Succinct Greedy Graph Drawing in the Hyperbolic Plane

David Eppsteih and Michael T. Goodrich

Computer Science Department, University of California, Irvine, USA.

Abstract. We describe an efficient method for drawing amwertex simple graplG in the hyperbolic plane.

Our algorithm producegreedydrawings, which support greedyeometric routingso that a messagel between

any pair of vertices may be routed geometrically, simply by having each vertex that reséipess it along to

any neighbor that is closer in the hyperbolic metric to the message’s eventual destination. More importantly, for
networking applications, our algorithm producgccinctdrawings, in that each of the vertex positions in one of

our embeddings can be represented usiitpg n) bits and the calculation of which neighbor to send a message

to may be performed efficiently using these representations. These properties are useful, for example, for routing in
sensor networks, where storage and bandwidth are limited.

1 Introduction

One of the richest modern applications of algorithmic graph theory is in networking, and one of the most
important algorithmic problems in networkingrizuting. In this problem, we are given anvertex graphG
representing a communication network, where each vertéxiga computational agent, such as a sensor,
smart phone, base station, PC, or workstation, and the edgesdpresent communication channels. The
routing problem is to set up an efficient means to support message passing between the véttices in

The traditional way to do routing is via protocols, such as in the link-state/OSPF or distance-vector/RIP
protocols (e.g., see [5, 25]), that set up routing tables for each vente. Each such routing table has size
n (represented usin@(nlogn) bits) for each vertex in G, which allowswv to determine to which of its
neighbors it should send a message destined for anothermodér. Such a solution allows for a simple
message-forwarding policy, but it is space inefficient and it requires considerable setup overhead.

There is a recent alternative approach to solving the network routing problem, however, which can be
viewed as new and exciting application of graph drawing. In this alternative approach, gatiektric
routing [2, 10, 8, 15, 14, 16] ogeographic routind11], the graphG is drawn in a geometric metric space
S in the standard way, so that vertices are drawn as points amd each edge is drawn as the loci of
points along the shortest path between its two endpoints. For exampldsithe Euclidean plandR?,
then edges would be drawn as straight line segments in this approach. Routing is then performed by having
any vertexv holding a message destined for a nadeise a simple policy involving only the coordinates
of v andw and the coordinates and topology$ neighbors to determine the neighborwfo which v
should forward the message. It is important to note that even in applications where the ver€icesrné
with pre-defined geometric coordinates (e.g., GPS coordinates of smart sensors), the draingeaf
not take these coordinates into consideration, and, in fact, many known geometric routing schemes ignore
pre-existing coordinates and create a new embedding using only the graph structure. Thus, this approach to
solving the routing problem is a direct application of graph drawing.

There is an important difference between the geometric routing problem and traditional graph drawing,
however: unlike traditional graph drawing, the main criterion for judging an embedding done for geometric
routing purposes is not its aesthetic qualities. Instead, in this application, we judge embeddings by how
easily they support simple and efficient routing protocols.

Perhaps the single most simple routing policy imaginable igthedyone:

1 http://www.ics.uci.edu/"eppstein/
2 http://www.ics.uci.edu/"goodrich/

Fig. 1. An embedding of a graph with three vertices and two edges into the Euclidean plane that is not greedy. To route a message
from c to a along graph edges, it must pass through the vérteshich is farther from the eventual destination.

— If a vertexwv receives a messagé with destinationw, v should forward)M to any neighbor ob in G
that is closer tham to w.

Thus, we are interested in this papergreedydrawings of arbitrary graphs, that is, drawings for which
greedy routing is always successful.

Unfortunately, greedy routing doesn't always work. For example, it is not uncommon for geometric
graph embeddings to have “lakes” and “voids” that make greedy routing impossible in some cases [20]; see
Figure 1. Indeed, in any fixed-dimensional Euclidean space, a star with sufficiently many leaves cannot be
embedded so that all paths are greedy: some two leaves would form an angle greatei3thathe star
center, and as in the figure a route from the leaf closer to the center to the other leaf would not be greedy.
Thus, in order to find greedy drawing schemes for arbitrary connected graphs, we must consider drawings
in non-Euclidean spaces.

Following the formalism of Papadimitriou and Ratajczak [20], which was developed for Euclidean
spaces, we say thatdistance decreasing patlhom v to w in a geometric embedding & is a path
(v1,vg,...,v) such that = v, w = vg, and

d(vi, w) > d(viy1,w),

fori = 1,2,...,k. A greedy embeddirigpf a graphG in a geometric metric spacgis a drawing ofG in
S such that a distance decreasing path exists between every pair of verti¢es in

1.1 Prior Related Work

Early papers on geometric routing include work by Beseal. [2], who extract a planar subgraph 6f,

embed it, and then route a message frorto w by marching around the faces intersected by the line
segmenbw using a subdivision traversal algorithm of Kranagtsal.[13]. Karp and Kung [10] introduce a

hybrid scheme, which combines a greedy routing strategy with face routing. Similar hybrid schemes were
subsequently studied by several other researchers [8, 15, 14, 16]. An alternative hybrid augmented greedy
scheme is introduced by Carlsson and Eager [3].

Raoet al.[21] introduce the idea of drawing a graph using virtual coordinates and doing a pure greedy
routing strategy with that drawing, although they make no theoretical guarantees. Papadimitriou and Rata-
jczak [20] continue this line of work on greedy drawings, studying greedy schemes that are guaranteed to
work, and they conjecture that Euclidean greedy drawings exist for any graph containing a 3-connected
planar spanning subgraph. They present a greedy drawing algorithm for embedding 3-connected planar
graphs inR? based on a specialization of Steinitz’s Theorem for circle packings, albeit with a non-standard

1 Note that this formalism is equivalent to the informal notion that defines a greedy embedding as one in which greedy routing
always works. The formalism based on distance decreasing paths is a little easier to work with than this informal notion, however,
so it is the one we use in this paper.

metric. Dhandapani [7] provides an existence proof that two-dimensional Euclidean greedy drawings of tri-
angulations are always possible, but he does not provide a polynomial-time algorithm to find them. Chen
et al. [4] study methods for producing two-dimensional Euclidean greedy drawings for graphs containing
power diagrams, and Lillis and Pemmaraju [17] provide similar methods for graphs containing Delaunay
triangulations. It is not clear whether either of these methods runs in polynomial time, however. Thus, as
of this writing, the problem of finding a polynomial-time algorithm for producing two-dimensional greedy
drawings of 3-connected planar graphs remains open.

The corresponding two-dimensional problem for non-Euclidean geometries has a solution, however, in
that Kleinberg [11] provides a polynomial-time algorithm for embedding any graph in the hyperbolic plane
so as to allow for greedy routing using the standard metric for hyperbolic space.

1.2 The Importance of Succinctness

Unfortunately, all of the algorithms mentioned above for producing greedy embeddings, including the
hyperbolic-space solution of Kleinberg [11], contain a hidden drawback that makes them ill-suited for the
motivating application of geometric routing. Namely, each of the greedy embeddings mentioned above use
vertex coordinates with representations requidg: log n) bits in the worst case. Thus, these greedy ap-
proaches to geometric routing have the same space usage as traditional routing table approaches. Worse, the
above greedy embedding schemes have inferior bandwidth requirements, since they use message headers of
length{2(nlog n) bits in the worst case, whereas traditional routing table approaches use message headers
of size©(log n) bits. Since theaison d&trefor greedy embeddings is to improve and simplify traditional
routing schemes, if embeddings are to be useful for geometric routing purposes, they shewddibef
that is, they should use vertices with representations having a number of bits that is polylogarithmic in

We are, in fact, not the first to make this observation. Muhammad [19] specifically addresses succinct-
ness, observing that a method based on extracting a planar subgraph of the routing Geawdgerforming
a hybrid greedy/face-routing algorithm in this embedding can be implemented usin@ @nlyn) bits for
each vertex coordinate, since planar graphs can be dra@fvin x O(n) grids [6, 23].

For non-Euclidean spaces, Maymounkov [18] provides a greedy drawing method for three-dimension-
al hyperbolic space using vertices that can be representedditiy”) bits. His work leaves open the
existence of succinct greedy embeddings for two-dimensional non-Euclidean spaces, however, as well as
whether there are succinct non-Euclidean greedy embeddings that use(bsdy:) bits per vertex.

1.3 Our Results

In this paper, we settle both questions of whether there are succinct greedy embeddings in two-dimensional
non-Euclidean spaces and whether the vertices in such embeddings can be represented using an asymptot-
ically optimal number of bits. In particular, we show that atwyertex connected graph can be drawn in

the hyperbolic plane with coordinates that can be represented Ggingn) bits so as to support greedy
geometric routing between any pair of vertices, using a standard distance metric for hyperbolic space. Our
scheme is constructive, runs in polynomial time, and allows the distance between any two vertices to be
calculated efficiently from our representation of their coordinates. In addition, our greedy drawing scheme

is based on the combination of a number of graph drawing and data structuring techniques.

2 Autocratic Weight-Balanced Trees

One of the new data structuring techniques we use in our greedy drawing scheme is a data structure that
we callautocratic weight-balanced binary treeBhese are first and foremost weight-balanced binary trees,
which store weighted items at their leaves so that the depth of each item of weigh (log W/w;),

3

Fig. 2. Converting a weight-balanced binary tree into an autocratic weight-balanced binary tree.

wherelV is the sum of all weights. Just as important, however, is that they are autocratic, by which we mean
that the distance from any leafto any other leaiu is strictly greater than the distance from the rootito

where tree distance is measured by simple path length. Of course, this autocratic property implies that such
binary trees are not proper, in that we allow for some internal nodes in such trees to have only one child.
The challenge, of course, is to have a structure that is both autocratic and weight-balanced.

It turns out that there is a fairly simple method for turning any weight-balanced binary tree into an
autocratic weight-balanced tree. So suppose we are given an ordered collectigiemos with weights
{w1,wy,...,wx}, such that eachy; > 1. If we store these items at the leaves of a binary freae say
that7" is weight-balancedf the depth of each itemis O(log W/w;), whereWW = 3, w;. There are several
existing schemes for producing a weight-balanced binary tree so that an inorder listing of the items stored
at its leaves preserves the given order (e.qg., see [9, 12]).

Suppose, then, thdtis such an ordered weight-balanced tree, and tkinote the root of’. To convert
T into an autocratic weight-balanced trg&, we replace the edge connecting each letf its parent with
a path of length

1+ dp(r, parent(v)),

wheredr (v, w) denotes the length of the path fromto w in the treeT'. That is, we insert a number of
“dummy” nodes between each leaf and its parent that is equal to the depth of its parent. (See Figure 2.)

This transformation increases the depth of each ledf by less than a factor of two and it keeps the
depth of all other nodes I unchanged. Thus, if the depth of a leaf storing itamT" was previously at most
clog W/w;, for some constant, then the depth of the corresponding leaflihis less thar2clog W/wj,
which is still O(log W/w;). Given thatT" was weight-balanced, this implies that is a weight-balanced
tree. More importantly, we have the following lemma.

Lemma 1. The above transformation of a weight-balanced ffeproduces an autocratic weight-balanced
treeT”.

Proof. We have already observed that the tii€eis weight-balanced. So we have yet to show thais
autocratic. First, observe that, by a simple induction argumeatisifin ancestor iff’ of a leafv, then inT”
we have the following:

dp(u,v) = dp(r,v) + dr(u,v) — 1.

In particular, we have the following:
dp/(r,v) = 2dp(r,v) — 1.

4

Fig. 3. The heavy path decomposition of a tree. Three heavy paths are shown; the remaining 17 nodes form degenerate length-0
heavy paths.The numbers shown at each noale the sizes (v) of the subtree rooted at that node.

Let v andw be two leaves in”. Furthermore, let: be the least common ancestorodndw in 77. Then

dr (v, w) = dp (u,v) + dpr (u, w)
=dp(r,v) +dp(u,v) — 1+ dp(r,w) + dp(u,w) — 1
=dp(r,u) + dr(u,v) + dr(u,v) — 1 4+ dp(r,w) + dp(u, w) — 1
= (dr(r,u) + dr(u,w)) + dr(r,w) + 2d7r(u,v) — 2
= 2dp(r,w) + 2dr(u,v) — 2
> 2dp(r,w)
> dp (r,w).

Thus,T” is an autocratic weight-balanced tree. O

Therefore, we have a way of constructing for any ordered set of weighted items an autocratic weight-
balanced tree for that set. We will use such data structures as auxiliary components in the structures we
discuss next.

3 Heavy Path Decompositions

LetT be arooted ordered tree of arbitrary degree and depth haviingles. Sleator and Tarjan [24] describe
a scheme, which we call theeavy path decompositipfor decomposing’ into a hierarchical collection of
paths (see also [22] for an alternative path decomposition scheme with similar properties).

Their scheme works as follows. For each nede 7', letn(v) denote the number of descendents in the
subtree rooted at, includingv itself. For each child-to-parent edge~ (v, w) in T, labele as aheavy
edge ifn(v) > n(w)/2. Otherwise, labet as alight edge. Connected components of heavy edges form
paths, calledheavy pathswhich may in turn have many incident light edges. As a degenerate case, we also
consider the zero-length path consisting of a single nodeintident only to light edges as a heavy path.

Note that the size of a subtree at least doubles every time we traverse a light edge from a child to a
parent. (See Figure 3.) Thus, if we compress every heavy pdthdra single “super” node, preserving the
relative order of the nodes, then we define a té&epf depthO(log n).

Of course, the nodes i can have arbitrary degree. Nevertheless, for data structuring purposes, follow-
ing Alstrup et al. [1], we may replace each vertein Z havingd childrenwvy, vs, ..., vq With a weight-
balanced binary tree that uses th@;) values as weights. The useful property of this substitution is that

5

0 1 ‘ Lo ‘ Fo ‘ Lo ‘ Lo ‘
172
1/4 3/4 ‘ Fo ‘ Lo ‘ ‘ Fo ‘ Lo ‘

1/8 3/8 5/8 7/8
116 | 3/16 | 5/16 | 7/16 | 9/16 | 11/16 | 13/16 | 15/16

Fig. 4. The dyadic rational numbers (left) and a schematic view of the dyadic tree metric space (right).

any leaf-to-root pathP in the resulting binary treeZ”, will have lengthO(log n), since the lengths of the
subpaths ofP in the weight-balanced binary trees traversedifiorm a telescoping sum that adds up to
O(logn). That s, it can be written as a value proportional to something of the form

logng + logni /ng + logna/ny + - - - + logn/ny

=logng + logn; —logng + logne —logni + - -+ +logn — log ng

=logng + logn,
whereng is a constant.

In our case, we use autocratic weight-balanced binary trees for the substitutions of high-degree super

nodes inZ, so as to define the binary tree of deg#ilogn). This construction will prove essential for
our greedy embedding scheme. Before we present this geometric embedding, however, we first present a
combinatorial greedy embedding in a completely contrived metric space, which we will subsequently show
how to turn into a greedy embedding in the hyperbolic plane using the standard hyperbolic metric.

4 Greedy Embeddings in the Dyadic Tree Metric Space

Suppose we are given a grapghhavingn vertices andn edges for which we wish to construct a succinct
greedy embedding. We show in this section how to produce a combinatorial greedy embedding in a contrived
space we call thdyadic tree metric space

We may consider an infinite binary tree to be an abstract metric space, in which the distance between any
two tree nodes is just the number of edges on the shortest path between them. But there is another natural
metric that can be formed on the same tree by embedding it intdyddic rational numberéFigure 4, left),
rational numbers with denominators that are powers of two.fUs¢ the map from the infinite binary tree
to the open interval0, 1) that maps the root of the tree 1g2, and that maps the children of a nodet
leveli of the tree tof (x) 4+ 27*~2; thus, the children of the root map to the dyadic rational numbgtsand
3/4, the grandchildren of the root map1¢8, 3/8, 5/8, 7/8, etc. We define thdyadic metricon the infinite
binary tree as the metric in which the distance between two tree nodedy is |f(x) — f(y)|. Note that
all distances in the dyadic metric are less than one.

We will show that any graph may be greedily embedded into a hybrid ad-hoc metric space that combines
features from both of these two tree metrics; we call itdlgadic tree metric spacé\ point in this space
is represented by a pdir, y), wherex andy are nodes in the infinite binary tree and whermust be an
ancestor ofy (possibly equal tg, itself). We define the distance between two pointsy) and (', ') in
the dyadic tree metric space to be the sum of the tree distance betvegety’ and of the dyadic distance
|f(y) — f(¥')|- The dyadic tree metric space can be represented as an infinite binary tree representing the
coordinates of each of its points, in which each tree node contains an interval of dyadic rational numbers;
this interval of numbers is split into two halves at the two children of each node. This representation is
depicted in Figure 4, right.

8

Fig. 5. Our two-level weight-balanced strategy for placing the children of the nodes on a heavy path. The groups of children for
each heavy path node are assigned to subtrees in a weight-balanced way (gray shaded areas), and then within each subtree the
individual children are placed using a second level of weight balancing. The third step of child placement, in which we make the
subtree between the root (representing the heavy path) and its children autocratic, is not shown.

Our embedding begins with us finding a spanning #re¥ (z, choosing a root arbitrarily, and producing
a heavy path decomposition ®f For technical reasons we require that each node in a nontrivial heavy path
of the decomposition have at least one child that is not in the path; we add dummy nddéseressary,
after forming the path decomposition, to ensure that this is true. There will be fewer tthammy nodes
added, so they will not significantly increase the number of bits needed to represent each vertex in our greedy
embedding.

We orient the light edges for each heavy p&tso that they are all on the same sidefband we orient
the light edges incident upon the same vertex. We then compress each heavy path into a super node, using
the orientation of edges around the vertices of each heavy path to determine the ordering of children for each
node in the resulting tre€;. If a super node irZ is the right child of its parent, we make the left-to-right
ordering of children be the same as the ordering from parent to child in the heavy path; if, on the other hand,
it is the left child of its parent, we make the left-to-right ordering of children be the same as the ordering
from child to parent in the heavy path.

Next, we form groups of the nodes i that have the same parentdh We form a weight-balanced
binary tree for each these groups. Furthermore, within each group, we form a weight-balanced binary tree
of the nodes in the group. Concatenating these two levels of weight-balanced trees forms a single weight-
balanced tree connecting the nodé€Zimo each of its children; we apply the transformation described earlier
to make this tree autocratic. The first three steps, in which we form a weight-balanced tree of the groups and
a weight-balanced tree within each group, and then concatenate these two levels of weight-balanced trees to
form a single binary tree for all children of the nodednare depicted in Figure 5.

This construction of an autocratic weight-balanced tree for each nodecan be used to embed as
a whole into the infinite binary tree. The root f may be placed at the root of the infinite binary tree,
and the children of each nodein Z are placed under that node in the positions of the infinite binary tree
corresponding to their positions in the autocratic weight-balanced tree constructedNerobserve that,
in this way, all nodes of are placed at mos?(log n) levels deep in the infinite binary tree; for, due to the
weight balancing, the distance in the infinite binary tree between anywmnaahe its parent is proportional
to the difference in the logarithms of the weights of the subtrees rootedradw, and along any path df
these differences add in a telescoping serig3(fog n).

7

We have embedded into the infinite binary tree; we are now ready to embedself into the dyadic
tree metric. To do so, we must determine a gairy) of coordinates for any nodeof T'; bothz andy must
be nodes of the infinite binary tree, ananust be an ancestor ¢f Thex coordinate ol is simply the node
of the infinite binary tree at which the heavy pathvdt placed. Thes coordinate ofv is the least common
ancestor in the infinite binary tree of the placements of all the childrenTis calculation is the reason we
requiredv to have at least one child; for leaf nodesigfwe instead sej = . Due to our two-level weight
balancing strategy, two nodesBfthat belong to the same heavy path (and that therefore share thecsame
coordinate) will have differeng coordinates, for their children will be placed within disjoint subtrees of the
infinite binary tree.

Lemma 2. The embedding d&f into the dyadic tree metric space described above is greedy.

Proof. Any directed path irf’ consists of edges that, when translated into the dyadic tree metric space, have
three types: edges from a node to the parent heavy pdth @uges within a heavy path, and edges from a
node to a child heavy path ii. We must show that edges of each type lead to a node that is closer to the
terminus of the path.

For the edges that go from a node to the parent heavy path or to a child heavy path, this is straightforward:
the contribution of thec-coordinates to the distance to the terminus decreases by one at each step, due
to the autocratic property of our weight-balanced trees, more than offsetting any possible increase in the
contribution of they-coordinates.

For the edges that remain within a heavy path, #heoordinates remain unchanged and do not lead
to any increase or decrease of the distance to the terminusy Therdinates are linearly ordered by the
map f from infinite binary tree nodes to dyadic rationals, and our weight-balanced trees were chosen to be
consistent with this linear ordering; therefore, any step along the heavy path, either towards a node of the
path that is the ancestor of the terminus or towards the topmost node of the path and the edge leading to the
parent node irZ, decreases the distance to the terminus. O

As in previous work [11], a greedy embedding for the spanningfréeautomatically greedy for the
overall graphz from which it was drawn.

5 Succinct Greedy Embedding in the Hyperbolic Plane

We have shown that any trdé (and any graplz by choosing a spanning tree 69 may be greedily and
succinctly embedded into a dyadic tree metric space. To complete our greedy embedding, it remains to
show that this space may be embedded, independently of our original graph (but depending on a parameter
D determined by the number of vertices of the graph), into the hyperbolic plane in such a way that the greedy
property of the embedding df is preserved. That is, although the distances themselves in the hyperbolic
plane may differ from those in the dyadic tree metric space, composing our embeddingtofthe dyadic

tree metric space with our embedding of the dyadic tree metric space should yield a greedy embetding of
into the hyperbolic plane.

Due to the existence of this embedding, we may reinterpret the succinct coordinates computed for the
embedding of a graph into the dyadic tree metric space as also being coordinates for a subset of points in
the hyperbolic plane. Not every hyperbolic plane point will be representable with such coordinates, but this
is no different in principle from using pairs of integers to represent grid points in the Euclidean plane: not
every Euclidean point is representable as an integer grid point. The pardpnistanalogous to the scale of
a grid embedding.

Our overall strategy will be to embed the infinite binary tree into the hyperbolic plane in such a way
that any edge has lengfh + O(1) and crosses buffer zoneof width D, bounded by two hyperbolic lines
(Figure 6). The buffer zones for different edges will be disjoint from each other. Thus, any two nodes of

8

Fig. 6. Disjoint buffer zones of widthD are crossed by each edge of an embedding of the infinite binary tree into the hyperbolic
plane, so that the tree distance and hyperbolic distance closely approximate each other.

the tree that have tree distankaunits apart will have hyperbolic distance at ledst (because any path
between the two nodes must crdsbuffer zones) and at mosD + O(1))k (there exists a path following

tree edges with that length). In our application, all tree paths will 2{leg n) edges; thus, by choosing

D = (logn) we may guarantee that the order relation between any two distinct tree distances remains
unchanged by this hyperbolic embedding. Any pdinty) of the dyadic tree metric will be placed near

the embedding of tree node and this placement will ensure the greediness of any edge whose endpoints
belong to different paths of our heavy path decomposition.

Next, we place nodes of the infinite binary tree into the hyperbolic plane, with the buffer zones described
above. Although this placement is conceptual rather than algorithmic, we may view it as being performed
in a top down traversal of the tree, so that when nede placed we will already know the location of its
parent, the buffer zone separatinfrom its parent, and a line connecting it to its parent and on which it must
be placed. We place itself on this line in such a way that the boundary of the parental buffer zone forms
one of the seven sides of an ideal regular heptagon—a figure in the hyperbolic plane formed by seven lines
that are asymptotic to each other but never intersect, such that the angle subtended by each line as viewed
from x is equal. Figure 7 shows this placement, in a Poiachisk model of the hyperbolic plane centered
atz; the parental buffer zone is the topmost shaded region in the figure and the vertical line thistlga
one connecting it to its parent node. The large arcs depict hyperbolic lines forming the heptagon described
above.

In the case where is the right child of its parent, so that the upper nodes of the heavy path represented
by x have children in its left subtree and the lower nodes of the heavy path have children in the right subtree,
shown in the figure, we place the left subtree within the halfplane bounded by the heptagon side one step
counterclockwise from the parent, and the right subtree within the halfplane bounded by the heptagon side
three steps counterclockwise from the parent, as shown in the figure. In the caserwhigsgparent’s left
child, we reverse the figure, placing the right subtree within the halfplane one step clockwise from the parent
and the left subtree within the halfplane three steps clockwise from the parent. In either case, we draw lines
connectingr to its child nodes, at angles @fr/7 and67/7 from the angle of the line connectingto its
parent (the solid straight lines of the figure). We use the heptagon edges as the outer boundaries of buffer
zones between and its children, and we set the inner boundaries of the buffer zones to be hyperbolic lines
perpendicular to the lines connectingo its children, at distanc® from the outer boundaries of the buffer
zones. With this information determined, we may continue to place the childcemdhe same way.

We are finally ready to describe the mapping of the dyadic tree metric space into the hyperbolic plane.
Recall that each point of the dyadic tree metric space consists of @pairwherexr andy are nodes of the
infinite binary treex a parent ofy. We draw small circles of equal radius centered at each point where we

9

ey,
right
subtree - -----L---

Fig. 7. Top-down placement of nodeof the infinite binary tree and poitit:, y) of the dyadic tree metric space into the hyperbolic
plane, shown in a Poincadisk model centered at

have placed a node of the infinite binary tree—the precise radius is unimportant as long as it is small enough
that the circles are disjoint from the buffer zones. Then, given a point) of the dyadic tree metric space,

we draw a hyperbolic line segment fraerto y (the dotted straight line in the figure), and pldeey) at the

point where this line segment intersects the circle centered latthe caser = y, which happens in our
construction only for leaves, we instead pldeer) at the point where the line segment franto its parent
intersects the circle centeredzat

Theorem 1. For sufficiently large values ab, the embedding aff formed by composing the embedding
from G into the dyadic tree metric space and the embedding of the dyadic tree metric space into the hyper-
bolic plane is greedy.

Proof. We show that, for every edgeof the chosen spanning tree, and every possible termimfis path
usinge, that traveling along reduces the distance to the terminus. We assume that the starting endpoint of
e is placed at pointx, y) of the dyadic tree metric, the ending endpoint is placed at geiny’), and that
these points are mapped as described above to the hyperbolic plane. We distinguish several cases.

First, if x # 2/, let k = O(logn) be the tree distance fromf to the destination. Then, due to the
autocratic property of our weight-balanced placement of heavy paths into the dyadic treearistaiciree
distance at leagt+ 1 from the destination. As discussed above, due to the buffer zones of our construction,
(z,y) is at hyperbolic distance at legét+ 1) D from the destination, whiléx’, y') is at hyperbolic distance
at mostk(D + O(1)). By choosingD sufficiently large (a constant timésg n), we can guarantee that the
former distance is larger than the latter and that this step is greedy.

10

Fig. 8. lllustration for proof of greediness of our embedding (not to scale).

Second, ift = 2’ and the eventual destination also has the same valugtbé result follows from the
fact that our embedding places the nodes of any heavy path consecutively over an arc of less than half of a
circle. Such an embedding is greedy for any path, no matter how the nodes are distributed within the arc.

Third, if x = 2’ and the eventual destination is reached via the parent tife step is greedy for the
same reason as in the second case: the nodes that are mapdedtoa heavy path placed in order along
an arc of less than half the circle, with the node of the arc closest to the parent being the apex of the heavy
path.

The most complicated case is the fourth.= = and the eventual destinatianhasxz” as a proper
descendant aof. The closest point te on the circle surrounding onto which(z,y) and(z/,y’) are both
mapped is the hyperbolic point represented by the coordiriates; the distance ta from other points on
the circle can be calculated as a monotonic function of the arc length between those other pdints and
Thus, moving around the circle towards, z) is a greedy step. Unfortunately, the pofmt z) may not be a
node of the heavy path; rather, the node of the heavy path from widelscends may be some other nearby
point (x,y"”). We must show that any step along the heavy path towards this point is greedy.

In most cases, itis straightforward to show that this step is greedy: a step around the circle towards
is also a step towardae, y”), which as we have argued immediately above is greedy. The only possible
exception occurs whegl = y” and when the true closest point on the circle fthat is,(z, 2), lies on the
arc of the circle between andy’. In this case we must show that,) and(z, z) are closer in arc length
than(z,y) and(x, z), for then the greediness of the step will follow from the monotonicity of the distance
to z as a function of arc length.

Let y be the least common ancestor in the binary tree of the two disjoint subtrees coniaamdg’.

Let A be the inner boundary of the buffer zone adjacenj tbat containg/, let C be the inner boundary

of the buffer zone adjacent fpthat containg;, and letB be the edge of the regular ideal heptagon adjacent
to ¢ that separated from C'. Figure 8 illustrates this notation. These three hyperbolic lines may not be
symmetrically placed relative te, due to the asymmetry of the placement of the two subtrees relative to the
parent at each node However, the distances fromto A and toC' are withinO(1) of each other, an@®

is closer tar by a distance oD — O(1). Itis a basic property of hyperbolic geometry that the angle that an
object subtends, as viewed from a fixed point of vievis inversely proportional to an exponential function
of the distance of the object from Thus, B will subtend an angle, as viewed from that is larger than

the angles subtended byandC by a factor exponential i) — O(1). In particular, for sufficiently large

D (larger than some fixed constant, a weaker requirement than the one abolketh#&t(logn)), both A
and C will subtend smaller angles than the angle subtende@® byhen, any point behind ling, and in
particular the point, will form an arc from(z, y') to (z,) that is shorter than the arc frofm, y) to (z, 2).

11

The greediness of the step frofm, y) to (z,y’) follows from the monotonicity of the distance toas a
function of arc length. O

References

1. S. Alstrup, P. W. Lauridsen, P. Sommerlund, and M. Thorup. Finding cores of limited lendodeedings of the 5th
International Workshop on Algorithms and Data Structurgdume 1272 of.ecture Notes in Computer Scienpages
45-54. Springer-Verlag, 1997.

2. P.Bose, P. Morin, I. Stojmendyiand J. Urrutia. Routing with guaranteed delivery in ad hoc wireless netwadlfiksless
Networks 6(7):609-616, 2001.

3. N. Carlsson and D. L. Eager. Non-Euclidean geographic routing in wireless netwarktoc Netw.5(7):1173-1193, 2007.

4. M. B. Chen, C. Gotsman, and C. Wormser. Distributed computation of virtual coordina®€Qan07: Proceedings of the
twenty-third annual symposium on Computational geometrges 210-219, New York, NY, USA, 2007. ACM.

5. D. Comer.Internetworking with TCP/IP, Volume 1: Principles, Protocols, and ArchitectBrentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2006.

6. H.de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on &gnithinatorica 10(1):41-51, 1990.

7. R. Dhandapani. Greedy drawings of triangulationsS@DA '08: Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithimsages 102-111, Philadelphia, PA, USA, 2008. Society for Industrial and Applied
Mathematics.

8. H. Frey and I. Stojmeno¥i On delivery guarantees of face and combined greedy-face routing in ad hoc and sensor networks.
In MobiCom '06: Proceedings of the 12th annual international conference on Mobile computing and netwpégeg
390-401, New York, NY, USA, 2006. ACM.

9. E. N. Gilbert and E. F. Moore. Variable-length binary encodiBsl System Tech.,B8:933-968, 1959.

10. B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless netwdvkshil®om '00: Proceedings of
the 6th annual international conference on Mobile computing and netwargages 243-254, New York, NY, USA, 2000.
ACM.

11. R. Kleinberg. Geographic routing using hyperbolic spacéNFOCOM 2007: 26th IEEE International Conference on
Computer Communicationpages 1902-1909. IEEE Press, 2007.

12. D. E. Knuth. Optimum binary search treé&ta Informatica 1:14-25, 1971.

13. E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric netwoilReodnl1 th Canadian Conference on
Computational Geometrpages 51-54, Vancouver, August 1999.

14. F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: of theory and pract@DI2 '03:
Proceedings of the twenty-second annual symposium on Principles of distributed compadies) 6372, New York, NY,
USA, 2003. ACM.

15. F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric mobile ad-hoc routiBjALriM '02:
Proceedings of the 6th international workshop on Discrete algorithms and methods for mobile computing and
communicationspages 24-33, New York, NY, USA, 2002. ACM.

16. F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and average-case efficient geometric ad-hoc routing. In
MobiHoc '03: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & com matiyes
267-278, New York, NY, USA, 2003. ACM.

17. K. M. Lillis and S. V. Pemmaraju. On the efficiency of a local iterative algorithm to compute delaunay realizations. In
Workshop on Experimental Algorithms (WE2)08.

18. P. Maymounkov. Greedy embeddings, trees, and Euclidean vs. Lobachevsky geometry. Online manuscript, M.I.T., 2006.
http://pdos.csail.mit.edu/ petar/papers/maymounkov-greedy-prelim.pdf.

19. R. B. Muhammad. A distributed geometric routing algorithm for ad hoc wireless networkENG'07: Proceedings of the
International Conference on Information Technolpggges 961-963, Washington, DC, USA, 2007. IEEE Computer Society.

20. C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric rothiegy. Comput. Sc¢i344(1):3-14, 2005.

21. A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without location information. In
MobiCom '03: Proceedings of the 9th annual international conference on Mobile computing and netwpegeg 96—108,
New York, NY, USA, 2003. ACM.

22. B. Schieber and U. Vishkin. On finding lowest common ancestors: simplification and paralleli&ifdn.J. Comput.
17(6):1253-1262, 1988.

23. W. Schnyder. Embedding planar graphs on the gridrac. 1st ACM-SIAM Sympos. Discrete Algorithpasges 138-148,
1990.

24. D.D. Sleator and R. E. Tarjan. A data structure for dynamic ti&eSomp. and Sys. ScR6(3):362-391, 1983.

25. A. S. TanenbauntComputer networks: 4th editiofPrentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

12

