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Abstract. The retrieval problem is the problem of associating data
with keys in a set. Formally, the data structure must store a function
f: U — {0,1}" that has specified values on the elements of a given set
S C U, |S| = n, but may have any value on elements outside S. All
known methods (e.g. those based on perfect hash functions), induce a
space overhead of ©(n) bits over the optimum, regardless of the evalu-
ation time. We show that for any k, query time O(k) can be achieved
using space that is within a factor 1+ e~* of optimal, asymptotically for
large n. The time to construct the data structure is O(n), expected. If
we allow logarithmic evaluation time, the additive overhead can be re-
duced to O(loglogn) bits whp. A general reduction transfers the results
on retrieval into analogous results on approzrimate membership, a prob-
lem traditionally addressed using Bloom filters. Thus we obtain space
bounds arbitrarily close to the lower bound for this problem as well.
The evaluation procedures of our data structures are extremely simple.
For the results stated above we assume free access to fully random hash
functions. This assumption can be justified using space o(n) to simulate
full randomness on a RAM.

1 Introduction

Suppose we want to build a data structure that is able to distinguish between
girls’ and boys’ names, in a collection of n names. Given a string not in the set
of names, the data structure may return any answer. It is clear that in the worst
case this data structure needs at least n bits, even if it is given access to the list
of names. The previously best solution that does not require the set of names to
be stored uses more than 1.22n bits. Surprisingly, as we will see in this paper,
n + o(n) bits is enough, still allowing fast queries. If “global” hash functions,
shared among all data structures, are available the space usage drops all the
way to n+ O(loglogn) bits whp. This is a rare example of a data structure with
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non-trivial functionality and a space usage that essentially matches the entropy
lower bound.

1.1 Problem definition and motivation

The dictionary problem consists of storing a set S of n keys, and r bits of data
associated with each key. A lookup query for x reports whether or not x € S, and
in the positive case reports the data associated with z. We will denote the size of
S by n, and assume that keys come from a set U of size n®(1). In this paper, we
restrict ourselves to the static problem, where S and the associated data are fixed
and do not change. We study two relaxations of the static dictionary problem
that allow data structures using less space than a full-fledged dictionary:

e The retrieval problem differs from the dictionary problem in that the set S
does not need to be stored. A retrieval query on z € S is required to report the
data associated with z, while a retrieval query on & ¢ S may return any r-bit
string.

e The approzimate membership problem consists of storing a data structure that
supports membership queries in the following manner: For a query on = € S it
is reported that € S. For a query on = ¢ S it is reported with probability
at least 1 — ¢ that « ¢ S, and with probability at most ¢ that € S (a “false
positive”). For simplicity we will assume that € is a negative power of 2.

Our model of computation is a unit cost RAM with a standard instruction
set. For simplicity we assume that a key fits in a single machine word, and that
associated values are no larger than keys. Some results will assume free access
to fully random hash functions, such that any function value can be computed
in constant time. (This is explicitly stated in such cases.)

The approximate membership problem has attracted significant interest in
recent years due to a number of applications, mainly in distributed systems
and database systems, where false positives can be tolerated and space usage
is crucial (see [4] for a survey). Often the false positive probability that can be
tolerated is relatively large, say, in the range 1% — 10%, which entails that the
space usage can be made much smaller than what would be required to store S
exactly.

The retrieval problem shows up in situations where the amount of data as-
sociated with each key is small, and it is either known that queries will only be
asked on keys in S, or where the answers returned for keys not in .S do not mat-
ter. As an example, suppose that we have ranked the URLs of the World Wide
Web on a 2" step scale, where r is a small integer. Then a retrieval data structure
would be able to provide the ranking of a given URL, without having to store the
URL itself. The retrieval problem is also the key to obtaining a space-optimal
RAM data structure that answers range queries in constant time [1, 18].

1.2 Previous results

Approximate membership. The study of approximate membership was initiated
by Bloom [2] who described the Bloom filter data structure which provides an



elegant, near-optimal solution to the problem. Bloom showed [2, 4] that a space
usage of nlog,(1/¢) log, e bits suffices for a false positive probability of . Carter
et al. [7] showed that nlog,(1/¢) bits are required for solving the approximate
membership problem when |U| >> n (see also [13] for details). Thus Bloom filters
have space usage within a factor log, e ~ 1.44 of the lower bound, which is tight.

Another approach to approximate membership is perfect hashing. A function
h: U — [n] is a minimal perfect hash function for S if it maps the keys of S C U
bijectively to [n] = {0,...,n — 1}, where n = |S|. Hagerup and Tholey [16]
showed how to store a minimal perfect hash function h in a data structure of
nlog, e + o(n) bits such that h can be evaluated on a given input in constant
time. This space usage is optimal. Now store an array of n entries where, for each
x € S, entry h(z) contains a log,(1/¢)-bit hash signature ¢(x). When looking
up a key z, we answer “z € S” if and only if the hash signature at entry h(x)
is equal to ¢(x). The origin of this idea is unknown to us, but it is described
e.g. in [4]. The space usage for the resulting data structure differs from the lower
bound nlog,(1/¢) by the space required for the minimum perfect hash function,
and improves upon Bloom filters when ¢ < 274 and n is sufficiently large.

Mitzenmacher [19] considered the encoding problem where the task is to rep-
resent and transmit an approximate set representation (no fast queries required).
However, even in this case existing techniques have a space overhead similar to
that of the perfect hashing approach.

Retrieval. The retrieval problem has traditionally been addressed through the
use of perfect hashing. Using the Hagerup-Tholey data structure yields a space
usage of nr + nlog, e + o(n) bits with constant query time. Recently, Chazelle
et al. [8] presented a different approach to the problem. Each key is associated
with & = O(1) locations in an array with O(n) entries of r bits. The answer
to a retrieval query on x is found by combining the values of entries associated
with z, using bit-wise XOR. In place of the XOR operation, any abelian group
operation may be used. In fact, this idea was used earlier by Majewski, Wormald,
Havas, and Czech [17] and by Seiden and Hirschberg [23] to address the special
case of order-preserving minimal perfect hashing. It is not hard to see that these
data structure in fact solve the retrieval problem. The main result of [17] is that
for £ = 3 a space usage of around 1.23nr bits is possible, and this is the best
possible using the construction algorithm of [8,17] (other values of k give worse
results). Though this space usage is larger than when using perfect hashing,
asymptotically for large n, the simplicity and the lack of lower order terms
in the space usage that may dominate for small n makes it interesting from
a practical viewpoint. A particular feature is that (like for Bloom filters) all
memory lookups are nonadaptive, i.e., the memory addresses can be determined
from the query only. This can be exploited by modern CPU architectures that
are able to parallelize memory lookups (see e.g. [24]). In fact, Chazelle et al. also
show how approximate membership can be incorporated into their data structure
by extending array entries to r + log,(1/¢) bits. This generalized data structure
is called a Bloomier filter. Again, the space usage is a constant factor higher,
asymptotically, than the solution based on perfect hashing.



Approximate membership by retrieval. We observe that there exists a simple re-
duction from approximate membership problem to the retrieval problem. Though
it is used in the approximate membership data structure based on perfect hash-
ing, we do not believe that it has been stated in this generality before (for a
proof, see the full version of this paper [13]).

Observation 1 Assuming free access to fully random hash functions, any static
retrieval data structure can be used to implement an approximate membership
data structure having false positive probability 2", with no additional cost in
space, and O(1) extra time.

If we drop the assumption of fully random hash functions being provided for free,
only a o(1) term has to be added to the false positive probability (for details
see [13]).

Parallel work. Immediately after a draft full version of this work appeared ([13],
March 26, 2008), we were informed that E. Porat had independently worked on
the same problems. His results are described in a report ([22], April 11, 2008).
He also uses linear equations, however without restricting the weight of rows.
The resulting problems with construction and evaluation time are cicumvented
by using a two-level splitting technique similar to one used in [16]. The space
usage is asymptotically smaller than in our Theorem 1(a).

1.3 New contributions

Our main contribution shows that the approach of Chazelle et al. [8], Majewski et
al. [17], and Seiden and Hirschberg [23] can be used to achieve space for retrieval
that is very close to the lower bound, while retaining efficient evaluation.

Theorem 1. There exist data structures for the retrieval problem having the
following space and time complexity on a unit cost RAM with free access to a
fully random hash function (¢ > 0 is any constant): (a) For any fized v > 0, for
any sufficiently large n and every r with 1 < r < clogn: space (1 + v)nr bits,
constant query time O(l—}—log(%)), and expected construction time O(n); (b) For
any sufficiently large n and every r with 1 < r < clogn: space nr + O(loglogn)
bits whp.®, query time O(logn), and expected construction time O(n?).

The basic data structure and query evaluation algorithm is the same as in [8].
The new contribution is to analyze a different construction algorithm (suggested
n [23]) that is able to achieve a space usage arbitrarily close to the optimum.
Our analysis needs tools and theorems from linear algebra, while that of [8] was
based on elementary combinatorics ([23] provided only experimental results).
To get a data structure that allows expected linear construction time we devise
a new variant of the data structure and query evaluation algorithm, retaining

? “whp.” means with probability 1 — O(;555y)-



simplicity and non-adaptivity. (We note that the data structure of [22] has an
adaptive evaluation procedure, using many auxiliary tables.)

The papers on Bloom filters, and the work of Chazelle et al. [8] all make
the assumption of access to fully random hash functions. We state that our data
structures can be realized on a RAM, with a small additional cost in space (proof
in [13]).

Theorem 2. In the setting of Theorem 1, for some € > 0, we can avoid the as-
sumption of fully random hash functions and get data structures with the follow-
ing space and time complezities:(a) Space (1+v)nr bits, query time O(l—i—log(%)),
expected construction time O(n), for any constant v > 0; (b) Space nr+0O(n'=¢)
bits, query time O(logn), expected construction time O(n'*?), for an arbitrary

constant § > 0.

1.4 Overview of paper

Section 2 describes our basic retrieval data structure and its analysis. This leads
to part (a) of Theorem 1, except that the construction time is O(n?). For lack
of space, the approach to the proof of part (b) is only sketched briefly. Section 3
completes the proof of part (a) of Theorem 1 by showing how the construction
algorithm can be made to run in linear time. Section 4 describes a close relation-
ship between the space requirements for dictionary implementations based on
the balanced allocation paradigm (like k-ary cuckoo hashing [15]) and the space
requirements for retrieval structures.

2 Retrieval in constant time and almost optimal space

In this section, we give the basic construction of a data structure for retrieval
with constant time lookup operation and (1 4+ §)nr space. As a technical basis,
we first describe results by Calkin [6].

2.1 Calkin’s results

All calculations are over the field GF(2) = Zy with 2 elements. We consider
binary matrices M = (pij)i<i<n,0<j<m With n rows and m columns. If M is
such a matrix, then row vector (pio,...,Pim—1) is called p;, for 1 <i < n.

Theorem 3 (Calkin [6, Theorem 1.2]). For every k > 2 there is a constant
Bk < 1 such that the following holds: Assume the n rows pi,...,p, of a matric
M are chosen at random from the set of binary vectors of length m and weight
(number of 1s) exactly k. Then:

(a) If n/m < B < Bk, then Pr(M has full row rank) — 1 (as n — 00).

(b) If n/m > 8> B, then Pr(M has full row rank) — 0 (as n — 00).
Furthermore, B — (1 — (e7%/(In2)) — 0 for k — oo (exponentially fast in k).



k] 3 | 4 | 5 | 6

B ||0.88949(0.96714]0.98916|0.99622

SPPEI0.9091 | 0.9690 | 0.9893 [0.99624

Byt | 1.1243 | 1.034 | 1.011 |1.0038

Table 1. Approximate threshold values from Theorem 3, using (1) and (2).

Remark 1. (a) The case k = 2 is omitted in this discussion. The threshold value
for this case is B2 = 2, as is well known from the theory of random graphs. In
[17] and [3] this fact is used for constructing perfect hash functions, in a way
that implicitly includes the construction of retrieval structures.

(b) A closer look into the proof of Theorem 1.2 in [6] reveals that for each k
there is some & = g > 0 such that in the situation of Theorem 3(a) we have
Pr(M has full row rank) = 1—O(n~¢). The following values are suitable: 5 = %,
54:§,sk:1fork25.

(¢) According to [6], the threshold value B is characterized as follows: Define

fla, )= -2 —alna—(1—a)ln(l —a)+ Bln(l+ (1 -2a)%), (1)

for 0 < a < 1. Let 3 be the minimal § so that f(«, ) attains the value 0 for
some « € (0, %) Using a computer algebra system, it is easy to find approximate
values for 8y and 3, ! for small k, see Table 1. Calkin further proves that

e * 1 2 2k ok 4y -3k
_E_le(k —2k+——1)-e LO(EY -3, (2)

=1
P In2

as k — oo. It seems that the approximation obtained by omitting the last term in
(2) is quite good already for small values of k. (See the row for G;""" in Table 1.)

2.2 The basic retrieval data structure

Now we are ready to describe a retrieval data structure. Assume f: S — {0,1}"
is given, for a set S = {x1,...,2,}. For a given (fixed) k >3 let 1+ > ﬂk_l be
arbitrary and let m = (1 + d)n. We can arrange the lookup time to be O(k) and
the number of bits in the data structure to be mr = (1 4 §)nr plus lower order
terms.

We assume that we have access to a mapping A: U — ([ZL]), T +— A, where
()k() ={Y C X | |X| = k}, so that A is fully random on S. We write 4, =
{h1(x),..., hi(x)} (the order is irrelevant). It must be possible to repeatedly
choose a new function A if the need arises. We need to store an index to identify
the function A that was actually used. It is not hard to see that using standard
hash functions with ranges [m],[m — 1],..., [m — k + 1], such random sets with
exactly k elements can be constructed in time O(k). (For details see [13].)



The construction starts from = {z1,...,x,} and the bit strings u; = f(z;) €
{0,1}", 1 < i < n. We consider the matrix

M = (pij)i<i<n,0<j<m, With p;; = 1if j € A;, and p;; = 0 otherwise.  (3)

Theorem 3(a) (with Remark 1(b)) says that M has full row rank with proba-
bility 1 — O(n~¢) for some ¢ > 0. Assume n is so large that this happens with
probability at least %. If M does have full row rank, the column space of M is
all of {0,1}", hence for all u € {0,1}" there is some a € {0,1}™ with M - a = u.
More generally, we arrange the bit strings uq,...,u, € {0,1}" as a column vec-
tor u = (uy,...,u,)". We stretch notation a bit (but in a natural way) so that
we can multiply binary matrices with vectors of r-bit strings: multiplication is
just bit/vector multiplication and addition is bitwise XOR. It is then easy to
see, working with the components of the u; separately, that there is a (column)
vector a = (ag, - .., a,_1)" with entries in {0,1}" such that M - a = u.

We can rephrase this as follows (using @ as notation for bitwise XOR): For
a € ({0,1}")™ and z € U define

ha(z) = @ a;. (4)

JEAL

Then for an arbitrary sequence (u1,...,u,) of prescribed values from {0,1}"
there is some a € ({0,1}")™ with hy(z;) = u;, for 1 < ¢ < n. Such a vector a €
({0,1}")™, together with an identifier for the function A used in the successful
construction, is a data structure for retrieving the value u; = f(z;), given x;.
There are k accesses to the data structure, plus the effort to calculate the set
A, from z.

Remark 2. A similar construction (over arbitrary fields GF(q)) was described
by Seiden and Hirschberg [23]. However, those authors did not have Calkin’s
results, and so could not give theoretical bounds on the number m of columns
needed. Also, our construction generalizes the approach of [17] and [8], where it
was required that M could be transformed into echelon form by permuting rows
and columns, which is sufficient, but not necessary, for M to have full row rank.
Using these constructions it is not possible to work with m < 1.22n [17].

Some details of the construction are missing. We describe one of several
possible ways to proceed. — From S, we first calculate the sets 4,,, 1 <1i < mn,
in time O(n). Using Gaussian elimination, we can check whether the induced
matrix M = (p;;) has full row rank. If this is not the case, we start all over
with a new mapping A: x — A,. This is repeated until a suitable matrix M is
obtained. The expected number of repetitions is 1 + O(n~¢). For a matrix M
with independent rows Gaussian elimination will also yield a “pseudoinverse”
of M, that is, an invertible n x n-matrix C' (coding a sequence of elementary row
transformations without row exchanges) with the property that in C' - M the n
unit vectors e] = (0,...,0,1,0,...,0)T occur as columns:

Vi, 1 <i<mn,3b; €[m]: column b; of C- M equals e] . (5)



Given u = (uq,...,u,) € {0,1}™ we wish to find a € {0,1}™ such that
(C-M)-a=C-u=u = (u,...,u,)". (6)

Since C'- M has the unit vectors in columns b1, ...,b,, we can easily read off a
special a that solves (6): Let a; = 0 for j ¢ {b1,...,b,}, and let ap, = uj for
1 < ¢ < n. Exactly the same formula works if u, v/, and a are vectors of r-bit
strings. — We have established the following.

Theorem 4. Assume that a mapping A: U — ([Z‘]) is available that is fully
random on S (with the option to choose such functions repeatedly and indepen-
dently). Let k > 2 be fized, let 1+ 6 > ﬁ;l, and assume n is sufficiently large.
Then given S = {x1,...,2,} and a sequence (uy,...,u,) of prescribed elements
in {0,1}", we can find a vector a = (ag, . .. ,am—1) with elements in {0,1}" such
that hq(z;) = u;, for 1 < i < n. The expected construction time is O(n?), and
the scratch space needed is O(n?).

Remark 3. At the first glance, the time complexity of the construction seems
to be forbiddingly large. However, using a trick (“split-and-share” described in
[11] and in [13]) makes it possible to obtain a data structure with the same
functionality and space bounds (up to a o(n) term) in time O(n'*®) for any
given § > 0. In Section 3 we show how to construct a retrieval structure with
essentially the same space requirements in expected linear time.

We briefly give some ideas how Theorem 1(b) can be proved. The basic
approach is similar to the above, but we use k(z) hash functions for key x, where
k(x), x € S, are independent random variables, each approximately binomially
distributed with expectation ©(logn), and a range size m = n. Theorem 2(a)
in [9] entails that the resulting square matrix will be regular with probability

> 0.28. It takes O(n?) time to test one matrix; trying O(logn) sets of hash

functions will be sufficient whp. to find a set of hash functions that induces a
matrix with full rank. Storing the index of this set of functions takes an extra
O(loglogn) bits. The rest of the construction is similar as above. A lookup then
requires evaluating O(logn) hash functions. A splitting trick can be used to
reduce the construction time to O(n'*?), without changing the functionality.
(Details in [13].)

3 Retrieval in almost optimal space, with linear
construction time

In this section we show how, using a variant of the retrieval data structure
described in Section 2.2, we can achieve linear expected construction time and
still get arbitrarily close to optimal space. This will prove Theorem 1(a). The
reader should be aware that the results in this section hold asymptotically, only
for rather large n.

Using the notation of Sections 2.1 and 2.2, we fix some k£ and some § > 0
such that (1 + 6)8 > 1. Further, some constant & > 0 is fixed. We assume that



the required fully random hash functions and mappings from keys to sets are at
our disposal, and in case the construction fails we can choose a new set of such
functions, even repeatedly. In [13] it is explained how this can be justified. Define
b= 3+/logn. We assume that ¢ and § are so small that (1+¢)?(1+6) < 4, and
hence that b - 20F6)* 1+ — 5(p /(log n)3).

Assume f: S — {0,1}" is given, the value f(z) being denoted by u,. The
global setup is as follows: We use one fully random hash function ¢ to map S into
the range [mg] with mo = n/b. In this way, mg blocks B; = {x € S | p(z) = i},
0 < i < mg, are created, each with expected size b. The construction has two
parts: a primary structure and a secondary structure for the “overflow keys”
that cannot be accommodated in the primary structure. This is similar to the
global structure of a number of well-known dictionary implementations. For the
primary structure, we try to apply the construction from Section 2.2 to each of
the blocks separately, but only once, with a fixed set of k£ hash functions. This
construction may fail for one of two reasons: (i) the block may be too large —
we do not allow more than b’ = (1 + ¢)b keys in a block if it is to be treated in
the primary structure, or (ii) the construction from Section 2.2 fails because the
row vectors in the matrix M; induced by the sets A,, © € B;, are not linearly
independent.

For the primary structure, we set up a table T with (1 + §)(1 + &)n entries,
partitioned into mg segments of size (1+0)(1+¢)b = (14 9)b’. Segment number
1 is associated with block B;. If the construction from Section 2.2 fails, we set all
the bits in segment number ¢ to 0 and use the secondary structure to associate
keys in B; with the correct values. As secondary structure we choose a retrieval
structure as in [8,17], built on the basis of a second set of three hash functions,
which are used to associate sets A, C [1.3n/] with the keys x € S’, and a
table 77[0..1.3n" — 1]. This uses space 1.3n/r bits, where n/ is the size of the set
S’ of keys for which the construction failed (the “overflow keys”). Of course,
the secondary structure associates a value f’(z) with any key = € S. Rather
than storing information about which blocks succeed we compensate for the
contribution from f’(x) as follows: If the construction succeeds for B;, we store
(1 + &)Y vectors of length r in segment number i of table T so that x € B; is
associated with the value f(z)® f’(x). On a query for « € U, calculate i = ¢(z),
then the offset d; = (i —1)(14§)’ of the segment for block B; in T”, and return

D Thi+d] © & T}l
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It is clear that for € S the result will be f(z): For € S’ the two terms are
0 and f(x), and for « € S’ the two terms are f'(x) and f(z) ® f’(z). Note that
the accesses to the tables are nonadaptive: all k + 3 lookups may be carried out
in parallel. In fact, if T and T” are concatenated this can be seen as the same
evaluation procedure as in our basic algorithm (4), the difference being that the
hash functions were chosen in a different way (e.g., do not all have the same
range).

Lemma 1. The expected number of overflow keys is o(n).



The proof is a standard application of Chernoff bounds — we refer to [13]
for details. The overall space is (14 9)(1 +&)n(r+1/b) +¢|S’|r bits (apart from
lower order terms). If v > 0 is given, we may choose € and ¢ (and k) so that this
bound is smaller than (1 + «)nr for n large enough.

Lemma 2. The primary structure can be constructed in time O(n).

Proof: 1t is clear that linear time is sufficient to find the blocks B; and identify
the blocks that are too large. Now consider a fixed block B; of size at most
(1 + €)b. We must evaluate |B;| - k hash functions to find the sets A,, = € B;,
and can piece together the matrix M; that is induced by these sets in time
O(b) (assuming one can establish a word of O(b) 0s in constant time and set
a bit in such a word given by its position in constant time). The whole matrix
has fewer than logn bits and fits into a single word. This makes it possible to
use precomputed tables to speed up the computations we need. (The number
of relevant matrixes is o({5%ys) so that it is possible to calculate and store
pseudoinverses and some matrix-vector products that we need in time and space
o(n). The details can be found in the full paper [13].)

Now assume a bit vector u = (u1,...,up,)" € {0,1}Bi is given. Using
C; and a lookup table we can find C; - v in constant time. A bit vector a =
(aj)1<j<(146)p that solves M;-a = u can then be found in time O(b). This leads
to an overall construction time of O(n) for the whole primary structure.

If the values in the range are bit vectors f(x) = u, € {0,1}", x € B;, a
construction in time O(nr) follows trivially. We may improve this time bound
by arranging lookup tables that make it possible to multiply C; even with vectors
U = (u1,...,up,)) of bit vectors of length up to O(logn) in constant time. [J

Note that the lookup tables are needed only by the construction algorithm,
and not as part of the resulting data structure.

4 Retrieval and dictionaries by balanced allocation

In several recent papers, the following scenario for (statically) storing a set
S C U of keys was studied. A set S = {x1,...,2,} C U is to be stored in
a table T[0..m — 1] of size m = (1 + d)n as follows: To each key x we asso-
ciate a set A, C [m] of k possible table positions. Assume there is a mapping
o:{1,...,n} — [m] that is one-to-one and satisfies o(i) € A,,, for 1 < i < n.
(In this case we say (A,,x € S) is suitable for S.) Choose one such mapping and
store z; in T[o(#)]. Examples of constructions that follow this scheme are cuckoo
hashing [20], k-ary cuckoo hashing [15], blocked cuckoo hashing [12,21], and per-
fectly balanced allocation [10]. In [5, 14] threshold densities for blocked cuckoo
hashing were determined exactly. These schemes are the most space-efficient dic-
tionary structures known, among schemes that store the keys explicitly in a hash
table. For example, k-ary cuckoo hashing [15] works in space m = (1+¢e)n with
er = e~ 9% Perfectly balanced allocation [10] works in optimal space m = n
with A, consisting of 2 contiguous segments of [n] of length O(logn) each.
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Here, we point out a close relationship between dictionary structures of this
kind and retrieval structures for functions f: S — R, whenever the range R is
not too small. We will assume that R = F for a finite field F with |F| > n.
(Using a simple splitting trick, this condition can be attenuated to |F| > n’.)
From Section 2.2 we recall equation (3) where the matrix M = (Pij)lgign, 0<j<m
was defined from the sets A,, r € S.

Observation. (For arbitrary fields F.) If the 1s in M can be replaced by
elements of I in such a way that the resulting matrix M’ = (p;;) has full row
rank over F, then (A,,x € S) is suitable for S. (Proof: If M’ has full row rank,
it has an n x n submatrix N with nonzero determinant. By the definition of the
determinant there must be a mapping o: {1,...,n} — [m] with Hpgo(i) £ 0,
hence p;,;) = 1 for 1 <i <n.)

The observation implies that Calkin’s bounds give upper space bounds for
dictionary constructions like k-ary cuckoo hashing, which match values observed
in experiments in [15]. Surprisingly, for fields that are not too small, the observa-
tion also works the other way around: existence of a dictionary implies existence
of a retrieval structure.

Theorem 5. Assume a mapping x — A, is given that is suitable for S. Then the
following holds: If g1,...,gx: S — F are random, then with probability > 1— H%
M" = (p;)1<i<no<j<m, where pi; = ge(x;) if j = he(x;) and pi; = 0 otherwise,
has full row rank over F.

The proof uses the Schwartz-Zippel Theorem; it is given in the full paper [13].

The theorem implies the following: If the mapping x — A, is suitable for .S,
if |F| > 2n, and if we have hash functions g1,...,gx: U — F that are random
on S, then with probability at least % we can build a retrieval structure for a
function f: S — T consisting of a table T[0..m — 1] with entries from F with
f(@) =31 cpcp ge(x) - The(x)]. If we can switch to new functions g1, ..., gi if
necessary, this construction succeeds in O(1) iterations in the expected case and
in O(logn) iterations whp.

For example, from the dictionary constructions in [12] or [10], resp., we obtain
retrieval structures with a table of size < (1 + e *)nr and lookup time O(k),
or optimal size n and lookup time O(logn), resp. In both cases for one retrieval
operation we need to access only two contiguous segments of the table T', which

makes these implementations very cache-friendly.

Acknowledgement. The authors thank Philipp Woelfel for several moti-
vating discussions on the subject.
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