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Abstract 

 
The present work is an attempt to study the effect of non-response at both occasions in search of good 

successive (rotation) sampling over two occasions. A chain-type ratio and regression estimator has been 

proposed for estimating the population mean at current occasion in presence of non-response at both the 

occasion in two-occasion successive (rotation) sampling. Detail behaviors of proposed estimators have 

been studied. Proposed estimators are compared with the estimators for the same situations but in the 

absence of non-response. Performances of the proposed estimators have been demonstrated via empirical 

studies. 
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1. INTRODUCTION 

Surveys often gets repeated on many occasions (over years or seasons) for 

estimating same characteristics at different points of time. The information collected 

on previous occasion can be used to study the change or the total value over occasion 

for the character and also in addition to study the average value for the most recent 

occasion. In many social surveys, the same population is sampled repeatedly and the 

same study variable is measured on each occasion, so that development over time can 

be followed. For example, labor force surveys are conducted monthly to estimate the 

employment status, monthly/weekly data on the prices of goods are collected to 

determine the consumer price index, political opinion surveys are conducted at 

regular intervals to know the voter preferences, etc. In such cases, the use of 

successive (rotation) sampling schemes may be an attractive alternative to provide 

reliable estimates at a desired point of time (occasion) or to measure the change 

between two points of time (occasions). 



116 J. P. Karna and  D. Ch. Nath  

 

 

Theory of successive (rotation) sampling appears to have started with the work 

of Jessen [10]. He pioneered in utilizing the entire information collected in the 

previous investigations. Further the theory of successive (rotation) sampling was 

extended by Patterson [11], Rao and Graham [12], Gupta [8], Das [5], Chaturvedi and 

Tripathi [2] and many others. Sen [13] developed estimators for the population mean 

on the current occasion using information on two auxiliary variables available on 

previous occasion. Further, Sen [14, 15] extended his work for p auxiliary variates. 

Singh et al. [16] and Singh and Singh [17] used the auxiliary information on current 

occasion for estimating the current population mean in two occasions successive 

sampling. Singh [18] extended the work of Singh and Singh [17] for h-occasion 

successive sampling.  

In many situations, information on an auxiliary variate may be readily available 

on the first as well as on the second occasion, for example, tonnage (or seat capacity) 

of each vehicle or ship is known in survey sampling of transportation, number of beds 

in different hospitals may be known in hospital surveys, number of polluting 

industries are known in environmental surveys, nature of employment status, 

educational status, food availability & medical aids of a locality are well known in 

advance for estimating the various demographic parameters in demographic surveys. 

Many other situations in biological (life) sciences could be explored to show that the 

information on an auxiliary variate is available on both the occasions. Utilizing the 

auxiliary information on both the occasions Feng and Zou [7] and Biradar and Singh 

[1] proposed estimators for estimating the current population mean in successive 

(rotation) sampling. Further Singh [19], Singh and Karna [21, 22] have proposed 

chain- type ratio and regression estimators for estimating the population mean at 

current (second) occasion in two occasions successive (rotation) sampling.  

It is common experience in sample surveys that data cannot always be collected 

from all the units selected in the sample. For example, the selected families may not 

be at home at the first attempt and some may refuse to co-operate with the interviewer 

even if contacted. This is particularly true in mail surveys in which questionnaires are 

mailed to the sampled respondents who are requested to send back their returns by 

some deadline. As many respondents do not reply, available sample of returns is 
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incomplete. The resulting incompleteness, called non-response, is sometimes so large 

as to completely vitiate the results.   

Hansen and Hurwitz [9] suggested a technique of handling non-response in mail 

surveys. These surveys have the advantage that the data can be collected relatively 

inexpensively. However, non-response is a common problem with mail surveys. 

Cochran [4] and Fabian and Hyunshik [6] extended the Hansen and Hurwitz 

technique to the case when besides the information on character under study, 

information is also available on auxiliary character. More recently Choudhary et al. 

[3], Singh and Kumar [20], Singh and Karna [23] used the Hansen and Hurwitz [9] 

technique for the estimation of population mean on current occasion in the context of 

sampling on two occasions.  

The objective of the present work is to study the effect of non-response at current 

occasion in two-occasion successive (rotation) sampling. In two occasions successive 

(rotation) sampling, a portion of sample is matched from the previous occasion and it 

is assumed that whole units respond at first occasion. So, we may think that as they are 

familiar with the questionnaire at first occasion, therefore, they may not have any 

hesitation in responding at the second occasion for the units in the matched portion of 

the sample. At the current occasion a sample is drawn afresh from the remaining units, 

so there may be possibility of non-response at current occasion. Motivated with the 

above points and using Hansen and Hurwitz [9] technique, estimators are proposed to 

study the effect of non-response at current occasion in two-occasion successive 

(rotation) sampling. In this work a relevant chain-type ratio and regression estimator 

has been proposed for estimating the current population mean in two-occasion 

successive (rotation) sampling. The proposed estimator is mutually compared under 

with and without non-response situations. The behavior of the proposed estimator has 

been examined through empirical studies. 

2. PROPOSED ESTIMATORS 

Let U = (U1, U2, - - -, UN) be the finite population of N units, which has been 

sampled over two occasions. The character under study be denoted by x (y) on the 

first (second)
 
occasion respectively. It is assumed that information on an auxiliary 
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variable z (with known population mean), is available on both the occasions. We 

assume that there is non- response at both the occasions, so that the population can be 

divided into two classes, those who will respond at the first attempt and those who 

will not. Let the sizes of these two classes be N1 and N2 respectively at the first 

occasion and the corresponding sizes at the current (second) occasion be 
*

1N  and 
*

2N  

respectively. A simple random sample (without replacement) of n units is taken on the 

first occasion. We assume that out of selected n units, n1 units respond and n2 units do 

not respond. Let n2h denote the size of sub sample drawn from the non-response class 

in the sample. A random sub sample of m = n  units is retained (matched) from the 

responding n1 for use on the second occasion. Now, at the current occasion a simple 

random sample (without replacement) of u = (n-m) = n units is drawn afresh from 

the remaining non-sampled units of the population so that the sample size on the 

second occasion is also n. It is assumed that the units in the matched portion of the 

sample respond fully at current occasion.  and  (+  =1) are the fractions of 

matched and fresh samples respectively at the second (current) occasion. We assume 

that in the unmatched portion of the sample on the second (current) occasion u1 units 

respond and u2 units do not respond. Let u2h denote the size of sub sample drawn from 

the non-response class in the unmatched portion of the sample on the current 

occasion. The following notations are considered for the further use: Let u2h be the 

size of sub sample drawn from the non-response class in the unmatched portion of the 

sample on the current occasion and their response collected by direct contact or 

interview. Following are the list of notations, which are considered for their further 

use:  

 X, Y, Z : The population mean of the variates x, y and z respectively. 

1 2h 1 2hn n n m m u u u m ux , x , x , x , y , y , y , y , z , z : The sample means of the respective 

variates of the sample sizes shown in suffices. 

yx xz yzρ , ρ , ρ : The correlation coefficients between the variates shown in suffices. 

2 2 2

x y zS , S , S : The population mean squares of x, y and z respectively.  
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2N
W 

N

  
 

: The proportion of non-responding units in the population at first 

occasion. 

*
* 2N

W  
N

 
 
 

: The proportion of non-responding units in the population at second 

(current) occasion. 

n
f = 

N

 
 
 

: The sampling fraction. 

2
1

2h

n
f  = 

n
 

2
2

2h

u
f  = 

u
. 

 

3. FORMULATION OF THE ESTIMATOR 

To estimate the population mean Y on the second occasion, two different 

estimators are suggested. One is the Hansen and Hurwitz [9] type estimator, say ∆u, 

which is based on u sample units drawn afresh at current occasion such that out of 

these u units, u1 units respond and remaining u2 (= u – u1) units do not respond. ∆u is 

defined as  

*

u
u

u

y
 = Z

z
  (1) 

where 1 2h1 u 2 u*

u

u y +u y
y  = 

u
 

The second estimator based on the sample of size m, which is common to both 

the occasions and utilizes the information from the first occasion. Since, there is non 

response at first occasion, therefore, again Hansen and Hurwitz [9] type estimator has 

been considered. The second estimator, say ∆m for estimating the population mean at 



120 J. P. Karna and  D. Ch. Nath  

 

 

current occasion is a chain-type regression in ratio estimator based on a sample of size 

m (= n), which common to both the occasions, and is defined as
 

**

m m

m

Z
 = y

z

 
  

 
 (2) 

where  ** *

m m yx n my  = y +b (m) x -x , 11 n 2 n2h*

n

n x + n x
x  =  

n
and 

yxb (m)  is the sample 

regression coefficient between the variables shown in suffices and based on the 

sample size shown in bracket. 

The final estimator ∆ is the convex linear combination of the estimators ∆u and ∆m. 

The estimator ∆ is defined as:  

 u mΔ = ψ Δ + 1-ψ Δ  (3) 

where ψ  is the unknown constant to be determined under certain criterion.                      

REMARK 3.1. For estimating the mean on each occasion the estimator Δu is 

suitable, which implies that more belief on Δu could be shown by choosing ψ  as 1 (or 

close to 1), while for estimating the change from one occasion to the next, the 

estimator Δm could be more useful so ψ  might be chosen as 0 (or close to 0). For 

asserting both the problems simultaneously, the suitable (optimum) choice of ψ  is 

required. 

4. PROPERTIES OF THE ESTIMATOR Δ 

Since, 
u m and    are ratio or chain-type regression in ratio estimator, they are 

biased for population mean Y . Therefore, the resulting estimator Δ defined in 

equation (3) is also a biased estimator of Y . The bias B (.) and mean square error M 

(.) up-to the first order of approximations are derived under large sample 

approximations and using the following transformations: 
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u 1y (1 e )Y  , *

u 2y (1 e )Y  , 
m 3y (1 e )Y  , 

n 4x (1 e )X  , *

n 5x (1 e )X  , 

m 6x (1 e )X  , 
u 7z (1 e )Z  ,  

m 8z (1 e )Z  ,  
yx 9 yxs (m) = (1+e )S , 

2 2

x 10 xs (m) = (1+e )S ; such that 
iE(e ) = 0  and  

ie <1  i = 1, 2, 3,... , 10.  

Under the above transformations the estimators Δu  and Δm take the following forms: 

  -1

u 2 7 = Y 1+e 1+e          

       -1 -1

m 3 yx 5 6 9 10 8 = Y 1+e +β X e -e 1+e 1+e 1+e  (5) 

Thus, we have the following theorems: 

 

THEOREM 4.1. Bias of the estimator Δ to the first order of approximations is 

obtained as 

u mB(Δ) = ψB(Δ )+(1-ψ)B(Δ )  (6)  

where   011
u 0022

α1 1 Y
B   = - α -

u N Z Z

         
 (7)            

  011 110 101 110 300 210
m 0022 2

200 200 200

α α α α α α1 1 Y 1 1
B  = α - + - + -

m N Z Z m n Zα α α
            

      
    (8) 

where      r s t

rstα =E x-X y-Y z-Z ; 
 

 ( (r, s, t) 0 are integers)
  

PROOF.  The bias of the estimator ∆ is given by  

u mB(Δ) = E Δ-Y  = ψE(Δ -Y) + (1-ψ) E(Δ -Y)    (9) 

           u m= ψB(Δ )+ 1-ψ B(Δ )         

where 
u u m mB( ) = E -Y  and B( ) = E -Y              

Substituting the values of Δu and Δm  from equations (4) and (5) in the equation (9), 

expanding terms binomially and taking expectations up to o(n
-1

), we have the 

expression for the bias of the estimator Δ as described in equation (6). 

 

THEOREM 4.2. Mean square error of the estimator Δ to the first order of 

approximations is obtained as 
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         22

u m u mM( Δ) = ψ M Δ + 1-ψ M Δ +2ψ 1-ψ C Δ , Δ
  

(10) 

where  

    
*

2 22
u u yz y

W (f -1)1 1
M( ) = E -Y  = - 2 1-ρ + S

u N u

      
  

           (11)    

      2 2

m m yz xz yx yx

1 1 1 1
M( ) = E -Y  = - 2 1-ρ + - 2ρ ρ -ρ

m N m n

           
  

    2 21
yx y

W(f -1) ρ S
n

 
 (12)  

and        
2

y

u m u m yz

2S
C Δ , Δ  = E -Y -Y  =  - 1-ρ

N
   

   (13)

  

PROOF. It is obvious that mean square error of the estimator Δ is given by    

     22

u mM(Δ) = E Δ-Y  = E ψ Δ -Y + 1-ψ Δ -Y        (14) 

    
       2 2

u m u m= ψ M(Δ )+ 1-ψ M Δ +2ψ 1-ψ C Δ , Δ       

where 
2

u uM( ) = E -Y    , 
2

m mM( ) = E -Y     and 

    u m u mC Δ , Δ  = E -Y -Y    . 

Using the expressions of Δu and Δm  from equations (4) and (5) in the equation (14), 

expanding terms binomially and taking expectations up to o(n
-1

), we have the 

expression of mean square error of the estimator Δ as given in equation (10).  

REMARK 4.1. Following Hansen and Hurwitz [9] technique, some expectations 

which are used in Theorems 4.1 and 4.2, are evaluated as given below: 

     2
2 * *

2 u uE e  = E y -Y  = V y
 

        
   * *

u 1 2 u 1 2= V E y u , u  + E V y u , u        

               
*

12 2 2 *2 2
u 1 y 2 y y 22

f  - 1u N1 1
= V y  + E f  - 1 S u  =  - S  + S N

u u N u N
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where  2 *

y 2S N  is the population mean square of non response class at current 

occasion. Further we assume that  2 * 2

y 2 yS N  = S , and hence 

   *

22 2

2 y

W f  - 11 1
E e  =  -  + S

u N u

  
  
  

                     (15) 

Similarly    12 2

5 x

W f  - 11 1
E e  =  -  + S

n N n

  
  
  

            (16) 

where 2 2
1 2

2 h 2 h

n u
f  =  and f  = 

n u
. 

REMARK 4.2. Results shown in equations (11)-(13) are derived under the 

assumption that the coefficients of variation of x, y and z are approximately equal. 

5. MINIMUM MEAN SQUARE ERROR OF Δ 

Since, mean square error of Δ in equation (10) is a function of unknown constant 

ψ, therefore, it is minimized with respect to ψ and subsequently the optimum value of 

ψ is obtained as    

 
 

m u m

opt

u m u m

M(Δ )-C Δ ,Δ
ψ  = 

M(Δ )+M(Δ )-2C Δ ,Δ
 

(17)                              

Now substituting the value of optψ  in equation (5.10), we get the optimum mean 

square error of Δ as 

  
 

2

u m u m

opt

u m u m

M( ).M( )- C Δ ,Δ
M( ) =

M( )+M( )-2C Δ ,Δ
 


 

 (18) 

Further substituting the values of M(Δu), M(Δm) and  u mC Δ ,Δ  from equations (11) 

– (13) in equation (18), the simplified values of  M(Δ)opt is obtained as: 

22
y9 10 11

opt 2

6 7 8

SA +μA +μ A
M( )  = 

A +μA +μ A n
                      (19)   
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where  1 yzA  = 2 1-ρ , 2

2 xz yx yxA  = 2ρ ρ -ρ  *

3 2A  = W (f -1) ,  4 1A  = W f -1 , 

2

5 6 yxA  = A  ρ , 
6 1 3A  = A +A , 

7 5 3A  = A -A , 
8 2 5A  = A -A ,   9 1 5 3A  = 1-f A +A A , 

10 6 8 1 7A  = A A -fA A , 
11 1 8A  = -fA A , 

n
f = 

N
 and μ  is the fraction of fresh sample at 

the second (current) occasion for the estimator  Δ. 

6. OPTIMUM REPLACEMENT POLICY 

To determine the optimum value of μ (fraction of sample to be taken afresh at 

second occasion) so that population mean Y  may be estimated with the maximum 

precision, we minimize mean square error of Δ given in equation (19) with respect to 

μ. This yields quadratic equation in μ. Quadratic equation and the respective solution 

of μ say μ̂  are given below: 

2

1 2 3Q μ +2Q μ+Q =0
            

(20)  

2

2 2 1 3

1

-Q ± Q -Q Q
μ̂ = 

Q
               (21)   

where 
1 7 11 8 10Q  = A A -A A , 

2 6 11 8 9Q  = A A -A A  and 
3 6 10 7 9Q  = A A -A A . 

From equation (21), it is obvious that real value of μ̂  exists, iff, the quantity 

under square root is greater than or equal to zero. For any combinations of correlations 

ρyx, ρxz and ρyz, which satisfy the conditions of real solutions; two real values of μ̂  are 

possible. Hence, while choosing the values of μ̂ , it should be remembered that

ˆ0 μ 1  . All the other values of μ̂  are inadmissible. Substituting the admissible 

value of μ̂  say (0)μ  from equation (21) into equation (19), we have the following 

optimum value of mean square error of Δ:
 

2(0) (0)2
y0 9 10 11

opt (0) (0)2

6 7 8

SA +μ A +μ A
M( )  = 

A +μ A +μ A n
               (22)   
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7. SOME SPECIAL CASES 

Case 1: When non-response occurs only at first occasion 

 

For the case when non-response occurs only at first occasion, the estimator for 

population mean Y at current occasion may be obtained as  

 * * *

u mΔ  = ψ τ + 1-ψ              (23) 

where u
u

u

yτ  = Z
z

 and Δm is defined in equation (2). ψ*
 is unknown constant to be 

determined so as to minimize the mean square error of the estimator Δ*
.  

 

7.1. Properties of the estimators Δ* 
  

Since, 
u mτ  and   are ratio and chain-type regression in ratio estimators, they 

are biased for population mean Y . Therefore, the resulting estimator Δ*
defined in 

equation (23) is also biased estimator of Y . 

THEOREM 7.1. Bias of the estimator Δ*
 to the first order of approximations is 

same as that of the estimators Δ which has been discussed in theorem 4.1. 

THEOREM 7.2. Mean square error of the estimator Δ*
 to the first order of 

approximations is obtained as 

         2
* *2 * * * *

u m u mM( Δ ) = ψ M τ + 1-ψ M Δ +2ψ 1-ψ C τ , Δ
  (24) 

where     2 2

u u yz y

1 1
M(τ ) = E τ -Y  = - 2 1-ρ S

u N

 
 
 

     (25) 

and M(Δm) is same as that shown in equation (12). 

Also       
2

y*

u m u m yz

2S
C τ , Δ  = E τ -Y Δ -Y  =  - 1-ρ

N
     (26)    

REMARK 7.1. Results shown in equations (25) and (26) are derived under the 

assumption that the coefficients of variation of x, y and z are approximately equal. 
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7.2. Minimum Mean Square Error of the estimator Δ* 
  

Since, mean square error of Δ* 
in equation (24) is a function of unknown 

constant ψ*
, therefore, it is minimized with respect to ψ*

 and subsequently the 

optimum value of ψ*
 is obtained as   

 
 

*

m u m*

opt *

u m u m

M(Δ )-C τ , Δ
ψ  = 

M(τ )+M(Δ )-2C τ , Δ
 .        (27)                              

Now substituting the value of *

optψ  in equation (24), we get the optimum mean square 

error of *  as 

  
 

2
*

u m u m*

opt *

u m u m

M(τ ).M( )- C τ , Δ
M( )  = 

M(τ )+M( )-2C τ , Δ





 (28) 

Further substituting the values of M(τu), M(Δm) and  *

u mC τ , Δ , the simplified 

values of  M( * )opt is obtained as: 

2* * * *2 *
y* 7 8 9

opt * *2 *

1 5 6

SA +μ A +μ A
M( )  = 

A +μ A +μ A n
  (29) 

where, *

6 2 5A  = A -A ,  * 2

7 1 1 5A = 1-f A +A A ,  * *

8 1 6 5A  = A A -fA , * *

9 1 6A  = -fA A , Ak 

(k = 1, 2,...,5) are defined in section 5 and *μ is the fraction of fresh sample at the 

second (current) occasion for the estimator  Δ*
. 

 

7.3. Optimum Replacement Policy 

To determine the optimum value of *μ (fraction of sample to be taken afresh at 

second occasion) so that population mean Y  may be estimated with the maximum 

precision, we minimize mean square error of Δ* 
given in equation (29) with respect to

*μ . This yield  
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* *2 * *

2 2 1 3*

*

1

-Q ± Q -Q Q
μ̂ =

Q
                   (30)  

where * * * *

1 5 9 6 8Q  = A A A A , * * * *

2 1 9 6 7Q  = A A -A A
 
and * * *

3 1 8 5 7Q  = A A -A A .
 

The admissible value of *μ̂ is obtained in the similar manner as in the case of (0)μ  

Substituting the admissible value of *μ̂  say *(0)μ  from equation (30) into equation 

(29), we get the expression of the optimum value of mean square error of Δ* 
as:  

2* *(0) * *(0)2 *
y*0 7 8 9

opt *(0) *(0)2 *

1 5 6

SA +μ A +μ A
M( )  = 

A +μ A +μ A n
   (31) 

 

Case 2: When non-response occurs only at current occasion 

 

The estimator for the population mean Y at current occasion for this case may be 

given as 

 ** ** **

u mΔ  = ψ Δ + 1-ψ τ             (32) 

where Δu is defined in equation (1) 

and ' '

m m

m

Zτ  = y
z

 
 
 

                                                                                              

 ' '

m m yx n mwhere   y  = y +b (m) x -x .  ψ** 
is unknown constant to be determined so as to 

minimize the mean square error of the estimator Δ**
.  

7.4. Properties of the estimators Δ**
 

Since, 
u mΔ  and τ  are ratio and chain-type regression in ratio estimators, they 

are biased for population mean Y . Therefore, the resulting estimator Δ** 
 defined in 

equation (32) is also biased estimator of Y . 
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Theorem 7.3: Bias of the estimator Δ** 
 to the first order of approximations is same as 

that of the estimator Δ  which has been discussed in theorem 4.1. 

 

Theorem 7.4: Mean square error of sequence of estimators Δ** 
to the first order of 

approximations is obtained as 

         2
** **2 ** ** ** **

u m u mM( Δ ) = ψ M Δ + 1-ψ M τ +2ψ 1-ψ C Δ , τ
  

(33) 

where M(Δu) is same as it is shown in equation (11) and     

            2 2 2

m m yz xz yx yx y

1 1 1 1
M(τ ) = E τ -Y  = - 2 1-ρ + - 2ρ ρ -ρ S

m N m n

    
        

   (34)      

and         
2

y**

u m u m yz

2S
C Δ , τ  = E Δ -Y τ -Y  =  - 1-ρ

N
  

  (35)    

Remark 7.2: Results shown in equations (34) and (35) are derived under the 

assumption that the coefficients of variation of x, y and z are approximately equal. 

 

7.5. Minimum Mean Square Error of the estimator Δ**
  

Since, mean square error of Δ** 
 in equation (33) is a function of unknown 

constant ψ**
, therefore, it is minimized with respect to ψ** 

 and subsequently the 

optimum value of  ψ**
 is obtained as   

 
 

**

m u m**

opt **

u m u m

M(τ )-C Δ , τ
ψ  = 

M(Δ )+M(τ )-2C Δ , τ
 .                 (36)  

Now substituting the value of **

optψ  in equation (33), we get the optimum mean square 

error of Δ** 
 as 

  
 

2
**

u m u m**

opt **

u m u m

M(Δ ).M(τ )- C Δ , τ
M(Δ )  = 

M(Δ )+M(τ )-2C Δ , τ
 (37) 

Further, substituting the values of M(Δu), M(τm) and  **

u mC Δ , τ , the simplified 

value of  M(Δ**
)opt are obtained as: 
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2** ** ** **2 **
y** 5 6 7

opt ** ** **2

4 3 2

SA +μ A +μ A
M( )  = 

A -μ A +μ A n
                        (38) 

where **

4 1 3A  = A +A , ** **

5 1 4A  = (1-f)A A , ** **

6 2 4 1 3A  = A A +fA A , **

7 1 2A  = -fA A , Ak 

(k = 1, 2, 3) are defined in section 5  and μ**
 is the fraction of fresh sample at the 

second (current) occasion for the estimator  Δ**
. 

 

7.6. Optimum Replacement Policy 

To determine the optimum values of μ**
 (fraction of sample to be taken afresh at 

second occasion) so that population mean Y  may be estimated with the maximum 

precision, we minimize mean square error of Δ** 
given in equation (38) with respect to 

μ**
. This yields  

** **2 ** **

2 2 1 3**

**

1

-Q ± Q -Q Q
μ̂ =

Q
               (39)  

where ** ** **

1 3 7 2 6Q  = A A +A A , ** ** ** **

2 4 7 2 5Q  = A A -A A  and ** ** ** **

3 4 6 3 5Q  = A A +A A .
 

The admissible value of **μ̂ is obtained in the similar manner as for the cases of μ(0)
 

and μ*(0)
. Substituting the admissible value of **μ̂  say μ**(0)

 from equation (39) into 

equation (38), we have the optimum value of mean square error of Δ**
, which is 

shown below: 

2** **(0) ** **(0)2 **
y**0 5 6 7

opt ** **(0) **(0)2

4 3 2

SA +μ A +μ A
M( )  = 

A -μ A +μ A n
         (40)                              

8. EFFICIENCY COMPARISON 

To examine the loss in efficiencies of the estimators Δ,  Δ*
 and Δ** 

owing to 

non-response, the percent relative loss in efficiencies of estimator Δ,  Δ*
 and Δ** 

 with 

respect to τ, proposed by Singh and Karna [21], have been computed for different 

choices of ρyz and ρyx.  The estimator τ is defined under the similar circumstances as 

the estimator Δ but in the absence of non-response. It is given as 
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 u mτ = φτ  + 1 - φ τ  (41) 

where u
u

u

yτ  = Z
z

 and ' '

m m

m

Zτ  = y
z

 
 
 

  ,              

 ' '

m m yx n mwhere  y  = y +b (m) x -x .  φ is unknown constant to be determined by the 

minimization of the mean square error of τ. The optimum mean square error of τ is 

given by 

2' (0)
y0 1 2

opt 1 ' (0)2

1 2

SB +μ B
M(τ )  = B -f

B +μ B n
 
 
 

             (42)                              

and optimum values of 
' (0)μ  is given by 

2

1 1 1 2' (0)

2

-B ± B +B B
μ =

B
            

(43) 

where  1 yzB  = 2 1-ρ  and 2

2 xz yx yxB  = 2ρ ρ -ρ . 

REMARK 8.1. To compare the performance of the estimators Δ, Δ*
 and Δ** 

 

with respect to τ, we introduce following assumptions:  

(i) ρxz = ρyz, which is an intuitive assumption, considered, for example by Cochran 

[4] and Feng and Zou [7]. 

(ii) W = W
*
. 

The percent relative losses in precision of Δ, Δ*
and Δ** with respect to τ under their 

respective optimality conditions are given by 

   
 

0 0

opt opt

0

opt

M - M τ
L = ×100

M




, 

   
 

*0 0

opt opt*

*0

opt

M - M τ
L  = ×100

M




 

and   
   

 

**0 0

opt opt**

**0

opt

M - M τ
L  = ×100

M




. 
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The expressions of the optimum µ and the percent relative losses are given in 

terms of the population correlation coefficients. Therefore, the percent relative losses 

have been computed for different choices of correlations ρyz and ρyx. Percent relative 

losses in precision of the estimators Δ, Δ*
and Δ** 

have been computed for different 

choices of f, f1, f2, W, yxρ , yzρ and compiled in Tables 1 – 3. 

Table 1: Percent relative loss L  in precision of Δ with respect to τ for f = 0.1 

 

ρyx 0.3 0.5 0.7 0.9 

f1 W f2  yz μ(0) L μ(0)  L μ(0) L μ(0) L 

1.0 0.2 1.5 0.3 

0.5 

0.7 

0.9 

* 

0.732 

0.627 

0.537 

- 

6.302 

9.299 

21.68 

* 

0.690 

0.572 

0.469 

-
 
 

6.117 

8.979 

21.04 

* 

0.732 

0.558 

0.441 

- 

6.302 

8.905 

20.79 

0.363 

* 

0.572 

0.433 

3.147 

- 

8.979 

20.72 

2.0 0.3 

0.5 

0.7 

0.9 

* 

0.976 

0.796 

0.689 

- 

13.64 

18.42 

36.33 

* 

0.899 

0.703 

0.589 

- 

13.01 

17.43 

34.85 

* 

0.976 

0.681 

0.549 

- 

13.64 

17.21 

34.29 

0.205 

* 

0.703 

0.538 

4.899 

- 

17.43 

34.14 

0.4 1.5 0.3 

0.5 

0.7 

0.9 

* 

0.976 

0.796 

0.689 

- 

13.64 

18.42 

36.33 

* 

0.899 

0.703 

0.589 

- 

13.01 

17.43 

34.85 

* 

0.976 

0.681 

0.549 

- 

13.64 

17.21 

34.29 

0.205 

* 

0.703 

0.538 

4.899 

- 

17.43 

34.14 

2.0 0.3 

0.5 

0.7 

0.9 

* 

* 

0.943 

* 

- 

- 

55.23 

- 

* 

0.944 

0.791 

* 

- 

32.35 

52.36 

- 

* 

* 

0.906 

0.731 

- 

- 

31.74 

51.30 

* 

* 

0.944 

0.714 

- 

- 

32.35 

51.01 

0.6 1.5 0.3 

0.5 

0.7 

0.9 

* 

* 

0.954 

0.822 

- 

- 

27.02 

47.01 

* 

* 

0.827 

0.695 

- 

- 

25.22 

44.78 

* 

* 

0.797 

0.645 

- 

- 

24.81 

43.95 

0.052 

* 

0.827 

0.630 

5.599 

- 

25.22 

43.73 

2.0 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

0.961 

- 

- 

- 

63.36 

* 

* 

* 

0.884 

- 

- 

- 

61.93 

* 

* 

* 

0.863 

- 

- 

- 

61.54 

2.0 0.2 1.5 0.3 

0.5 

0.7 

* 

0.707 

0.605 

- 

6.424 

9.595 

* 

0.613 

0.518 

- 

6.620 

10.03 

0.509 

0.497 

0.448 

5.582 

7.439 

11.28 

0.602 

0.931 

0.331 

6.707 

7.766 

13.70 
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Note: ‘*’ indicates (0)μ do not exist. 

 

  

0.9 0.518 22.28 0.425 22.94 0.359 24.80 0.291 27.95 

2.0 0.3 

0.5 

0.7 

0.9 

* 

0.974 

0.784 

0.676 

- 

13.65 

18.50 

36.53 

* 

0.874 

0.666 

0.555 

- 

13.06 

17.87 

35.69 

0.233 

0.955 

0.602 

0.483 

7.943 

13.65 

18.27 

36.22 

0.503 

0.254 

0.536 

0.422 

10.07 

12.81 

19.39 

37.69 

0.4 1.5 0.3 

0.5 

0.7 

0.9 

* 

0.971 

0.771 

0.662 

- 

13.65 

18.58 

36.74 

* 

0.832 

0.619 

0.515 

- 

13.14 

18.43 

36.68 

0.516 

0.642 

0.469 

0.395 

10.52 

13.78 

20.05 

38.79 

0.639 

0.771 

* 

0.230 

12.40 

15.15 

- 

43.56 

2.0 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

0.938 

- 

- 

- 

55.24 

* 

* 

0.928 

0.753 

- 

- 

32.37 

52.67 

0.183 

* 

0.844 

0.639 

14.21 

- 

31.93 

52.35 

0.501 

0.379 

0.799 

0.524 

18.12 

22.71 

32.60 

53.37 

0.6 1.5 0.3 

0.5 

0.7 

0.9 

* 

* 

0.945 

0.798 

- 

- 

27.03 

47.17 

* 

* 

0.740 

0.604 

- 

- 

25.74 

46.09 

0.523 

0.474 

0.492 

0.425 

14.93 

19.18 

27.09 

47.94 

0.661 

0.746 

* 

0.076 

17.37 

21.22 

- 

54.42 

2.0 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

0.949 

- 

- 

- 

63.37 

0.173 

* 

* 

0.813 

19.58 

- 

- 

62.19 

0.506 

0.418 

* 

0.657 

24.73 

30.39 

- 

62.44 
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Table 2: Percent relative loss L
*
  in precision of Δ*

 with respect to τ for f = 0.1 

 

ρyx 0.3 0.5 0.7 0.9 

f1 W ρyz μ*(0) L*
 μ*(0) L*

 μ*(0) L*
 μ*(0) L*

 

1.5 0.2 0.3 

0.5 

0.7 

0.9 

0.436 

0.453 

0.430 

0.344 

0.195 

0.247 

0.377 

0.881 

* 

0.413 

0.397 

0.299 

- 

0.723 

1.038 

2.268 

0.709 

0.317 

0.362 

0.265 

0.579 

1.679 

2.108 

4.346 

0.636 

* 

0.305 

0.231 

1.308 

- 

3.865 

7.350 

0.4 0.3 

0.5 

0.7 

0.9 

0.365 

0.427 

0.413 

0.330 

0.438 

0.518 

0.775 

1.799 

* 

0.340 

0.359 

0.270 

- 

1.627 

2.204 

4.718 

0.794 

0.018 

0.282 

0.212 

0.821 

4.813 

4.734 

9.296 

0.704 

* 

0.110 

0.135 

2.124 

- 

9.852 

16.44 

0.6 0.3 

0.5 

0.7 

0.9 

0.275 

0.399 

0.396 

0.316 

0.751 

0.815 

1.197 

2.753 

* 

0.246 

0.317 

0.239 

- 

2.786 

3.522 

7.371 

0.841 

* 

0.180 

0.150 

0.953 

- 

8.091 

14.98 

0.751 

* 

* 

0.011 

2.682 

- 

- 

27.99 

2.0 0.2 0.3 

0.5 

0.7 

0.9 

0.365 

0.427 

0.413 

0.330 

0.438 

0.517 

0.775 

1.798 

* 

0.340 

0.359 

0.270 

- 

1.626 

2.203 

4.717 

0.794 

0.018 

0.282 

0.212 

0.821 

4.813 

4.733 

9.296 

0.704 

* 

0.110 

0.135 

2.124 

* 

9.852 

16.44 

0.4 0.3 

0.5 

0.7 

0.9 

0.154 

0.368 

0.377 

0.301 

1.168 

1.142 

1.644 

3.748 

* 

0.120 

0.268 

0.204 

- 

4.327 

5.025 

10.25 

0.870 

* 

0.043 

0.077 

1.036 

* 

12.53 

21.59 

0.785 

* 

* 

* 

3.086 

- 

- 

- 

0.6 0.3 

0.5 

0.7 

0.9 

* 

0.295 

0.337 

0.269 

- 

1.909 

2.624 

5.869 

* 

* 

0.146 

0.125 

- 

- 

8.765 

16.84 

0.905 

2.309 

* 

* 

1.136 

-19.7 

* 

* 

0.831 

* 

* 

* 

3.635 

- 

- 

- 

Note: ‘*’ indicates *(0)μ do not exist 
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Table 3: Percent relative loss L
**

 in precision of  Δ**
 with respect to τ for f = 0.1 

 

Note: ‘*’ indicates **(0)μ do not exist. 

 

ρyx 0.3 0.5 0.7 0.9 

f2 W ρyz μ**(0)  L**
 μ**(0) L**

 μ**(0) L**
 μ**(0) L**

 

1.5 0.2 0.3 

0.5 

0.7 

0.9 

* 

0.732 

0.627 

0.537 

- 

6.302 

9.299 

21.68 

* 

0.690 

0.572 

0.469 

- 

6.117 

8.979 

21.04 

* 

0.732 

0.558 

0.441 

- 

6.302 

8.905 

20.79 

0.363 

* 

0.572 

0.433 

3.147 

- 

8.979 

20.72 

0.4 0.3 

0.5 

0.7 

0.9 

* 

0.976 

0.796 

0.689 

- 

13.64 

18.42 

36.33 

* 

0.899 

0.703 

0.589 

- 

13.01 

17.43 

34.85 

* 

0.976 

0.681 

0.549 

- 

13.64 

17.21 

34.29 

0.205 

* 

0.703 

0.538 

4.899 

- 

17.43 

34.14 

0.6 0.3 

0.5 

0.7 

0.9 

* 

* 

0.954 

0.822 

- 

- 

27.02 

47.01 

* 

* 

0.827 

0.695 

- 

- 

25.22 

44.78 

* 

* 

0.797 

0.645 

- 

- 

24.81 

43.95 

0.052 

* 

0.827 

0.630 

5.599 

- 

25.22 

43.73 

0.8 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

0.943 

- 

- 

- 

55.23 

* 

* 

0.944 

0.791 

- 

- 

32.35 

52.36 

* 

* 

0.906 

0.731 

- 

- 

31.74 

51.30 

* 

* 

0.944 

0.714 

- 

- 

32.35 

51.01 

2.0 0.2 0.3 

0.5 

0.7 

0.9 

* 

0.976 

0.796 

0.689 

- 

13.64 

18.42 

36.33 

* 

0.899 

0.703 

0.589 

- 

13.01 

17.43 

34.85 

* 

0.976 

0.681 

0.549 

- 

13.64 

17.21 

34.29 

0.205 

* 

0.703 

0.538 

4.899 

- 

17.43 

34.14 

0.4 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

0.943 

- 

- 

- 

55.23 

* 

* 

0.944 

0.791 

- 

- 

32.35 

52.36 

* 

* 

0.906 

0.731 

- 

- 

31.74 

51.30 

* 

* 

0.944 

0.714 

- 

- 

32.35 

51.01 

0.6 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

0.961 

- 

- 

- 

63.36 

* 

* 

* 

0.884 

- 

- 

- 

61.93 

* 

* 

* 

0.863 

- 

- 

- 

61.54 

0.8 0.3 

0.5 

0.7 

0.9 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

* 

- 

- 

- 

- 

* 

* 

* 

0.994 

- 

- 

- 

68.91 
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 Figure.1 Percent relative loss in precision of Δ over τ at optimum values of µ when non-response occurs at 

both the occasions for f = 0.1, ρyx = 0.7, W = 0.2and f1 = 2.0 

Figure 2 Percent relative loss in precision of Δ* over τ at optimum values of µ when non-response occurs 

only at the first occasions for f = 0.1, ρyx = 0.7 and W = 0.2. 
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 Figure 3 Percent relative loss in precision of Δ** over τ at optimum values of µ when non-response occurs 

only at the first occasions for f = 0.1, ρyx = 0.7 and W = 0.2. 

 

9. INTERPRETATION OF RESULTS 

9.1. Discussion on the Behavior of Estimator Δ 

The following conclusions can be read out from Table 1: 

(a) For the fixed values of f1, f2, W and ρyx, the values of μ(0)
 decrease while loss in 

precision L increase when the value of ρyz is increased. This phenomenon 

suggests that if study character is highly correlated with the auxiliary variate, 

smaller fresh sample is required at the second (current) occasion which leads in 

reducing the cost of the survey. 

(b) For the fixed values of f1, W, ρyx and ρyz, the values of μ(0)
 and L increase with the 

increasing trends of f2. 

(c) For the fixed values of f2, W, ρyx and ρyz, the values of μ(0)
 decrease but the values 

of L increase with the increasing values of f1. 

(d) For the fixed values of f1, f2, ρyx and ρyz, the values of μ(0)
 and L increase with 

increasing values of W. This behavior shows that the higher the non-response 

rate, the larger fresh sample is required to be replaced at the second (current) 

occasion.  
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9.2. Discussion on the Behavior of Estimator Δ* 

We may conclude from Table 2 that 

(a) For the fixed values of f1, W and ρyx, the values of L
*
 increase while no patterns are 

visible in the values of μ*
 with the increasing values of ρyz. 

(b) For the fixed values of W, ρyx and ρyz, the values of μ*
 decrease and the values of  

L
*
 increase with the increasing values of f1. 

(c) For the fixed values of f1, ρyx and ρyz, the values of μ*
 decrease and the values of L

*
 

increase with the increasing values of W. This behavior indicates that for the 

higher non-response rate, smaller fresh sample is required to be replaced at 

current occasion. 

 

9.3. Discussion on the Behavior of Estimator Δ**
  

Following conclusions can be drawn from Table 3: 

(a) For the fixed values of f2, ρyx and W the values of μ**(0)
 decrease but the values of 

L
**

 increase when the value of ρyz is increased. This phenomenon indicates that if 

a highly correlated auxiliary variate is available it pays in terms of reducing the 

cost of the survey. 

(b) For the fixed values of ρyx, ρyz and W the values of μ**(0)
 and L

**
 increase with the 

increasing values of f2. 

(c) For the fixed values of ρyx and ρyz the values of **(0)μ decrease while the values of 

L
**

  increase with the increasing values of W. This behavior shows that the more 

the non-response rate the more loss in precision occurs. 
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10. CONCLUSION 

It may be seen from above tables that for all cases the percent relative loss in 

precision is observed wherever the optimum value of μ exists when non-response at 

both the occasions is taken into account. From the tables it is clear that loss is 

observed due to the presence of non-response at both occasion, but the structure of the 

estimators is such that the loss is not so high. Hence, even in the presence of 

non-response, the proposed estimators Δ, Δ*
and Δ**

 are performing well in terms of 

precision, so it may be recommended to the survey statisticians and practitioners for 

its practical applications. 
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