35). So for 0 < p < 3 - 2 a ,  the 
problem Px = [(l - p ) / 2 ,  p , ( l -  p ) /2] ,  d (x ,  2 )  = Ix - PI is 
not successively refinable in general. 

We can also characterize exactly when successive refine- 
ment is achievable from distortion D ,  to D,. One interesting 
case is described in the following theorem, which is true for 
any 0 < p < 1. See 1181 for a proof. 

Theorem 3: Consider the discrete rate-distortion problem 
with x = i1 = i2 = 11,2,3}, d ( x ,  2 )  = Ix - fl, and 

1- - e R Y D ~ )  5 e R ' ( D m a x )  = (1 - P ) / ( l +  P )  < 1. 

1 - P  
1 1 ,  with probability - 

2 

X = (  2, with probability p . 
1 - P  

3,  with probability - I 2 

If D ,  and D ,  are such that ~ s u p p ~ D 1 ) = ~ s u p p ( D 2 ) = ~ 1 , 2 , 3 } ,  
then successive refinement from distortions D ,  to D, ( D ,  > 
D,) is achievable if and only if 

( ~ + e " ( ~ ~ ) ) ( l + e R ( ~ z ) )  1 2 .  ( 42) 

Notice that even if fsupp = {1,2,3} for all D (for example, 
if p > 3-2\/2), we can choose D ,  and D, so that ( 1  + 
eR(DI)X1 + eR'(Dz)) > 2 and successive refinement is not 
achievable. This serves as a counterexample to a possible 
conjecture that successive refinement is always possible when 
x = 2 over the entire rate-distortion curve. 

V. EXAMPLES OF SUCCESSIVE REFINEMENT 

We now show that the following rate distortion problems 

1) X Gaussian, squared error distortion, d(x ,  f )  = 

2) X arbitrary discrete, Hamming distortion, d(x ,  2 )  = 

are successively refinable. 

( x  - a), .  

1 - 6 ( x  - f). 

3) X Laplacian, absolute error distortion, d ( x ,  f) = 

Ix - PI. 

The details are developed in [MI. 

A. Gaussian Distribution with Squared-Error Distortion 

If X is Gaussian N(0 ,a2) ,  then R ( D )  is achieved by 
p(f) = N(0, a2 - D), p ( x ) f )  = N(f, D). It follows from the 
work of Gray and Wyner [ l l ]  that this problem is succes- 
sively refinable in our context. It is easy to show, for Dl > D,, 
that 

~(4,) = N ( 0 , u 2  - 0 1 )  

P( P214,) = N(f,, D ,  - 0 2 )  

(43) 

(44) 

(45) 

yields a joint density p ( x ,  f,, 2,) = p ( f i ) p ( f , ~ f l ) p ( x l f 2 )  
having the desired marginal p ( x )  = N(0, U,) and satisfying 
the conditions of Theorem 2, thus guaranteeing the achiev- 
ability of 

( R , , R , ) = ( R ( D , ) , R ( D , ) )  = ( ~ l o g $ , ~ l o g e ) .  D2 

The code achieving these bounds has an especially nice 
tree structure. Let 2nR(D~)  = ( u ~ / D , ) " / ~  2,'s be drawn i.i.d. - Nn(0,(a2 - Dl)Zn). Label them i1(l), f1(2); * ., f1(2"R(D1)). 
Let 2n(R(Dz)-R(Dl)) = ( D l  /D2)" l2  U'S be drawn i.i.d. - 
NJO, ( D ,  - D,)Z,,). Label them u ( l ) ,  ~ ( 2 ) ; .  * ,  

u ( ~ " ( ~ ( ~ Z ) - ~ ( ~ I ) ) ) .  Then, given x - N,(O, u2Z,,), let i ( x )  de- 
note the index i minimizing Ilfl(i)- and let j ( x )  denote 
the index j minimizing lIf,(i(x)) + U( j )  - xl12. Then, the re- 
construction f, = f l ( i ( x ) )  and f ,  = f , ( i (x))+ u ( j ( x ) )  asymp- 
totically achieves distortions D ,  and D at rates R and R 
respectively. Note that it takes only 2"2R(D~) + 2"(RtDz)-R(D3 
distance calculations to encode and decode x. This number 
of calculations is exponentially smaller than the 2nR(Dz) cal- 
culations required to describe x at distortion D ,  in one step. 

B. Arbitrary Discrete Distribution with Hamming Distortion 

We now consider ExampleA 2. Here <- p ( x ) ,  x E 

{1,2, . . . ,m},  and D = E d ( X , X ) = P r { X # X } .  This is a 
probability of error distortion measure for an arbitrary dis- 
crete source. It has been shown by Erokhin [19] and Pinkston 
[20] that R ( D )  is achieved by upside down waterfilling. 
Specifically, 

X 

and 

(47) 
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Let 4, > D2. The required tmansitiqn p(P,[i,) to establish 
2, + X 2  + X (and thus X --$ A‘, -+ X , )  is 

where J?lsupp 
“ waterfilling” 

for i = 1.2, 

is the support set of RI, and A , , A 2  are the 
levels. Thus 

X 

and p(P21i,), as given in (491, achieves 

C. Laplacian Density with Absolute Error 

We now show that random variables drawn from a Lapla- 
cian distribution can be successively refined when distortion 
is measured using the absolute distortion criterion. We say 
that a random variable X is drawn from a Laplacian distri- 
bution if it has a density f (parameterized by a) such that 
f ( x >  = (a/2)e-“IXI. We assume the absolute distortion mea- 
sure d ( ~ ,  P) = Ix - PI. 

We first recall the rate-distortion solution. Here R( D) and 
f(Plx) are given by 

R(D)=- log (aD) ,  O < D I D m , = l / ~ ,  (51) 

and 

fXlR(XIP) = g ( x  - P) (52) 

1 

(53)  

We wish to show for D, 2 D, that 2, + k2 -+ X can form 
a Markov chain by finding f~21,@21P,) such that 

x [PI 1 = 1 fXlR( XIP,) f&lR,( Ezlf,) 3 (54) 
x2 

or 

Thus 

(59) 

Taking the inverse transform, we obtain 

This is nonnegative and integrates to one, %o we pave found 
the conditional density establishing that X ,  4 X 2  + X can 
be written as a Markov chain. Therefore successive refine- 
ment is achievable. 

VI. CONCLUSION 

Successively refinable source coding problems have simple 
descriptions that can be stopped at any point without loss of 
optimality. This is only possible if the conditional distribu- 
tions p(ii lx) can be written as a Markov chain. 
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