
Succinct k-mer Sets Using Subset Rank Queries

on the Spectral Burrows-Wheeler Transform ∗

Jarno N. Alanko†‡ Simon J. Puglisi† Jaakko Vuohtoniemi†

Abstract

The k-spectrum of a string is the set of all distinct substrings of length k occurring in the string. This is a
lossy but computationally convenient representation of the information in the string, with many applications in
high-throughput bioinformatics. In this work, we define the notion of the Spectral Burrows-Wheeler Transform
(SBWT), which is a sequence of subsets of the alphabet of the string encoding the k-spectrum of the string.
The SBWT is a distillation of the ideas found in the BOSS and Wheeler graph data structures. We explore
multiple different approaches to index the SBWT for membership queries on the underlying k-spectrum. We
identify subset rank queries as the essential subproblem, and propose four succinct index structures to solve it.
One of the approaches essentially leads to the known BOSS data structure, while the other three offer attractive
time-space trade-offs and support simpler query algorithms that rely only on fast rank queries. The most general
approach involves a novel data structure we call the subset wavelet tree, which we find to be of independent
interest. All of the approaches are also amendable to entropy compression, which leads to good space bounds on
the sizes of the data structures. Using entropy compression, we show that the SBWT can support membership
queries on the k-spectrum of a single string in O(k) time and (n + k)(log σ + 1/ ln 2) + o((n + k)σ) bits of space,
where n is the number of distinct substrings of length k in the input and σ is the size of the alphabet. This
improves from the time O(k log σ) achieved by the BOSS data structure. We show, via experiments on a range
of genomic data sets, that the simplicity of our new indexes translates into large performance gains in practice
over prior art.

∗This work was supported in part by the Academy of Finland via grants 339070 and 351150, and NIH NIAID grant R01HG011392
†University of Helsinki, Department of Computer Science, Helsinki, Finland.
‡Dalhousie University, Faculty of Computer Science, Halifax, Canada

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

1 Introduction

The set of substrings of a given length k of a string S is
called the k-spectrum of S. Indexing such spectra has
been an important topic in bioinformatics in the past
decade. For example, the k-spectrum and the associated
de Bruijn graph is a central tool in genome assembly
[11]. In metagenomics, k-spectra have found their place
as a useful approximation of the sequence content of the
sample, allowing rapid similarity estimation between
data collected from sequencing estimates [29, 37]. In
applications, typical values for k are in the range from
20 to 100.

There are multiple design goals for efficient rep-
resentations of k-mer spectra. In general, the index
should be small enough to fit in the main memory of
a server machine, while offering fast support for mem-
bership queries, that is, queries asking whether a given
k-mer (string of length k) is part of the spectrum. Ad-
ditional query support may include querying for the
neighbors of a k-mer, that is, k-mers that share a suf-
fix or a prefix of length k − 1 with the current k–mer.
This allows fast simulation of the de Bruijn graph of the
spectrum. The BOSS data structure [6] is a popular so-
lution that meets all the above requirements. Other
methods include hashing [32], Bloom filters [38] and
the FM-index-based DBGFM structure [9]. Some more
recent solutions emphasize the need for dynamic op-
erations, allowing insertion or deletion of data on the
index after it has been built [3, 12, 4, 1]. It is also
desirable to be able to support attaching some satel-
lite data to each k-mer, like is done in, e.g., colored de
Bruijn graphs [21, 33, 20, 32, 30, 23], which are now
in widespread use. We refer the reader to the recent
surveys of Chikhi [8] and Marchet et al. [31] for com-
prehensive surveys on existing methods.

In this work, we define a static representation of k-
mer spectra which we call the Spectral Burrows-Wheeler
Transform, or SBWT for short (we use a capital letter
S to disambiguate from the sBWT of Chang et al [7],
where the letter s stands for Schindler). The SBWT is
an evolution of the BOSS data structure [6], which is
an indexed representation of the edge-centric de Bruijn
graph, based on a version of the Burrows-Wheeler
transform. The SBWT differs from the BOSS in that
it is node-centric, and more general – the BOSS data
structure can be seen as a particular implementation
of the SBWT. The SBWT can also be seen as a
specialization of the Wheeler graph framework [16] into
k-spectra, taking full advantage of the properties of the
special case.

The SBWT, which we define in Section 3, is a par-
ticular sequence of subsets from the alphabet of the in-
put string. To implement k-mer membership queries on

the SBWT, a form of rank queries on subset sequences
is required. A subset rank query takes in a character
c and an index i, and returns the count of how many
of the first i subsets in the sequence of subsets con-
tain c. We propose four possible index data structures
for subset rank queries, leading to four different SBWT
index structures, which we call ConcatSBWT, MatrixS-
BWT, SplitSBWT and SubsetwtSBWT. ConcatSBWT
is a simplified version of the original BOSS representa-
tion, whereas the other three are novel variants offering
different time-space tradeoffs. SubsetwtSBWT is based
on a new data structure we call the subset wavelet tree,
which is of independent interest. SplitSBWT uses a
practical version of subset wavelet tree that is tailored
for an SBWT of an input string with a small alphabet,
such as the DNA alphabet. MatrixSBWT is a simple
variant suitable for small alphabets, that is only slightly
larger than the others in practice, but offers extremely
fast subset rank queries and k-mer search operations.

We then show that it is possible to use entropy cod-
ing methods to compress the space of these data struc-
tures while retaining query support. In particular, we
show that MatrixSBWT implemented with bit vectors
compressed to the zeroth order entropy leads to a data
structure taking 3.25 bits per k-mer on the DNA alpha-
bet, matching the navigational lower bound of Chikhi
et al. [9]. An important caveat is that the lower bound
of Chikhi et al. is for an arbitrary set of k-mers, not for
the spectrum of a single string.

The space on a general alphabet of size σ is (n +
k)(log σ+1/ ln 2) + o((n+ k)σ), where n is the number
of k-mers in the spectrum. The data structure can an-
swer k-mer membership queries in O(k) time, improv-
ing on the original BOSS data structure, which takes
O(k log σ) time for membership queries.

The index structures SplitSBWT and SubsetwtS-
BWT are aimed at occupying space that is lower than
the navigational lower bound. This is achieved by ex-
ploiting the uneven distribution of the subsets in the
subset sequence of the SBWT. We aim to compress the
size of the data structures down to the zeroth order en-
tropy of the subset sequence, where each subset is con-
sidered as a symbol. We show that this method allows
us to get down to 2.44 bits per k-mer on an E. coli
pangenome.

In practice, our methods lead to a radically new
level of performance for succinct de Bruijn graphs, sig-
nificantly outperforming the best previous approach [33]
when space-usage is equated and simultaneously offer-
ing a range of attractive space-time tradeoffs. Two high-
lights are (1) an index that takes only 4 to 5 bits per
k-mer on our genomic datasets, and is 120 to 242 times
faster than the BOSS implementation of VARI and (2)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

an index taking only 2.6 to 2.8 bits per k-mer while
being 21 to 56 times faster than VARI.

2 Preliminaries

Throughout we will consider a string S = S[1..n] =
S[1]S[2] . . . S[n] on an integer alphabet Σ of σ symbols.
The colexicographic order of two strings is the same as
the lexicographic order of their reverse strings. The
substring of S that starts at position i and ends at
position j, j ≥ i, denoted S[i..j], is the string S[i]S[i+
1] . . . S[j]. If i > j, then S[i..j] is the empty string ε. A
suffix of S is a substring with ending position j = n, and
a prefix is a substring with starting position i = 1. We
use the term k-mer to refer to a (sub)string of length k.

A de Bruijn graph (dBG) of order k is directed
labelled graph built from a set of k-mers S. There are
two prevailing views of a dBG, and we define both here.
In the node-centric dBG, the node set is given by S and
there is an edge from node u to v iff the last k−1 symbols
of u are equal to the first k−1 symbols of v. In an edge-
centric dBG, the node set is given by the set of (k− 1)-
mers present in S, and, for every x ∈ S, there is an edge
from x[1..k−1] to x[2..k]. In other words, the k-mers of
S are nodes in the node-centric dBG and edges in the
edge-centric dBG. See Figure 1. Node-centric and edge-
centric dBGs represent equivalent information, however,
as we shall see, the ease of representing and navigating
them can differ significantly.

A key tool in the design of succinct data structures
is the support for the query operations rank, select, and
access, on a bit string X of length n defined as follows
(for i ≤ n and x ∈ {0, 1}):

rankx(i) = number of x’s among the first i bits of X

access(i) = value of the ith bit of X

selectx(i) = position of the ith x in X

Classical techniques (see, e.g., [34]) require n+o(n)
bits to support each of the above queries in O(1) time.
However, the information theoretic lower bound on
space usage for a bit string of length n having n1 1s,
is B(n, n1) = log

(
n
n1

)
= n1 log

n
n1

bits.
There are data structures that come within a lower

order term of this lower bound while still supporting
fast rank, select, and access operations. Perhaps the
foremost of these, known as “RRR”, is due to Raman,
Raman, and Rao Satti [41] and takes space B(n, n1) +
o(n) and answers all queries above in O(1) time. Fast
implementations of RRR have been studied by several
authors [35, 18, 24].

Another notable compressed data structure for bit
strings is the so-called “Elias-Fano” (or EF) scheme [43,
14, 15], which occupies 2n1 + n1⌈log(n/n1)⌉ bits and

supports rank in O(log(n/n1)) time and select1(i) in
O(1) time, and tends to be faster than RRR in practice
when applied to very sparse bit strings. Like RRR,
the efficient implementation of EF has also received
considerable practical attention [28, 36].

Rank, access and select queries are also sometimes
needed on strings with an alphabet larger than 2. The
wavelet tree data structure [19] supports these queries
in O(n log σ) bits of space and O(log σ) time, where n is
the length of the string and σ is the size of the alphabet.

In our analysis later in the paper, we will also make
use of the entropy of a probability distribution p, which
is denoted H(p) and is defined as:

(2.1) H(p) = −
∑
x

p(x) log p(x) ,

where the sum is over the domain of p.
A useful form of the entropy for strings is the so-

called zeroth-order empirical entropy, denotedH0(S) for
a string S, or just H0 when the context is clear. In
particular,

(2.2) H0 =
∑
c∈Σ

nc

n
log

n

nc
,

where n = |S| is the length of S and nc is the
number of occurrences of the symbol c in S. We remark
that B(n, n1) is bounded above by nH0.

3 The Spectral Burrows-Wheeler Transform

In this section we define the Spectral Burrows-Wheeler
transform, and the spectrum membership query algo-
rithm based on it. We begin with two basic definitions:

Definition 1. (k-spectrum). The k-spectrum of a
string T , denoted with Sk(T), is the set of all k-mers
of the string T .

Definition 2. (k-prefix set). The k-prefix set of a
string T is defined as the left-padded set of prefixes
Pk(T) = {$k−iT [1..i] | i = 0, . . . , k − 1}, where $ is
a special character not found in the alphabet, that is
smaller than all characters of the alphabet.

For an illustration of the above definition, consider
the string T = TAGCAAGCACAGCATACAGA, for
which we would have S3(T) = {AAG, ACA, AGA,
AGC, ATA, CAA, CAC, CAG, CAT, GCA, TAC,
TAG}, and P3(T) = { $$$, $$T, $TA }.

We are now ready to define the Spectral BWT.

Definition 3. (Spectral BWT, SBWT). Let T be a
string from an alphabet Σ of size σ. The spectral BWT

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

GCAAGC

CAAAAG

CAC

ACACAG

CAT

ATA

TACTTA

TAG

AGA

(a)

GCAAGC

CAAAAG

CAC

ACACAG

CAT

ATA

TACTTA

TAG

AGA

(b)

Figure 1: (a) The de Bruijn graph for the string TAGCAAGCACAGCATACAGA. Black edges are in
the edge-centric graph. Blue edges are only in the node centric graph; (b) The de Bruijn graph of
TAGCAAGCACAGCATACAGA after edge pruning. Every node except for the node of the empty string has
exactly one incoming edge, such that the incoming path spells the colexicographically smallest incoming path in
the graph prior to pruning.

of order k of T is a mapping from Sk(T) to a sequence
X1, X2, . . . Xn of subsets of Σ. The set Xi is defined
as follows. Let xi be the colexicographically i-th k-
mer in Sk(T) ∪ Pk(T). If xi is the colexicographically
smallest k-mer in Sk(T) ∪ Pk(T) that has xi[2..k] as
a suffix, then Xi is the set of last characters of k-
mers y ∈ Sk(T) ∪ Pk(T) that have xi[2..k] as a prefix.
Otherwise, xi is an empty set.

Continuing the example above, the colexicographi-
cally ordered list of S3(T) ∪ P3(T) is: $$$, CAA, ACA,
GCA, AGA, $TA, ATA, CAC, TAC, AGC, AAG, CAG,
TAG, $$T, CAT; and the SBWT is the sequence of sets:
{T}, {G}, {ACGT}, ∅, ∅, {CG}, ∅, {A}, ∅, {A}, {AC},
∅, ∅, {A}, {A}.

The sets in the SBWT represent the labels of
outgoing edges in the node-centric de Bruijn graph,
such that we only include outgoing edges from k-mers
that have a different suffix of length k − 1 than the
preceeding k-mer in the colexicographically sorted list.
The padding of dollar-symbols in Definition 3 is a
technical detail that is required to make the SBWT
work. Alternatively, the sequence T could be made
cyclic, and the need for Pk(T) avoided.

We now describe how to implement efficient k-mer
membership queries on the spectrum of the input string,
using only the information encoded in the SBWT. Here
it is beneficial to view the spectrum as a de Bruijn
graph. We can think of the nodes as being ordered by
the colexicographic order of the corresponding k-mers.

We define an order for the edges such that the edges
are sorted primarily by the edge label, and secondarily
by the order of the origins of the edges. We denote
with R(e) the rank of edge e in this order. Because the
graph is a de Bruijn graph, the indices of the destination
nodes of the edges are in the same order as the ranks
R(e), that is, if R(e1) < R(e2), then the destination of
edge e1 is larger than the destination of edge e2.

Due to Definition 3, every node has exactly one
incoming edge, except for the node corresponding to
k-mer $k, which has no incoming edge. This is because
when there are multiple nodes that could have an edge
to the same node, we always use the node corresponding
to the colexicographically smallest k-mer choice, and
since the graph is built from a spectrum of a single
string, every node has at least one candidate incoming
edge (except for the node of k-mer $k). This means that
the destination of edge e is the node with index R(e)+1
in the sorted order.

Thus, the entire graph can be extracted from just
the SBWT alone. The k-mer label of a node is
spelled by any incoming path of length k to the node
(the properties of de Bruijn graphs ensure that every
incoming path of length k has the same label). This
shows that the SBWT is invertible in the sense that is
it possible to extract the original spectrum back from
the SBWT.

This graph is also a Wheeler graph [16], which
means that the generic Wheeler graph index could be
used to index the graph. The Wheeler graph index

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

however requires the storage of the sequence of indegrees
and outdegrees of the nodes in the graph, whereas in the
SBWT this is not required because every node apart
from the node of the empty string has in-degree of
exactly 1, and the sequence of outdegrees is already
included in the sizes of the sets of the outgoing edge
label sets. The most important conceptual advance over
the Wheeler graph index, however, is a reformulation
of the k-mer search problem in terms of subset rank
queries.

Subset rank query: Let X1, . . . Xn be a sequence of
subsets of an alphabet Σ = {1, . . . , σ}. A subset rank
query takes as an input an index i and a character
c ∈ Σ, and returns the number of subsets Xj with
j ≤ i such that c ∈ Xj .

We now describe a k-mer search routine that uses subset
rank queries as the only subroutine. The search routine
works by searching the k-mer character by character
from left to right, maintaining the interval of nodes
that are suffixed by the prefix that has been processed
so far. Suppose we have an interval [i, j] of nodes
suffixed by prefix α of the k-mer, and we want to find
the interval [i′, j′] of nodes suffixed by αc, where c is
the next character in the k-mer. This is equivalent to
following all edges labeled with c from the nodes in [i, j].
Due to the way the edges are defined, the end points of
these edges are a contiguous range [i′, j′] such that i′ is
the destination of the first outgoing edge labeled c from
[i..j], and j′ is the destination of the last one. Let C[c]
be the number of edge labels with label smaller than c
in the graph. Now we have the following formulas:

i′ = 1 + C[c] + subsetrankc(i− 1) + 1

j′ = 1 + C[c] + subsetrankc(j) ,
(3.3)

where subsetrankc is a subset rank query on the se-
quence of subsets in the SBWT. The “+1” at the start
of the formulas is to skip over the node of $k. The val-
ues C[c] can be precomputed for all characters c ∈ Σ.
By iterating these formulas k times, we have the k-mer
search routine. See Algorithm 1. This establishes the
result below.

Lemma 3.1. The SBWT supports k-mer membership
queries in O(kt) time, where t is the time for a subset
rank query.

□

3.1 Extension to Multiple Strings In this sub-
section, we define an extension of the SBWT to mul-
tiple input strings T1, . . . Tm. The easiest way to ex-
tend the SBWT to multiple strings would be to just

replace the spectrum Sk(T) and the k-prefix set Pk(T)
in Definition 3 with the unions Sk(T1) ∪ . . . ∪ Sk(Tm)
and Pk(T1)∪ . . .∪ Pk(Tm) respectively. However, if the
input consists of a large number of short strings, such
as DNA sequence reads, this method can introduce a
significant space overhead, because every string Ti adds
k padded prefixes to the union. On the other hand, the
prefixes are only there to ensure that every k-mer has
at least one incoming edge. Therefore, we only need to
include the k-prefix sets of those strings Ti where the
leftmost (k− 1)-mer of Ti does not appear as a suffix of
any k-mer in T1, . . . , Tm, because otherwise an incom-
ing edge will already be provided by the existing k-mer
whose suffix is the leftmost (k − 1)-mer of this string.
Let R(T1, . . . , Tm) be the set of indices i such that Ti

have this property, and let

P ′
k(T1, . . . , Tm) =

 ⋃
i∈R(T1,...,Tm)

Pk(Ti)

 ∪ {$k}
be the modified prefix set. The k-mer $k is always added
for convenience to match the property in the regular
SBWT where the k-mer $k always exists. Finally, let

S′
k(T1, . . . Tm) =

m⋃
i=1

Sk(Ti) .

Now, we define the Multi-string Spectral BWT as
follows:

Definition 4. (Multi-SBWT). Let {T1, . . . Tm} be a
set of strings from an alphabet Σ of size σ and let
U = S′

k(T1, . . . Tm) ∪ P ′
k(T1, . . . Tm). The multi-SBWT

of order k of {T1, . . . Tm} is a sequence X1, X2, . . . Xn of
subsets of Σ. The set Xi is defined as follows. Let xi be
the colexicographically i-th k-mer in U . If xi[2..k] is the
colexicographically smallest k-mer in U that is suffixed
by xi[2..k], then Xi is the set of last characters of k-
mers y ∈ U that are prefixed by xi[2..k]. Otherwise, xi

is an empty set.

All the properties required in the SBWT for the k-mer
search in Algorithm 1 to work are preserved in this
definition, so the k-mer search routine still works for
the multi-SBWT without modifications.

3.2 Streaming search queries In applications, we
often want to search for all k-mers in a single long query
string. We call this a streaming query. If the input
query has m k-mers, it takes O(mk) subset rank queries
to search them all using Algorithm 1 for each k-mer
separately. However, it is possible to speed this up to
O(m) subset rank queries in the fortunate case where

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

$$$ CAA ACA GCA AGA $TA ATA CAC TAC AGC AAG CAG TAG $$T CAT
0

0

0

1

0

0

1

0

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

Figure 2: MatrixSBWT of TAGCAAGCACAGCATACAGA with k = 3. The dashed lines indicate borders of
suffix groups. Two adjacent columns are in the same group if they have the same suffix of length k− 1. Bits may
be moved horizontally inside a suffix group without affecting the k-mer set encoded in the matrix.

$$$ CAA ACA GCA AGA $TA ATA CAC TAC AGC AAG CAG TAG $$T CAT
0

0

0

1

0

0

1

0

1

1

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

B 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0

$$$ CAAACA GCAAGA $TA ATA CACTAC AGC AAG CAGTAG $$T CAT

T G

1

1

1

0

T

0

0

0

0

C G A

0

0

0

0

A A C

0

0

0

0

A A

M-

M

M+

0

0

0

1

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

W

Figure 3: SplitSBWT of TAGCAAGCACAGCATACAGA. The bits are spread out inside a suffix group to
maximize the number of singleton sets. The index consists of just B,M+ and W .

Algorithm 1 SBWT k-mer search query.
Input: k-mer S.
Output: The colexicographic rank of k-mer S in the
underlying spectrum of the SBWT, or 0 if S is not in
the spectrum.

function Search(S):
[ℓ, r]← [1, n]
for i = 1, . . . , k do

c← S[i]
ℓ← 1 + C[c] + subsetrankc(ℓ− 1) + 1
r ← 1 + C[c] + subsetrankc(r)
if ℓ > r then

return 0
return ℓ.

all of the k-mers are found in the index, which often
happens in realistic use cases.

This is made possible by searching the k-mers from
left to right and reusing computation from the previous
iteration. The idea is to build a bit vector that allows
us to go from the index of a k-mer x in the SBWT
to the indices of the range of k-mers that have x[2..k]

as a suffix, and then execute one more iteration of
the loop in Algorithm 1 from this range with the next
character in the query. The bit vector marks the
first set of the SBWT and all sets where the suffix
of length k − 1 the corresponding k-mer is different
from the suffix of the previous k-mer in the SBWT.
In our running example from Definition 3, we would
mark the indices of k-mers $$$, CAA, ACA, AGA, $TA,
CAC, AGC, AAG, $$T and CAT, giving us the bit
vector B = 111011010110011. Now, if we are at index
i corresponding to k-mer x, the range of (k − 1)-mer
x[2..k] is [pred(B, i), succ(B, i)−1], where pred(B, i)
and succ(B,i) are the indices of the previous and next
1-bits respectively in B from index i (if B[i] = 1, then
pred(B, i) = succ(B, i) = i). The operations pred and
succ can be implemented as a simple for-loop because
the gap between consecutive 1-bits in B can not be
larger than |Σ| + 1. This is because the number of
distinct k-mers that have the same suffix of length k−1
is at most |Σ|+1, counting in the possibility of a dollar-
symbol at the start of the k-mer.

This can be seen as a restricted version of the
technique used in succinct variable order de Bruijn

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

T G A C G T $ C G A $ A A C $ A A

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0B
L

Figure 4: ConcatSBWT of TAGCAAGCACAGCATACAGA. The bits are spread out inside a suffix group to
maximize the number of singleton sets.

T G ACGT CG A A AC A A

ACGT CG A A AC A A T G ACGT CG

0 0 1 0 0 1 0 1 0 1 1 0 0 1 1
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 1 1
1 1 0 0 1 0 0 1 0 1 0

AC
GT

A
C

G
T

Figure 5: SubsetwtSBWT of TAGCAAGCACAGCATACAGA. The labels are concentrated to single sets inside
a suffix group to create many empty sets. The index consists of just the bit vectors in the figure.

graphs [5], which allow streaming queries in O(m)
operations, where m is the number of consecutive k-
mers queried, even when none of the k-mers are found
in the index. This general scheme could also be used in
the SBWT, adding an overhead of O(log k) bits for each
set in the SBWT.

3.3 Construction In this section we describe an
SBWT construction algorithm that takes as an input a
colexicographically sorted set of distinct k-mers. Such
a sorted database can be efficiently built in parallel by,
e.g., using the KMC algorithm [13] to compute the set of
distinct k-mers of the input, and by sorting them with
radix sort.

We describe our construction algorithm in two
phases. In the first phase, we find the SBWT sets for all
k-mers in the input, and report k-mers xi that require
the addition of prefixes Pk(xi) as in Definition 4. This is
done as follows. Denote with L = x1, . . . , xn the colex-
sorted list of input k-mers. Let us now focus on k-mers
that end in a fixed character c. We generate the list
of k-mers Lc = x1[2..k] · c . . . , xn[2..k] · c. This list is
also in colex-sorted order, and contains all input k-mers
that end in c and have a predecessor (and possibly k-
mers that are not in the input at all). We thus report
those k-mers of L ending in c that do not appear in
Lc. As both L and Lc are sorted, this can be done
in linear time by scanning the lists. This process is
carried out for all characters c of the alphabet. The
SBWT sets of the k-mers can also be read from the
lists L and Lc: The SBWT set of k-mer xi is empty if
L[i][2..k] = L[i−1][2..k], and otherwise the set contains
character c iff Lc[i] was found in L. Since the lists

are sorted, all this information can be collected in one
streaming pass over the lists L and Lc for each c ∈ Σ.
Lists L and Lc need not be materialized in memory as
a whole. Instead, list L can be streamed from disk and
the lists Lc generated on the fly. See the pseudocode in
Algorithm 3 in Appendix D for more details.

Next, we add the prefix sets Pk(xi) for the k-mers
xi that lacked a predecessor in the first phase. We start
by generating the prefix set Pk(xi) for all such k-mers
xi. Let us denote the resulting list with L′. We attach
to each generated prefix the character that follows that
prefix in the original k-mer. We then sort the prefixes,
merging duplicates such that we collect the associated
characters in each group of duplicates. The collected
sets are the SBWT sets of the corresponding prefixes.
In typical applications, the total size of the prefix sets
tends to be small, so the sorting can usually be done in
internal memory – if not, we may have to fall back to
a disk-based sorting algorithm. Finally, we merge the
sorted list of SBWT sets of L with the sorted list SBWT
of sets of L′ to form a single sorted list containing the
SBWT sets of all k-mers and required prefixes. See
Figure 6 for an example of the whole process including
phases 1 and 2.

4 Data Structures for Subset Rank Queries

In this section, we propose four different succinct data
structures for subset rank queries. Our treatment
here is not intended to be exhaustive, but rather to
demonstrate that an interesting range of space-time
tradeoffs are possible. We use the notation from the
previous section, that is, we are indexing a sequence
X1, . . . Xn of subsets of an alphabet Σ = {1, . . . , σ}. A

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

CCA
CTA
TTA
CCC
TCC

AGT
GTT

CCG

CAA
TAA
TAA
CCA
CCA

GTA
TTA

CGA

CAC
TAC
TAC
CCC
CCC

GTC
TTC

CGC

CAG
TAG
TAG
CCG
CCG

GTG
TTG

CGG

CAT
TAT
TAT
CCT
CCT

GTT
TTT

CGT

$$$
$$C
$CT
$$$
$$A
$AG

$$$
$$$
$$A
$$C
$AG
$CT

$$$
$$A
$$C
$AG
$CT

SBWT

{A,C,G}

{T}

{A,C}

SBWT
{C}

{T}

{A}

{A}

{G}

{T}

{A}

{C}

{G}

{T}

{T}

{A}

{G}

{T}

{T}

{A}

{A,C}

SBWT SBWT

Sort Collect

CCA
CTA
TTA

CCC
TCC

AGT
GTT

CCG

SBWT

{A,C,G}

{T}

{A,C}

$$$
$$A

$$C

$AG

$CT

{G}

{T}

{T}

{A}

{A,C}

CCA
CTA
TTA
CCC
TCC

AGT
GTT

CCG

List
outgoing

Collect
SBWT sets

Merge

Prefixes required

Figure 6: Multi-SBWT construction from a colex-sorted set of k-mers CCA, CTA, TTA, CCC, TCC, CCG, AGT
and GTT. The k-mers marked in green are those who were found to have a predecessor in the graph. The k-mers
marked in red require the addition of their prefix sets, which are sorted in blue below.

subset rank query takes as an input an index i and a
character c ∈ Σ, and returns the number of subsets Xj

with j ≤ i such that c ∈ Xj .

4.1 Plain Matrix Representation This data
structure uses a binary matrix M of size σ×n, such that
M [i][j] = 1 iff subset Xj contains the i-th character in
the alphabet. See Figure 2. The rows of the matrix are
indexed for constant-time succinct rank queries. The
subset rank query for the i-th character of the alphabet
up to index j is answered in contant time with a rank
query on row M [i] up to index j.

4.2 Split Representation This is a version of the
plain matrix representation, tailored for the use case
of subset rank queries in the SBWT, exploiting the
property that, in many use cases in genomics, most
of the sets in the SBWT are singletons. Let M−

be the submatrix of matrix M in the plain matrix
representation that contains only the columns ofM with
exactly one 1-bit set, and let M+ be the submatrix of
M containing the rest of the columns. Let B be a bit
vector of length equal to the number of columns in M ,
marking with 1-bits which columns of M are in M+.

We index both M+ and M− for character rank
queries. Matrix M+ is indexed like in the plain matrix
representation. Matrix M− on the other hand is
replaced by a string W that is the concatenation of the

labels corresponding to the bits in the columns. The
string W is indexed as a wavelet tree. The bit vector B
is indexed for rank queries. In summary, the final index
consists of just B, M+ and W and their rank support
structures. See Figure 3.

Subset rank query for i-th character up to index j
in the original subset sequence can now be answered by
using a rank query on B to determine how many of the
first j columns of M went to M+ and M−, then using
the rank structures ofM+ andM− to count the number
of characters in the corresponding prefixes of columns in
both matrices, and returning the sum of the two counts.
That is, if r = rank1(B, j), then answer to the query is
rank1(M

+[i], r) + ranki(W, j − r).

4.3 Concatenated Representation This data
structure uses a concatenation of the contents of the
subsets, and an encoding of the sequence of sizes
of the subsets. In more detail, let S(Xi) be the
concatenation of the characters in subset Xi. If Xi

is the empty set, we define S(Xi) = $. We build
the string L = S(X1)S(X2) . . . S(Xn) and index it
for rank queries. The empty sets are represented
as dollars to be able to encode the sizes of the sub-
sets with a bit vector B that is the concatenation
0 · 1|S(X1)|−1 · 0 · 1|S(X2)|−1 · · · 0 · 1|S(Xn)|−1. See Figure
4. If the sequence of subsets contains a large number of
singleton or empty sets, the bit vector B is sparse, and

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

is efficiently compressed using the Elias-Fano encoding.
The bit vector B is indexed for queries for select-0. A
subset rank query for a character c up to index i is then
answered by computing rankc(L, select0(B, i+ 1)− 1).

4.4 Subset Wavelet Tree We build a tree with
log σ levels (assume for simplicity that σ is a power
of 2). Each node of the tree corresponds to a part
of the alphabet, defined as follows. We denote with
Av the alphabet of node v. The root node corresponds
to the full alphabet. The alphabets of the rest of the
nodes are defined recursively such that the left child of
a node v corresponds to the first half of Av, and the
right child corresponds to the second half of Av. Let Qv

be the subsequence of subsets that contain at least one
character from Av. As a special case, the subsequence
Qv also includes the empty sets if v is the root.

Each node v contains two bit vectors Lv and Rv

of length |Qv|. We have Lv[i] = 1 iff subset Qv[i]
contains a character from the first half of Av, and
correspondingly Rv[i] = 1 if Qv[i] contains a character
from the second half of Av. See Figure 5. The
bit vectors Lv and Rv may be entropy-compressed
efficiently by considering them together as a string from
alphabet {0, 1, 2, 3}, such that the i-th character is
defined as (2 · Lv[i] + Rv[i]). This will take advantage
of the fact that in the case of the SBWT, it is rare that
Lv[i] = Rv[i] because most of the sets in the SBWT
tend to be singletons. Rank queries on Lv can then
be implemented by summing the ranks of characters 0
and 2, and rank queries on Rv can be implemented by
summing the ranks of characters 1 and 3.

To answer our query for a character c and position
i, we traverse from the root to the leaf of the tree that
where Av is the singleton subset {c}. While traversing,
we compute for each visited node v the length of the
prefix in the current subset sequence Qv that contains
all the subsets of X1, . . . Xi that have at least one
character from Av. This is done by using rank queries
on the bit vectors Lv and Rv, analogous to a regular
wavelet tree query. Pseudocode is given in Algorithm 2.

Query time for the subset wavelet tree is clearly
O(log σ), as constant time is spent at each of the log σ
levels. For a general sequence of sets, the data structure
requires 2nσ + o(nσ) bits of space, as if all sets are
full, then each set goes both ways at each level. For
the SBWT matrix however, less space is needed. In
particular, because each column of the matrix contains
exactly one 1-bit, sets can participate in at most one
node at each level of the subset wavelet tree, making
the number of bits in the bitvectors over all log σ levels
of the tree 2n log σ. We thus have the following theorem.

Theorem 4.1. The subset wavelet tree of the SBWT

Algorithm 2 Subset wavelet tree query.
Input: Character c from an alphabet Σ = {1, . . . , σ}
and an index i.
Output: The number of subsets Xj such that j ≤ i
and c ∈ Xj .

function SubsetRank(c, i):
v ← root
[ℓ, r]← [1, σ]
while ℓ ̸= r do

if c < (ℓ + r)/2 then
r ← ⌊(ℓ + r)/2⌋
i← rank1(Lv, i)
v ← left child of v

else
ℓ← ⌈(ℓ + r)/2⌉
i← rank1(Rv, i)
v ← right child of v

return i.

takes 2n log σ + o(n log σ) bits of space and supports
subset rank queries in O(log σ) time.

5 Analysis

In this section, we prove bounds on the sizes of entropy-
compressed versions of the plain matrix representation
of an SBWT. The size bounds are expressed in terms of
the number of columns of the matrix, which is equal to
|Sk(T)|+ k, where T is the original string.

Theorem 5.1. A plain matrix SBWT representation
can be encoded in n(log σ+1/ ln 2)+o(nσ) bits of space,
with support for k-mer membership queries in O(k)
time, where n is the number of columns in the matrix,
and σ > 1 is the size of the alphabet.

Proof. The bit matrix has σ rows and n columns, and
always has n − 1 ones. In other words, the fraction of
one-bits in the matrix is (n−1)/(nσ), which is less than
1/σ. Plugging Pr(1) = 1/σ and Pr(0) = 1− 1/σ to the
entropy formula (Eq. (2.1)), which is a monotonically
increasing function in the interval [0, 1/σ], gives

H ≤ (log σ − (σ − 1) log((σ − 1)/σ))/σ

bits of entropy per matrix element, or

nσH ≤ n(log σ − (σ − 1) log((σ − 1)/σ))

bits of entropy for the whole matrix. The term −(σ −
1) log((σ − 1)/σ) is upper bounded by 1/ ln 2, when
σ > 1, where ln is the natural logarithm. This can be
shown by plugging in x = 1/(σ − 1) to the well-known
inequality ln(x+1) ≤ x, which gives ln(1/(σ−1)+1) ≤
1/(σ−1), which is equivalent to−(σ−1) log((σ−1)/σ) ≤
1/ ln 2. So we have:

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

nσH ≤ n(log σ + 1/ ln 2)

This shows that entropy compressing the matrix to
the zeroth order entropy of the bits results in space
n(log σ+1/ ln 2). In practice this can be done using the
RRR bit vector encoding, which also supports constant-
time rank queries on the bit vector with an overhead of
o(nσ). Combining Lemma 3.1 with the RRR encoding
gives the result claimed in the theorem.

In the case of the DNA alphabet (σ = 4), the space per
k-mer is (−0.25 log(0.25) − 0.75 log(0.75)) · 4 ≈ 3.245
bits ignoring the lower order term. We note that this
exactly matches Chikhi’s navigational lower bound of
8−3 log 3 = 3.245 bits per k-mer [9]. This is remarkable,
as our data structure is amembership structure, whereas
the lower bound of Chikhi et al. is for a weaker
navigational structure. On the other hand Chikhi’s
bound allows an arbitrary k-mer set, whereas ours is
restricted to the spectrum of a single string.

A different bit vector representation leads to the
following space-time tradeoff:

Theorem 5.2. The plain matrix SBWT representation
can be encoded in n⌈log σ⌉ + 2n bits of space, with
support for k-mer membership queries in O(k log σ)
time, where n is the number of columns in the matrix,
and σ > 1 is the size of the alphabet.

Proof. We concatenate the rows of the matrix and
represent the resulting bit string, which is of length
nσ and contains at most n 1-bits, using the Elias-Fano
scheme. The space required is n⌈log(nσ/n)⌉ + 2n =
n⌈log σ⌉ + 2n bits. The time for a single rank query
is O(log(nσ/n)) = O(log σ), leading to the O(k log σ)
time for a k-mer membership query as claimed.

6 Experiments

In our experiments, we measure query time and the size
of the SBWT using the four different subset rank imple-
mentations described in Section 4. We used the value
k = 31 in all experiments. For each implementation,
we include a variant that has entropy compression, and
a variant that does not. The entropy compression is
done either with RRR bit vectors [41], or the Elias-
Fano encoding [43, 14, 15]. We make use of the Succinct
Data Structures Library (SDSL) [17] for plain and RRR
bitvectors, and use the Elias-Fano bitvector implemen-
tation from [28].

We compare our implementations to the BOSS
implementation in VARI1 [33], and two state-of-the-art

1https://github.com/cosmo-team/cosmo/tree/VARI-merge,
commit 79693b7

hashing-based solutions Bifrost2 [20] and Sshash3 [39].
We modified all competing tools by adding a timer that
starts when a query starts and ends when the query
returns. This is to discount for external factors such as
disk I/O and the time to parse the queries from FASTA
or FASTQ format.

We considered including the early BOSS-like index
structure of Rødland [42], which is written in Java.
Rødland’s data structure is somewhat similar to our
plain matrix variant, but with a different memory
layout and an additional bit vector. However, the
implementation was unable to process our datasets,
probably due to its internal use of 32-bit integers
limiting the maximum input size.

Experiments were run on Ubuntu 18.04.5 LTS ker-
nel version 4.15.0-147-generic. The compiler was g++
9.3.0. The CPU was an Intel Core i7-9700K CPU
clocked at 3.60 GHz with with L1d, LIi, L2 and L3
caches of size 256KiB, 256KiB, 2MiB and 12MiB, re-
spectively. The system had 64GiB of DDR4 2400 MHz
memory and a 1TB Samsung 860 EVO in the SATA3
bus. The C++ code of the SBWT variants are avail-
able at https://github.com/algbio/SBWT . The ex-
periment scripts and the modified versions of all com-
peting tools with our timing code added are available at
https://github.com/jnalanko/SBWT_experiments .

6.1 Datasets We experiment on three different data
sets that represent typical targets for k-mer indexing in
bioinformatics applications:

1. A pangenome of 3682 E. coli genomes aiming to
replicate the E. coli dataset in the experiments of
VARI [33]. The data was downloaded during the
year 2020 by selecting a subset of 3682 assemblies
listed in ftp://ftp.ncbi.nlm.nih.gov/genomes/

genbank/bacteria/assembly_summary.txt with
the organism name ”Escherichia coli” with date be-
fore March 22, 2016. The resulting collection of
genomes is available for download at zenodo.org/
record/6577997 .

2. A set of 17,336,887 Illumina HiSeq 2500 sequence
reads of length 502 sampled from the human gut
(SRA identifier ERR5035349) in a study on irri-
table bowel syndrome and bile acid malabsorption
[22].

3. A set of 1,234,695 genomes of the SARS-CoV-2
virus downloaded from NCBI datasets.

We then construct the multi-string variant of the SBWT
defined in Section 3.1 for each of the datasets. K-mers

2https://github.com/pmelsted/bifrost/, commit 5594b5e9
3https://github.com/jermp/sshash, commit 27852cbd

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

2.0 2.5 3.0 3.5 4.0

Final size on disk (bits/kmer)

396

398

400

402

404

406

T
im

e
(s

)

SARS-CoV-2

2.5 3.0 3.5 4.0

Final size on disk (bits/kmer)

290

295

300

305

310

E. coli

2.5 3.0 3.5 4.0

Final size on disk (bits/kmer)

1600

1800

2000

2200

2400

Metagenome

Nav. lower bound

Plain-matrix

RRR-matrix

EF-matrix

Plain-split

RRR-split

EF-split

Plain-concat

EF-concat

Plain-subsetwt

RRR-subsetwt

VARI

Figure 7: Construction time and final disk space. Tables of the data behind the plots are in Appendix A.

that contain characters outside of the DNA alphabet
are discarded. Table 1 shows a number of key statistics
for the datasets.

6.2 Index construction We construct the SBWT
by using KMC3 [27] to extract the distinct k-mers of the
data and sort them. Since KMC3 sorts in lexicographic
order, we reverse the sequences before feeding them
to the KMC algorithm, and reverse the k-mers again
when reading the sorted k-mer database, to get the k-
mers in colexicographic order. The memory usage of
KMC3 is controllable via a command-line parameter.
We used 5GB for the SARS-CoV-2 and E. coli data, and
9GB for the metagenome data. We chose these values
to approximately match the memory usage of Sshash.
Using more memory would speed up our construction.
VARI was constructed using from KMC database using
the instructions in the repository, with the exception
that we needed to add the flag -cs2 to KMC to prevent
VARI from discarding very frequent k-mers. The time
taken by KMC is included in the total time.

The tools Sshash and Bifrost define a k-mer so
that a k-mer is considered to be equal to its reverse
complement. That is, these tools index not the set of
k-mers, but the set of k-molecules of the input, where a
single k-molecule represents both directions of a k-mer.
We could mimic this behavious by adding the reverse
complements of the input sequences to the input data
for SBWT. This way, a k-mer membership query in the
SBWT returns a positive answer iff the k-molecule is
found in the input data in either orientation, matching

the behaviour of the other two tools. This costs us extra
space however, so we build the SBWT indices without
the added reverse complements. In this case, the query
becomes sensitive to the orientation of the k-mer, which
could be a useful feature in some applications where the
orientation is important, such as when designing DNA
probes where we want to avoid inadvertent probe-to-
probe binding [2]. In any case, even if the index is
sensitive to orientation, it is always possible implement
queries for k-molecules by running the query in both
orientations, doubling the query time. VARI always
includes both orientations in the index and this aspect
is outside of the control of the user.

The Sshash tool requires as input a set of strings
where each k-molecule occurs only once. The suggested
way [39] to construct such a representation is to extract
the unitigs (non-branching paths in the bidirected de
Bruijn graph) of the input using a tool such as BCALM2
[10] or Cuttlefish [26, 25], and stitch unitigs together
using UST [40]. We chose BCALM2 over Cuttlefish
following the instructions in the Github repository of
Sshash. We include the time and memory taken by these
tools in the total resource requirements of Sshash. We
could also have used stitched unitigs as input to SBWT
and Bifrost, but we chose not to do that because one of
the advantages of the SBWT construction algorithm is
that it works directly on the k-mers without a need to
extract the unitigs, and because Bifrost has already has
a built-in in-memory unitig extraction algorithm that is
used in its construction.

Sshash requires the user to choose the value for the

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

Sequences Base pairs Unique 31-mers Unique 31-molecules UC AUL

E. coli 745,409 18,957,578,183 253,718,096 170,648,610 8,939,732 49.1

SARS-CoV-2 1,234,695 36,808,137,972 2,407,721 2,407,455 178,758 43.4

Metagenome 17,336,887 8,703,117,274 2,761,523,935 2,488,344,054 105,908,119 52.4

Table 1: Key statistics on the three experimental datasets used. The number of unique 31-molecules means the
number of 31-mers such that if a k-mer occurs both in forward and reverse complement orientations, only one
orientation is counted. The number of sequences in the case of E. coli is not the number of genomes, which is
3682, but the number of contigs in assemblies of those genomes. The column UC (unitig count) is the number
of unitigs and AUL is the average unitig length. The reported unitigs are the bidirected unitigs computed by
BCALM2.

length of k-mer minimizers used in the data structure.
In our experiments, we use the value of 16, which
is a reasonable compromise between time and space.
In Bifrost, the length of the minimizers are chosen
automatically based on the data. For Bifrost we
disable the k-mer coloring feature to avoid unnecessary
computation. The number of parallel threads for all
tools was 8, which is equal to the number of cores in the
CPU of the test machine.

The SARS-CoV-2 data is peculiar in the sense
that the number of distinct k-mers in the data is tiny
compared to the total length of the input sequences.
This means that the extraction of the distinct k-mers
for SBWT and VARI and unitigs for Sshash and Bifrost
dominate the time. For example, extracting the unitigs
with BCALM2 took 10min 26s, producing only 24MB
of unitigs, from which the Sshash index could be built in
just 0.3 seconds. Running KMC on the data for VARI
took 6min 30s, resulting in only 2,407,455 k-molecules,
after which VARI could be built in only 3.45 seconds.
The index structures for all tools took space ranging
from a few megabytes to tens of megabytes of space.

The datasets of the E. coli pangenome and the
metagenome resulted in larger indexes, which gives
a better idea of the performance of the construction
pipelines after the k-mer preprocessing stages. For
example, extracting the unitigs with BCALM2 took 56
seconds on E. coli and 12 minutes on the metagenome,
which now represents just 10.5% and 19.6% of the total
construction time of Sshash. Extracting the k-mers
with KMC for VARI took 2min 25s and 1min 16s,
which represents 46% and 3% of the total construction
time of VARI. We also observed that VARI required
on the order of 300GB of temporary disk space during
construction, so the disk usage may become prohibitive
in larger datasets. Overall, all construction pipelines
performed well and finished within approximately an
hour on both datasets. For SBWT, extracting the
distinct k-mers accounted over 99% the total time in
the SARS-Cov-2 datasets, but only for approximately
50% of the total time on E. coli, and only 5% on the

metagenome.
The smallest index of all was either the RRR-

compressed subset wavelet tree or the Elias-Fano-
compressed concatenated representation. The largest
index by far was Bifrost, but this is due to Bifrost se-
rializing the index as the set of unitigs of the data in
an inefficient ASCII format. On the other hand, the
index format of Bifrost does not include the minimizer
hash table of the index, which is regenerated every time
the index is used for queries, which makes the memory
usage during queries even higher than the size on disk.

Full data tables of the results are in the Appendix.

6.3 Queries The query time of all methods depends
on whether the k-mer is found in the index (a positive
query) or not (a negative query). For the query bench-
mark, we generated one million positive queries by ran-
domly sampling k-mers from the input data, and one
million negative queries by sampling k-mers uniformly
at random from the space of all possible k-mers (since
k = 31, the probability that a random k-mer occurs in
the index is very small). We also generated longer se-
quences to test the performance of the tools on stream-
ing queries, where we query all the k-mers present in
a longer sequence in the order they appear in that se-
quence4. For these queries, as above, we generated both
positive and negative sequences by sampling a total of 1
million characters split into sequences of length 500 ei-
ther from the input sequences (positive), or by drawing
the sequences uniformly at random (negative).

Streaming queries employed the approach of Sec-
tion 3.2, which introduces an overhead of 1 bit per
SBWT set, but speeds up queries greatly in the posi-
tive case. Numbers used to generate plots for the query
experiments are given as tables in Appendices B and C

The indexes for SARS-CoV-2 mostly fit within the
L3 cache of the experiment machine, making the results
not representative of practical performance on datasets

4This is an important use case in bioinformatics, where the
longer sequence typically corresponds to a so-called read.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Single positive

101

Memory (bits/kmer)

100

101

102

Single negative

101

Memory (bits/kmer)

10−1

100

101

102

Streaming positive

Nav. lower bound

Plain-matrix

RRR-matrix

EF-matrix

Plain-split

RRR-split

EF-split

Plain-concat

EF-concat

Plain-subsetwt

RRR-subsetwt

Sshash

Bifrost

VARI

Figure 8: Query results on the metagenome dataset. Streaming negative queries are not plotted due to save space
and because streaming negative queries do not give any benefit over single negative queries in the SBWT. See
Appendixes B and C for the full data and plots.

with a larger number of k-mers. The peak RAM usage
during query time was also dominated by the space to
store the queries in a memory buffer. Due to this,
we advise the reader to not pay much attention to
these results. The tables and plots are included for
completeness nonetheless.

On E. coli and the metagenomic read set, the results
show that query time of the matrix variant of SBWT
is competitive with the state-of-the-art hashing-based
approaches. The best case scenario for the SBWT
variants is the case of streaming positive queries, where
the SBWT requires only two subset rank queries per
character in the reads. In this case, the query times
are only 110-140 nanoseconds per k-mer, beating both
SSHash and Bifrost. In the single queries, Bifrost was
the fastest, but also took an order of magnitude space
more than the competitors. For SBWT, the negative
single queries were observed to be roughly twice as fast
as the positive queries, as the search can exit early
when the search interval becomes empty. This difference
will be more pronounced the larger the value of k is.
In Bifrost, a similar two-fold speedup was observed in
negative queries.

Figure 8 shows time-space plots of the query perfor-
mance of the benchmarked methods on the metagenome
data set (the plots for E. coli are similar, see Appendix
C). When the streaming support bit vectors is not in-
cluded (single queries), the plots show that the RRR-
matrix variant takes space close to the navigational

lower bound of Chikhi et al, as predicted by Theorem
5.1. However, the RRR-matrix variant was dominated
in the time-space plane by other SBWT variants. In
most cases, the Pareto frontier includes the variants of
plain matrix, EF matrix, all split variants, the concate-
nated EF variant and the RRR subset wavelet tree.
Depending on the query type, Bifrost and SShash of-
ten also lie on the Pareto frontier. The query time of
VARI was the slowest on every query type, which is
likely due lack of optimization in the implementation of
VARI. The general approach of VARI is better embod-
ied in the concatenated EF variant, which is shown to
be comparable to the RRR subset wavelet tree in terms
of time and space.

7 Conclusion

While our prototypes already handsomely outperform
all previous succinct de Bruijn graph implementations,
we believe they can be improved in several ways, per-
haps most promisingly by the replacement of wavelet
trees with rank data structures specialized for small al-
phabet sequences. We also expect that the simplicity
of the new rank-based query algorithms will make them
significantly more accessible than the original BOSS,
which is notoriously tricky to implement. The plain
matrix, split and subset wavelet tree variants are par-
ticularly easy to implement, requiring only regular rank
queries as the only non-trivial subroutine. This in con-
trast with the original BOSS, which also requires select

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

and predecessor/successor queries.

8 Acknowledgements

We thank Giulio Pibiri for help with Sshash, Massim-
iliano Rossi for helpful discussion, and Harri Kähkönen
and Daniel Cauchi for feedback on the manuscript.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

References

[1] J. Alanko, B. Alipanahi, J. Settle, C. Boucher, and
T. Gagie. Buffering updates enables efficient dy-
namic de bruijn graphs. Computational and structural
biotechnology journal, 19:4067–4078, 2021.

[2] J. Alanko, I. Slizovskiy, D. Lokshtanov, T. Gagie,
N. Noyes, and C. Boucher. Syotti: Scalable bait design
for dna enrichment. bioRxiv, 2021.

[3] B. Alipanahi, A. Kuhnle, S. J. Puglisi, L. Salmela,
and C. Boucher. Succinct dynamic de bruijn graphs.
Bioinformatics, 37(14):1946–1952, 2021.

[4] F. Almodaresi, J. Khan, S. Madaminov, M. Ferdman,
R. Johnson, P. Pandey, and R. Patro. An incremen-
tally updatable and scalable system for large-scale se-
quence search using the bentley-saxe transformation.
Bioinformatics, 2022.

[5] C. Boucher, A. Bowe, T. Gagie, S. J. Puglisi, and
K. Sadakane. Variable-order de bruijn graphs. In 2015
data compression conference, pages 383–392. IEEE,
2015.

[6] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya.
Succinct de bruijn graphs. In International work-
shop on algorithms in bioinformatics, pages 225–235.
Springer, 2012.

[7] C.-H. Chang, M.-T. Chou, Y.-C. Wu, T.-W. Hong, Y.-
L. Li, C.-H. Yang, and J.-H. Hung. sBWT: memory
efficient implementation of the hardware-acceleration-
friendly schindler transform for the fast biological
sequence mapping. Bioinformatics, 32(22):3498–3500,
2016.

[8] R. Chikhi. A tale of optimizing the space taken by
de bruijn graphs. In Proc. 17th Conference on Com-
putability in Europe (CiE), volume 12813 of LNCS,
pages 120–134. Springer, 2021.

[9] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson,
and P. Medvedev. On the representation of de bruijn
graphs. In Proc. 18th Annual International Conference
Research in Computational Molecular Biology (RE-
COMB), LNCS 8394, pages 35–55. Springer, 2014.

[10] R. Chikhi, A. Limasset, and P. Medvedev. Compacting
de bruijn graphs from sequencing data quickly and in
low memory. Bioinformatics, 32(12):i201–i208, 2016.

[11] P. E. Compeau, P. A. Pevzner, and G. Tesler. Why are
de bruijn graphs useful for genome assembly? Nature
biotechnology, 29(11):987, 2011.

[12] V. G. Crawford, A. Kuhnle, C. Boucher, R. Chikhi,
and T. Gagie. Practical dynamic de bruijn graphs.
Bioinformatics, 34(24):4189–4195, 2018.

[13] S. Deorowicz, M. Kokot, S. Grabowski, and
A. Debudaj-Grabysz. Kmc 2: fast and resource-frugal
k-mer counting. Bioinformatics, 31(10):1569–1576,
2015.

[14] P. Elias. Efficient storage and retrieval by content and
address of static files. J. ACM, 21(2):246–260, 1974.

[15] R. Fano. On the number of bits required to implement
an associative memory. Technical report, MIT, 1971.

[16] T. Gagie, G. Manzini, and J. Sirén. Wheeler graphs: A
framework for bwt-based data structures. Theoretical
computer science, 698:67–78, 2017.

[17] S. Gog, T. Beller, A. Moffat, and M. Petri. From the-
ory to practice: Plug and play with succinct data struc-
tures. In International Symposium on Experimental
Algorithms, pages 326–337. Springer, 2014.

[18] S. Gog and M. Petri. Optimized succinct data
structures for massive data. Softw. Pract. Exp.,
44(11):1287–1314, 2014.

[19] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 841–850, 2003.

[20] G. Holley and P. Melsted. Bifrost: highly parallel
construction and indexing of colored and compacted
de bruijn graphs. Genome biology, 21(1):1–20, 2020.

[21] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and
G. McVean. De novo assembly and genotyping of vari-
ants using colored de bruijn graphs. Nature genetics,
44(2):226–232, 2012.

[22] I. B. Jeffery, A. Das, E. O’Herlihy, S. Coughlan,
K. Cisek, M. Moore, F. Bradley, T. Carty, M. Pradhan,
C. Dwibedi, et al. Differences in fecal microbiomes and
metabolomes of people with vs without irritable bowel
syndrome and bile acid malabsorption. Gastroenterol-
ogy, 158(4):1016–1028, 2020.

[23] M. Karasikov, H. Mustafa, D. Danciu, M. Zimmer-
mann, C. Barber, G. Rätsch, and A. Kahles. Meta-
graph: Indexing and analysing nucleotide archives at
petabase-scale. BioRxiv, 2020.

[24] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Hybrid
compression of bitvectors for the FM-index. In Proc.
DCC, pages 302–311. IEEE, 2014.

[25] J. Khan, M. Kokot, S. Deorowicz, and R. Patro.
Scalable, ultra-fast, and low-memory construction of
compacted de bruijn graphs with cuttlefish 2. bioRxiv,
2021.

[26] J. Khan and R. Patro. Cuttlefish: fast, paral-
lel and low-memory compaction of de bruijn graphs
from large-scale genome collections. Bioinformatics,
37(Supplement 1):i177–i186, 2021.

[27] M. Kokot, M. D lugosz, and S. Deorowicz. Kmc 3:
counting and manipulating k-mer statistics. Bioinfor-
matics, 33(17):2759–2761, 2017.

[28] D. Ma, S. J. Puglisi, R. Raman, and B. Zhukova. On
Elias-Fano for rank queries in FM-indexes. In 31st
Data Compression Conference (DCC), pages 223–232.
IEEE, 2021.

[29] N. Maillet, C. Lemaitre, R. Chikhi, D. Lavenier,
and P. Peterlongo. Compareads: comparing huge
metagenomic experiments. In BMC bioinformatics,
volume 13, pages 1–10. Springer, 2012.

[30] T. Mäklin, T. Kallonen, J. Alanko, Ø. Samuelsen,
K. Hegstad, V. Mäkinen, J. Corander, E. Heinz, and
A. Honkela. Bacterial genomic epidemiology with
mixed samples. Microbial genomics, 7(11), 2021.

[31] C. Marchet, C. Boucher, S. J. Puglisi, P. Medvedev,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

M. Salson, and R. Chikhi. Data structures based on k-
mers for querying large collections of sequencing data
sets. Genome Research, 31(1):1–12, 2021.

[32] C. Marchet, M. Kerbiriou, and A. Limasset. BLight:
efficient exact associative structure for k-mers. Bioin-
formatics, 37(18):2858–2865, 04 2021.

[33] M. D. Muggli, A. Bowe, N. R. Noyes, P. S. Morley,
K. E. Belk, R. Raymond, T. Gagie, S. J. Puglisi,
and C. Boucher. Succinct colored de Bruijn graphs.
Bioinformatics, 33(20):3181–3187, Oct. 2017.

[34] J. I. Munro. Tables. In Proc. 16th Conference on
Foundations of Software Technology and Theoretical
Computer Science, LNCS 1180, pages 37–42. Springer,
1996.

[35] G. Navarro and E. Providel. Fast, small, simple
rank/select on bitmaps. In R. Klasing, editor, Exper-
imental Algorithms - 11th International Symposium,
SEA 2012, Bordeaux, France, June 7-9, 2012. Pro-
ceedings, volume 7276 of Lecture Notes in Computer
Science, pages 295–306. Springer, 2012.

[36] D. Okanohara and K. Sadakane. Practical entropy-
compressed rank/select dictionary. In Proc. Ninth
Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, 2007.

[37] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mal-
lonee, N. H. Bergman, S. Koren, and A. M. Phillippy.
Mash: fast genome and metagenome distance estima-
tion using minhash. Genome biology, 17(1):1–14, 2016.

[38] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. M.
Tiedje, and C. T. Brown. Scaling metagenome se-
quence assembly with probabilistic de bruijn graphs.
Proceedings of the National Academy of Sciences,
109(33):13272–13277, 2012.

[39] G. E. Pibiri. Sparse and skew hashing of k-mers.
bioRxiv, 2022.

[40] A. Rahman and P. Medvedev. Representation of k-
mer sets using spectrum-preserving string sets. In In-
ternational Conference on Research in Computational
Molecular Biology, pages 152–168. Springer, 2020.

[41] R. Raman, V. Raman, and S. R. Satti. Succinct index-
able dictionaries with applications to encoding k -ary
trees, prefix sums and multisets. ACM Transactions
on Algorithms, 3(4):43, Nov. 2007.

[42] E. A. Rødland. Compact representation of k-mer
de bruijn graphs for genome read assembly. BMC
bioinformatics, 14(1):1–19, 2013.

[43] S. Vigna. Quasi-succinct indices. In Proc. Sixth ACM
International Conference on Web Search and Data
Mining (WSDM), pages 83–92. ACM, 2013.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

A Index construction tables

This appendix contains the tables for the results of the index construction experiments. The size is measured in
bits per distinct k-mer (bpk) in the input data, considering reverse complements distinct.

Time (s) Mem (GB) Size (bpk)

plain-matrix 405 4.72 4.29

rrr-matrix 405 4.72 2.37

mef-matrix 405 4.72 3.20
plain-split 405 4.72 3.36

rrr-split 405 4.72 2.69

mef-split 406 4.72 2.78
plain-concat 406 4.72 3.90

mef-concat 406 4.72 2.04
plain-subsetwt 406 4.72 4.26
rrr-subsetwt 406 4.72 1.99

sshash 628 5.28 7.33
bifrost 3727 0.05 90.01
vari 394 11.23 4.18

Table 2: Index construction for the SARS-CoV-2 dataset.

Time (s) Mem (GB) Size (bpk)

plain-matrix 285 4.71 4.26
rrr-matrix 288 4.71 3.37
mef-matrix 293 4.71 4.07

plain-split 292 4.71 3.27
rrr-split 292 4.71 2.51
mef-split 293 4.71 2.65

plain-concat 293 4.71 3.71
mef-concat 294 4.71 2.34

plain-subsetwt 302 4.71 4.25

rrr-subsetwt 304 4.71 2.46
sshash 535 4.83 5.08

bifrost 1238 2.15 37.30

vari 310 11.22 3.18

Table 3: Index construction for the E. coli dataset.

Time (s) Mem (GB) Size (bpk)

plain-matrix 1552 8.42 4.30
rrr-matrix 1580 8.42 3.40

mef-matrix 1638 8.42 4.27

plain-split 1632 8.95 3.29
rrr-split 1635 8.75 2.50

mef-split 1636 8.79 2.63
plain-concat 1639 9.55 3.75
mef-concat 1653 9.27 2.34

plain-subsetwt 1747 12.22 4.28
rrr-subsetwt 1768 12.22 2.46

sshash 3808 8.82 6.85

bifrost 2194 29.45 44.10
vari 2491 11.20 4.21

Table 4: Index construction for the metagenomic read set.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

B Query tables

This appendix contains the tables for the results of the query experiments. The columns labeled with ”+” and
”-” give times for positive (found in the index) and negative queries (not found in the index) respectively. The
memory is measured in bits per k-mer (bpk), considering a k-mer distinct from its reverse complement.

Single query Streaming query

+ (µs) - (µs) mem (bpk) + (µs) - (µs) mem (bpk)

plain-matrix 0.57 0.30 107.60 0.04 0.26 108.40
rrr-matrix 5.25 2.45 105.39 0.26 2.25 106.58
mef-matrix 0.59 0.33 106.19 0.04 0.26 107.30
plain-split 2.15 0.99 106.04 0.14 0.87 108.13
rrr-split 5.70 2.62 106.67 0.33 2.31 107.99
mef-split 2.45 1.14 106.53 0.14 0.97 107.67
plain-concat 2.49 1.14 107.65 0.14 0.97 108.66
mef-concat 28.06 13.50 106.13 1.37 12.16 106.71
plain-subsetwt 3.70 1.74 106.86 0.20 1.58 108.48
rrr-subsetwt 30.07 14.87 105.61 1.39 13.54 106.33

sshash 1.50 0.83 18.89 1.11 0.42 18.90
bifrost 0.97 0.48 141.51 0.95 0.31 140.93
vari 137.94 54.90 284.64 167.83 55.96 22.33

Table 5: Queries on the SARS-CoV-2 data.

Single query Streaming query

+ (µs) - (µs) mem (bpk) + (µs) - (µs) mem (bpk)

plain-matrix 2.13 0.90 5.25 0.11 0.55 6.24
rrr-matrix 10.92 5.23 4.35 0.50 4.03 5.35

mef-matrix 4.22 1.82 5.06 0.22 0.91 6.05
plain-split 7.90 3.66 4.25 0.36 1.99 5.25
rrr-split 13.00 6.41 3.49 0.61 4.35 4.49

mef-split 10.23 4.48 3.63 0.44 2.48 4.63
plain-concat 11.72 5.15 4.91 0.51 2.72 5.92
mef-concat 61.73 31.68 3.34 2.35 26.27 4.33

plain-subsetwt 13.00 6.05 5.23 0.56 3.28 6.23
rrr-subsetwt 54.71 28.21 3.44 2.18 23.16 4.45
sshash 1.46 1.45 5.19 0.23 0.43 5.19
bifrost 1.01 0.54 61.66 0.26 0.33 61.63

vari 216.54 102.70 5.87 226.22 103.85 3.38

Table 6: Queries on the E. coli pangenome.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

Single query Streaming query

+ (µs) - (µs) mem (bpk) + (µs) - (µs) mem (bpk)

plain-matrix 2.54 1.40 4.39 0.14 0.81 5.40
rrr-matrix 12.83 7.41 3.49 0.59 5.44 4.51
mef-matrix 4.77 2.60 4.36 0.26 1.42 5.37

plain-split 9.64 5.44 3.38 0.48 3.12 4.39
rrr-split 15.91 10.18 2.59 0.80 6.07 3.60
mef-split 12.04 7.04 2.72 0.55 3.72 3.73

plain-concat 14.10 8.16 4.06 0.66 4.44 5.08
mef-concat 78.42 47.19 2.44 3.23 36.18 3.45
plain-subsetwt 14.99 9.60 4.37 0.75 5.36 5.38
rrr-subsetwt 59.63 38.70 2.55 2.39 28.52 3.56

sshash 2.47 2.22 6.86 0.42 0.62 6.86
bifrost 1.21 0.59 81.11 0.37 0.34 81.11
vari 273.99 148.36 4.47 280.90 150.67 4.24

Table 7: Queries on the metagenomic read set.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

C Query plots

The figures in this appendix plot the data in Appendix B.

101 102

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Single positive

101 102

Memory (bits/kmer)

100

101

T
im

e
(µ

s/
q
u

er
y
)

Single negative

101 102

Memory (bits/kmer)

10−1

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Streaming positive

101 102

Memory (bits/kmer)

100

101

T
im

e
(µ

s/
q
u

er
y
)

Streaming negative

Nav. lower bound

Plain-matrix

RRR-matrix

EF-matrix

Plain-split

RRR-split

EF-split

Plain-concat

EF-concat

Plain-subsetwt

RRR-subsetwt

Sshash

Bifrost

VARI

Figure 9: Queries on SARS-CoV-2.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Single positive

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Single negative

101

Memory (bits/kmer)

10−1

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Streaming positive

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Streaming negative

Nav. lower bound

Plain-matrix

RRR-matrix

EF-matrix

Plain-split

RRR-split

EF-split

Plain-concat

EF-concat

Plain-subsetwt

RRR-subsetwt

Sshash

Bifrost

VARI

Figure 10: Queries on E. coli.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Single positive

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Single negative

101

Memory (bits/kmer)

10−1

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Streaming positive

101

Memory (bits/kmer)

100

101

102

T
im

e
(µ

s/
q
u

er
y
)

Streaming negative

Nav. lower bound

Plain-matrix

RRR-matrix

EF-matrix

Plain-split

RRR-split

EF-split

Plain-concat

EF-concat

Plain-subsetwt

RRR-subsetwt

Sshash

Bifrost

VARI

Figure 11: Queries on Metagenome reads.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

D Additional Pseudocode

Algorithm 3 Phase 1 of the multi-string SBWT construction algorithm.
Input: A list L = (x1, . . . xn) of sorted input k-mers in colexicographic order.
Output: Two files: File1 containing pairs (xi, Xout), whereXout is the SBWT set of k-mer xi, and File2 containing
all k-mers xi which require the addition of prefix k-mers.

P ← an array of length σ
for c ∈ Σ do

P [c]← smallest i s.t. k-mer xi ends with c.

Append sentinel k-mer #k to L, s.t. # > c,∀c ∈ Σ
for i = 1, . . . , n do

Xout ← ∅ ▷ The SBWT set of L[i]
if L[i][2..k] ̸= L[i− 1][2..k] then

for c ∈ Σ do
y ← L[i][2..k] · c
z ← L[P [c]]
while y > z do ▷ z has no predecessor

Write z to File2
P [c]← P [c] + 1
z ← L[P [c]]

if y = z then ▷ z has a predecessor
P [c]← P [c] + 1
Xout ← Xout ∪ c

Write pair (L[i], Xout) to File1.

for c ∈ Σ do ▷ Process remaining k-mers
while P [c] ≤ n and L[P [c]][k] = c do

Write L[P [c]] to File2
P [c]← P [c] + 1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.05.19.492613doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.19.492613
http://creativecommons.org/licenses/by/4.0/

