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Abstract

We build a system that provides succinct non-interactive zero-knowledge proofs (zk-SNARKs) for pro-

gram executions on a von Neumann RISC architecture. The system has two components: a cryptographic

proof system for verifying satisfiability of arithmetic circuits, and a circuit generator to translate program

executions to such circuits. Our design of both components improves in functionality and efficiency over

prior work, as follows.

Our circuit generator is the first to be universal: it does not need to know the program, but only

a bound on its running time. Moreover, the size of the output circuit depends additively (rather than

multiplicatively) on program size, allowing verification of larger programs.

The cryptographic proof system improves proving and verification times, by leveraging new algorithms

and a pairing library tailored to the protocol.

We evaluated our system for programs with up to 10,000 instructions, running for up to 32,000
machine steps, each of which can arbitrarily access random-access memory; and also demonstrated it

executing programs that use just-in-time compilation. Our proofs are 230 bytes long at 80 bits of security,

or 288 bytes long at 128 bits of security. Typical verification time is 5 milliseconds, regardless of the

original program’s running time.
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1 Introduction

1.1 Goal

Consider the setting where a client owns a public input x, a server owns a private input w, and the client

wishes to learn z := F (x,w) for a program F known to both parties. For instance, x may be a query, w a

confidential database, and F the program that executes the query on the database.

Security. The client is concerned about integrity of computation: how can he ascertain that the server

reports the correct output z? In contrast, the server is concerned about confidentiality of his own input: how

can he prevent the client from learning information about w?

Cryptography offers a powerful tool to address these security concerns: zero-knowledge proofs [GMR89].

The server, acting as the prover, attempts to convince the client, acting as the verifier, that the following NP

statement is true: “there exists w such that z = F (x,w)”. Indeed:

• The soundness property of the proof system guarantees that, if the NP statement is false, the prover cannot

convince the verifier (with high probability). Thus, soundness addresses the client’s integrity concern.

• The zero-knowledge property of the proof system guarantees that, if the NP statement is true, the prover

can convince the verifier without leaking any information about w (beyond was is leaked by the output z).

Thus, zero knowledge addresses the server’s confidentiality concern.

Moreover, the client sometimes not only seeks soundness but also proof of knowledge [GMR89, BG93],

which guarantees that, whenever he is convinced, not only can he deduce that a witness w exists, but also

that the server knows one such witness. This stronger property is often necessary to security if F encodes

cryptographic computations, and is satisfied by most zero-knowledge proof systems.

Efficiency. Besides the aforementioned security desiderata, many settings also call for efficiency desiderata.

The client may be either unable or unwilling to engage in lengthy interactions with the server, or to perform

large computations beyond the “bare minimum” of sending the input x and receiving the output z. For

instance, the client may be a computationally-weak device with intermittent connectivity (e.g., a smartphone).

Thus, it is desirable for the proof to be non-interactive [BFM88, NY90, BDSMP91]: the server just

send the claimed output z̃, along with a non-interactive proof string π that attests that z̃ is the correct output.

Moreover, it is also desirable for the proof to be succinct: π has size Oλ(1) and can be verified in time

Oλ(|F |+ |x|+ |z|), where Oλ(·) is some polynomial in a security parameter λ; in other words, π is very

short and easy to verify (i.e., verification time does not depend on |w|, nor F ’s running time).

zk-SNARKs. A proof system achieving the above security and efficiency desiderata is called a (publicly-

verifiable) zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK). zk-SNARK

constructions can be applied to a wide range of security applications, provided these constructions deliver

good enough efficiency, and support rich enough functionality (i.e., the class of programs F that is supported).

Remark 1.1. In the zero-knowledge setting above, the client does not have the server’s input, and so cannot

conduct the computation on his own. Hence, it is not meaningful to compare “efficiency of outsourced

computation at the server” and “efficiency of native execution at the client”, because the latter was never an

option. Non-interactive zero-knowledge proofs (and zk-SNARKs) are useful regardless of cross-over points.

Our goal in this paper is to construct

a zk-SNARK implementation supporting executions on a universal von Neumann RISC machine.

1.2 Prior work

zk-SNARKs. Many works have obtained zk-SNARK constructions [Gro10a, Lip12, GGPR13, BCIOP13,

PGHR13, BCGTV13a, Lip13, BFRS+13]. Three of these [PGHR13, BCGTV13a, BFRS+13] provide

implementations, and thus we briefly recall them. Parno et al. [PGHR13] present two main contributions.
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• A zk-SNARK, with essentially-optimal asymptotics, for arithmetic circuit satisfiability, based on quadratic

arithmetic programs (QAPs) [GGPR13]. They accompany their construction with an implementation.

• A compiler that maps C programs with fixed memory accesses and bounded control flow (e.g., array

accesses and loop iteration bounds are compile-time constants) into corresponding arithmetic circuits.

Ben-Sasson et al. [BCGTV13a] present three main contributions.

• Also a QAP-based zk-SNARK with essentially-optimal asymptotics for arithmetic circuit satisfiability, and

a corresponding implementation. Their construction follows the linear-interactive proofs of [BCIOP13].

• A simple RISC architecture, TinyRAM, along with a circuit generator for generating arithmetic circuits

that verify correct execution of TinyRAM programs.

• A compiler that, given a C program, produces a corresponding TinyRAM program.

Thus, both [PGHR13, BCGTV13a] have two main components: a zk-SNARK for a low-level language,

and method to translate a high-level language to the low-level language. Finally, Braun et al. [BFRS+13]

re-implemented the protocol of [PGHR13] and combined it with a circuit generator that incorporates memory-

checking techniques [BEGKN91] to support random-access memory [BCGT13a].

Outsourcing computation to powerful servers. Numerous works [SBW11, SMBW12, SVPB+12, SBVB+13,

CMT12, TRMP12, VSBW13, Tha13, BFRS+13] seek to verifiably outsource computation to untrusted pow-

erful servers, e.g., in order to make use of cheaper cycles or storage. (See Appendix A for a summary.) We

stress that verifiable outsourcing of computations is not our goal. Rather, as mentioned, we study functionality

and efficiency aspects of non-interactive zero-knowledge proofs, which are useful even when applied to

relatively-small computations, and even with high overheads.

Compared to most protocols to outsource computations, known zk-SNARKs use “heavyweight” tech-

niques, such as probabilistically-checkable proofs [BFLS91] and expensive pairing-based cryptography.

The optimal choice of protocol, and whether it actually pays off compared to local native execution, are

complex, computation-dependent questions [VSBW13], and we leave to future work the question of whether

zk-SNARKs are useful for the goal of outsourcing computations.

1.3 Limitations of prior work on zk-SNARKs

Recent work has made tremendous progress in taking zk-SNARKs from asymptotic theory into concrete

implementations. Yet, known implementations suffer from several limitations.

Per-program key generation. As in any non-interactive zero-knowledge proof, a zk-SNARK requires

a one-time trusted setup of public parameters: a key generator samples a proving key (used to generate

proofs) and a verification key (used to check proofs). However, current zk-SNARK implementations

[PGHR13, BCGTV13a] require the setup phase to depend on the program F , which is hard-coded in the

keys. Key generation is costly (quasilinear in F ’s runtime) and is thus difficult to amortize if conducted anew

for each program. More importantly, per-program key generation requires, for each new choice of program, a

trusted party’s help.

Limited support for high-level languages. Known circuit generators have limited functionality or effi-

ciency: (i) [PGHR13]’s circuit generator only supports programs without data dependencies, since memory

accesses and loop iteration bounds cannot depend on a program’s input; (ii) [BFRS+13]’s circuit generator

allows data-dependent memory accesses, but each such access requires expensive hashing to verify Merkle-

tree authentication paths; (iii) [BCGTV13a]’s circuit generator supports arbitrary programs but its circuit

size scales inefficiently with program size (namely, it has size Ω(ℓT ) for ℓ-instruction T -step TinyRAM

programs). Moreover, while there are techniques that mitigate some of the above limitations [ZE13], these

only apply in special cases, and not do address general data dependencies, a common occurrence in many

programs.

Ultimately, large general programs rely on external libraries (providing, e.g., mathematical subroutines

or data structures), which contribute to program size. Thus, it is crucial to seek circuits that simultaneously
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support arbitrary programs and that efficiently scale with program size.

Generic sub-algorithms. The aforementioned zk-SNARKs use several sub-algorithms, and in particular

elliptic curves and pairings. Protocol-specific optimizations are a key ingredient in fast implementations of

pairing-based protocols [Sco05], yet prior implementations only utilize off-the-shelf cryptographic libraries,

and miss key optimization opportunities.

1.4 Results

We present two main contributions: a new circuit generator and a new zk-SNARK for circuits. These can be

used independently, or combined to obtain an overall system.

1.4.1 A new circuit generator

We design and build a new circuit generator that incorporates the following two main improvements.

(1) Our circuit generator is universal: when given input bounds ℓ, n, T , it produces a circuit that can verify

the execution of any program with ≤ ℓ instructions, on any input of size ≤ n, for ≤ T steps. Instead, all

prior circuit generators [SVPB+12, SBVB+13, PGHR13, BCGTV13a, BFRS+13] hardcoded the program

in the circuit. Combined with a zk-SNARK for circuits (or any NP proof system for circuits), we achieve a

notable conceptual advance: once-and-for-all key generation that allows verifying all programs up to a given

size. This removes major issues in all prior systems: expensive per-program key generation, and the thorny

issue of conducting it anew in a trusted way for every program.

Our circuit generator supports a universal machine that, like modern computers, follows the von Neumann

paradigm (program and data lie in the same read/write address space). Concretely, it supports a von Neumann

RISC architecture called vnTinyRAM, a modification of TinyRAM [BCGTV13b]. Thus, we also support

programs leveraging techniques such as just-in-time compilation or self-modifying code [GESA+09, RP06].

To compile C programs to the vnTinyRAM machine language, we ported the GCC compiler to this

architecture, building on the work of [BCGTV13a].

See Figure 1 for a functionality comparison with prior circuit generators (for details, see [BFRS+13, §2]).

Supported functionality [SVPB+12, SBVB+13, PGHR13] [BCGTV13a] [BFRS+13] this work

side-effect free computations X X X X

data-dependent memory accesses × X X X

data-dependent control flow × X × X

self-modifying code × × × X

universality × × × X

Figure 1: Comparison of the functionality supported by our and previous circuit generators.

(2) Our circuit generator efficiently handles larger arbitrary programs: the size of the generated circuit Cℓ,n,T

in terms of the bounds ℓ, n, T , is

O
(

(ℓ+ n+ T ) · log(ℓ+ n+ T )
)

gates.

Thus, the dependence on program size is additive, instead of multiplicative as in [BCGTV13a], where

the generated (non-universal) circuit has size Θ
(

(n + T ) · (log(n + T ) + ℓ)
)

. As Figure 2 shows, our

efficiency improvement compared to [BCGTV13a] is not merely asymptotic but yields sizable concrete

savings: as program size ℓ increases, our amortized per-cycle gate count is essentially unchanged, while that

of [BCGTV13a] grows without bound, becoming orders of magnitudes more expensive.

An efficiency comparison with other non-universal circuit generators [SVPB+12, SBVB+13, PGHR13,

BFRS+13] is not well-defined. First, they support more restricted classes of programs, so a programmer must

“write around” the limited functionality. Second, their efficiency is not easily specified, since the output circuit

is ad hoc for the given program, and the only way to know its size is to actually run the circuit generator. We
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n = 102 |Cℓ,n,T |/T
improvement

T = 220 [BCGTV13a] this work

ℓ = 103 1,872 1,368 1.4×
ℓ = 104 10,872 1,371 7.9×
ℓ = 105 100,872 1,400 72.1×
ℓ = 106 1,000,872 1,694 590.8×

Figure 2: Per-cycle gate count improvements over [BCGTV13a].

expect, and find, that such circuit generators perform better than ours for programs that are already “close to

a circuit”, and worse for programs rich in data-dependent memory accesses and control flow.

1.4.2 A new zk-SNARK for circuits

Our third contribution is a high-performance implementation of a zk-SNARK for arithmetic circuits.

(3) We improve upon and implement the protocol of Parno et al. [PGHR13]. Unlike previous zk-SNARK

implementations [PGHR13, BCGTV13a, BFRS+13], we do not use off-the-shelf cryptographic libraries.

Rather, we create a tailored implementation of the requisite components: the underlying finite-field arithmetic,

elliptic-curve group arithmetic, pairing-based checks, and so on.

To facilitate comparison with prior work, we instantiate our techniques for two specific algebraic setups:

we provide an instantiation based on Edwards curves [Edw07] at 80 bits of security (as in [BCGTV13a]), and

an instantiation based on Barreto–Naehrig curves [BN06] at 128 bits of security (as in [PGHR13, BFRS+13]).

On our reference platform (a typical desktop), proof verification is fast: at 80-bit security, for an n-byte

input to the circuit, verification takes 4.7 + 0.0004 · n milliseconds, regardless of circuit size; at 128-bit

security, it takes 4.8 + 0.0005 · n. The constant term dominates for small inputs, and corresponds to the

verifier’s pairing-based checks; in both cases, it is less than half the time for separately evaluating the 12
requisite pairings of the checks. We achieve this saving by merging parts of the pairings’ computation in a

protocol-dependent way — another reason for a custom implementation of the underlying math.

Key generation and proof generation entail a per-gate cost. For example, for a circuit with 16 million

gates: at 80 bits of security, key generation takes 81µs per gate and proving takes 109µs per gate; at 128 bits

of security, these per-gate costs mildly increase to 100µs and 144µs.

As in previous zk-SNARK implementations, proofs have constant size (independent of the circuit or

input size); for us, they are 230 bytes at 80 bits of security, and 288 bytes at 128 bits of security.

Compared to previous implementations of zk-SNARKs for circuits [PGHR13, BCGTV13a, BFRS+13],

our implementation improves both proving and verification times, e.g., see Figure 3.

80 bits of security 128 bits of security

[BCGTV13a] this work improvement [PGHR13] this work improvement

Key generator 306 s 97 s 3.2× 123 s 117 s 1.1×
Prover 351 s 115 s 3.1× 784 s 147 s 5.3×
Verifier 66.1ms 4.9ms 13.5× 9.2ms 5.1ms 1.8×
Proof size 322B 230B 1.4× 288B 288B (same)

Figure 3: Comparison with prior zk-SNARKs for a 1-million-gate arithmetic circuit and a 1000-bit input, running on our bench-

marking machine, using software provided by the respective authors. Since [BFRS+13] is a re-implementation of [PGHR13], we

only include the latter’s performance. (N = 5 and std < 2%)

1.4.3 The two new components: independent or combined

Our new circuit generator and our new zk-SNARK for circuits can be used independently. For instance,

the circuit generator can (up to interface matching) replace the circuit generators in [SVPB+12, SBVB+13,
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PGHR13, BCGTV13a, BFRS+13], thus granting these systems universality: once-and-for-all key generation.

Similarly, our zk-SNARK for circuits can replace the underlying zk-SNARKs in [PGHR13, BCGTV13a,

BFRS+13], or be used directly in applications where a suitable circuit is already specified.

Combining these two components, we obtain a full system: a zk-SNARK for proving/verifying correctness

of vnTinyRAM computations; see Figure 4 and Figure 5 for diagrams of this system. We evaluated this

overall system for programs with up to 10,000 instructions, running for up to 32,000 steps. Verification

time is, again, only few milliseconds, independent of the running time of the vnTinyRAM program, even

when program size and input size are kilobytes. Proofs, as mentioned, have a small constant size. Key

generation and proof generation entail a per-cycle cost, with a dependence on program size that “tapers off”

as computation length increases. For instance, at 128-bit security and vnTinyRAM with a word size of 32
bits, key generation takes 210ms per cycle and proving takes 100ms per cycle, for 8K-instruction programs.

circuit 

generator 

zk-SNARK 

key generator 

proving key 

verification key 

program size bound 

time bound 

input size bound 
universal 

circuit 

OFFLINE PHASE (ONCE) 

Key Generator 

Figure 4: Offline phase (once). The key generator outputs a proving key and verification key, for proving and verifying correctness

of any program execution meeting the given bounds.

witness 

map 

zk-SNARK 

prover 

zk-SNARK 

verifier 

proving key program input 

proof auxiliary 

input 
(nondeterminism) 

accept/ 

reject 

verif. key 

circuit 

assignment 

ONLINE PHASE (ANY NUMBER OF TIMES) 

Prover Verifier 

program input 

Figure 5: Online phase (any number of times). The prover sends a short and easy-to-verify proof to a verifier. This can be repeated

any number of times, each time for a different program and input.

JIT case study: efficient memcpy. Besides evaluating individual components, we give an example demon-

strating the rich functionality supported by the integrated system. We wrote a vnTinyRAM implementation

of memcpy that leverages just-in-time compilation (in particular, dynamic loop unrolling) to require fewer

cycles. While ours is a simple case study, just-in-time compilation is a widely-used powerful technique with

many applications, e.g., increasing the performance of interpreted programming languages such as JavaScript

in web browsers [GESA+09] or Python [RP06]. As the efficiency of zk-SNARK implementations improves,

more and more of these applications will become feasible.

1.5 Roadmap

In Section 2 we provide preliminaries. In Section 3 we describe our circuit generator. In Section 4 we

describe our zk-SNARK for circuits. In Section 5 we evaluate our circuit generator and zk-SNARK, as well

as the system resulting by combining the two. In Section 6 we conclude the paper.

2 Preliminaries

2.1 Notation

We denote by F a finite field and Fn is the field of size n; when n is prime, we identify elements of Fn with

integers modulo n. Field elements are denoted with Greek letters (e.g. α, β, γ). We denote by F[z] the ring

of univariate polynomials over F, and by F
≤d[z] the subring of polynomials of degree ≤ d. Vectors are

denoted by arrow-equipped letters (such as ~a); their entries carry an index but not the arrow (e.g., a1 or a2).

Concatenation of vectors (and scalars) is denoted by the operator ◦.
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2.2 Arithmetic circuits

The circuits that we consider are not boolean but arithmetic. Given a finite field F, an F-arithmetic circuit

takes inputs that are elements in F, and its gates output elements in F. The circuits we consider only have

bilinear gates.1 Arithmetic circuit satisfiability is analogous to the boolean case:

Definition 2.1. Let n, h, l respectively denote the input, witness, and output size. The circuit satisfaction

problem of a circuit C : Fn × F
h → F

l with bilinear gates is defined by the relation RC = {(~x,~a) ∈
F
n × F

h : C(~x,~a) = 0l};2 and its language is LC = {~x ∈ F
n : ∃~a ∈ F

h, C(~x,~a) = 0l}.

Our circuit generator reduces the correctness of program executions to arithmetic circuit satisfiability (see

Section 3), and our zk-SNARK implementation produces/verifies proofs for this language (see Section 4).

All the arithmetic circuits we consider are over prime fields Fp. In this case, when passing boolean

strings as inputs to arithmetic circuits, we pack the string’s bits into as few field elements as possible: given

s ∈ {0,1}m, we use [[s]]mp to denote the vector ~x ∈ F
|m|p
p , where |m|p := ⌈m/⌊log p⌋⌉, such that the binary

representation of xi ∈ Fp is the i-th block of ⌈log p⌉ bits in s (padded with 0’s if needed). We extend the

notation [[s]]mp to binary strings s ∈ {0,1}n with n < m bits via padding: [[s]]mp := [[s0m−n]]mp .

2.3 Quadratic arithmetic programs

Our zk-SNARK leverages quadratic arithmetic programs (QAPs), introduced by Gennaro et al. [GGPR13].

Definition 2.2. A quadratic arithmetic program of size m and degree d over F is a tuple ( ~A, ~B, ~C,Z),
where ~A, ~B, ~C are three vectors, each of m+ 1 polynomials in F

≤d−1[z], and Z ∈ F[z] has degree exactly d.

Like a circuit, a QAP induces a satisfaction problem:

Definition 2.3. The satisfaction problem of a size-m QAP ( ~A, ~B, ~C,Z) is the relationR( ~A, ~B, ~C,Z) of pairs

(~x,~s) such that (i) ~x ∈ F
n, ~s ∈ F

m, and n ≤ m; (ii) xi = si for i ∈ [n] (i.e., ~s extends ~x); and (iii) the

polynomial Z(z) divides the following one:

(A0(z) +
∑m

i=1 siAi(z)) · (B0(z) +
∑m

i=1 siBi(z))− (C0(z) +
∑m

i=1 siCi(z)) .

We denote by L( ~A, ~B, ~C,Z) the language ofR( ~A, ~B, ~C,Z).

Gennaro et al. [GGPR13] showed that circuit satisfiability can be efficiently reduced to QAP satisfiability

(which can then be proved and verified using zk-SNARKs):

Lemma 2.4. There exist two polynomial-time algorithms QAPinst,QAPwit that work as follows. For any

circuit C : Fn × F
h → F

l with a wires and b gates, ( ~A, ~B, ~C,Z) := QAPinst(C) is a QAP of size m and

degree d over F that satisfies the following three properties.

• EFFICIENCY. It holds that m = a and d = n+ b+ l + 1.

• COMPLETENESS. For any (~x,~a) ∈ RC , it holds that (~x,~s) ∈ R( ~A, ~B, ~C,Z), where ~s := QAPwit(C, ~x,~a).

• PROOF OF KNOWLEDGE. For any (~x,~s) ∈ R( ~A, ~B, ~C,Z), it holds that (~x,~a) ∈ RC , where ~a is a prefix of ~s.

• NON-DEGENERACY. The polynomials A0, . . . , An are linearly independent. Moreover, the intersection of

the span of A0, . . . , An and the span of An+1, . . . , Am is trivial (only contains the zero polynomial).

1A gate with inputs x1, . . . , xm ∈ F is bilinear if the output is 〈~a, (1, x1, . . . , xm)〉 · 〈~b, (1, x1, . . . , xm)〉 for some ~a,~b ∈ F
m+1.

In particular, these include addition, multiplication, and constant gates.
2We identify a circuit (which is a directed acyclic graph with labeled vertices) with the function it computes.
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Proof sketch. The third condition in Definition 2.3 implies that 〈1 ◦ ~s, ~A(ω)〉 · 〈1 ◦ ~s, ~B(ω)〉 = 〈1 ◦ ~s, ~C(ω)〉
for all roots ω of Z. In other words, membership in R( ~A, ~B, ~C,Z) is characterized by degZ = d rank-1

quadratic constraints in the variable ~s, and we can choose these constraints by choosing coefficients for the

polynomials ~A, ~B, ~C. We use b+ l constraints to encode the satisfiability of the arithmetic circuit C: one

constraint per gate (enforcing its correct evaluation) and one constraint per circuit output (enforcing it to

be zero). We then use an additional 1 + n constraints to meet the non-degeneracy condition: 1 · 0 = 0 and

si · 0 = 0 for i = 1, . . . , n.3

Remark 2.5. The authors thank Ariel Gabizon [Gab19] and Bryan Parno for identifying a problem in an

earlier version of Lemma 2.4. Previously, the lemma’s “non-degeneracy” condition merely required that

A0, . . . , An be non-zero and distinct, which did not suffice for the security of the protocol in Appendix B.

The current non-degeneracy condition yields a QAP degree of d = n+ b+ l + 1 rather than d = b+ l + 1.

The degree increase is negligible for all applications reported in this paper and [BCGG+14, BCTV14,

CTV15, BCGTV15] because n ≪ b (typically, n/b < 10−4), leaving performance results unaffected. A

similar negligible increase holds for any circuit in which the number of inputs n is small compared to the

number of gates b, as is the case, e.g., for many circuits that verify cryptographic computations.

2.4 Pairings

The zk-SNARK constructions that we consider are based on cryptographic pairings, which we now introduce.

Let G1 and G2 be two cyclic groups of order r. We denote elements of G1,G2 via calligraphic letters

such as P,Q. We write G1 and G2 in additive notation. Let P1 be a generator of G1, i.e., G1 = {αP1}α∈Fr

(α is also viewed as an integer, hence αP1 is well-defined); let P2 be a generator for G2. A pairing is an

efficient map e : G1×G2 → GT , where GT is also a cyclic group of order r (which we write in multiplicative

notation), satisfying the following properties: (i) bilinearity: for every nonzero elements α, β ∈ Fr, it holds

that e(αP1, βP2) = e(P1,P2)αβ; (ii) non-degeneracy: e(P1,P2) is not the identity in GT .

For high-level discussions of zk-SNARK constructions, the choice of instantiation of G1,G2,GT , as

well as the choice of pairing e, does not matter. However, later, when discussing optimizations in our

implementation (see Section 4), these choices matter a great deal.

2.5 zk-SNARKs for arithmetic circuits

A (preprocessing) zk-SNARK for F-arithmetic circuit satisfiability (see, e.g., [BCIOP13]) is a triple of

polynomial-time algorithms (G,P, V ), called key generator, prover, and verifier. The key generator G,

given a security parameter λ and an F-arithmetic circuit C : Fn × F
h → F

l, samples a proving key pk and a

verification key vk; these are the proof system’s public parameters, which need to be generated only once per

circuit. After that, anyone can use pk to generate non-interactive proofs for the language LC , and anyone

can use the vk to check these proofs. Namely, given pk and any (~x,~a) ∈ RC , the honest prover P (pk, ~x,~a)
produces a proof π attesting that ~x ∈ LC ; the verifier V (vk, ~x, π) checks that π is a valid proof for ~x ∈ LC .

A proof π is both a proof of knowledge, and a (statistical) zero-knowledge proof. The succinctness property

requires that π has length Oλ(1) and V runs in time Oλ(|~x|), where Oλ hides a (fixed) polynomial in λ.

Constructions. Several zk-SNARK constructions are known [Gro10a, Lip12, GGPR13, BCIOP13, PGHR13,

BCGTV13a, Lip13]. The most efficient ones are based on quadratic span programs (QSPs) [GGPR13, Lip13]

or quadratic arithmetic programs (QAPs) [GGPR13, BCIOP13, PGHR13, BCGTV13a]. We focused on QAP-

based constructions, because QAPs allow for tighter reductions from arithmetic circuits (see Lemma 2.4).

Concretely, we build on the QAP-based zk-SNARK protocol of Parno et al. [PGHR13] (see Section 4).

3A more precise analysis shows that one only needs to add 1 + n− r constraints, where r is the rank of the (b+ l)× (1 + n)
sub-matrix of the (b+ l)× a matrix in which the i-th row equals the “left coefficients” of the i-th rank-1 constraint.
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Remark 2.6 (full succinctness). The key generator G takes C as input, and so its complexity is linear in

|C|. One could require G to not take C as input, and have its output keys work for all (polynomial-size)

circuits C; then, G’s running time would be independent of C. A zk-SNARK satisfying this stronger

property is fully succinct. Theoretical constructions of such zk-SNARKs are known, based on various

cryptographic assumptions [Mic00, Val08, BCCT13]. Despite achieving essentially-optimal asymptotics

[BFLS91, BGHSV05, BCGT13b, BCGT13a, BCCT13] no implementations of them have been reported

to date.4

2.6 A von Neumann RISC architecture

Ben-Sasson et al. [BCGTV13a] introduced TinyRAM, a Harvard RISC architecture with word-addressable

memory. We modify TinyRAM to obtain vnTinyRAM, which differs from it in two main ways. First,

vnTinyRAM follows the von Neumann paradigm, whereby program and data are stored in the same read-

write address space; programs may use runtime code generation. Second, vnTinyRAM has byte-addressable

memory, along with instructions to load/store bytes or words.5

Besides the above main differences, vnTinyRAM is very similar to TinyRAM. Namely, it is parametrized

by the word size, denoted W , and the number of registers, denoted K. The CPU state of the machine consists

of (i) a W -bit program counter; (ii) K general-purpose W -bit registers; (iii) a 1-bit condition flag. The full

state of the machine also includes memory, which is a linear array of 2W bytes, and two tapes, each with a

string of W -bit words, and read-only in one direction. One tape is for a primary input ① and the other for an

auxiliary input ✇ (treated as nondeterministic, untrusted advice).

In memory, an instruction is represented as a double word (one word for an immediate, and another for

opcode, etc.). Thus, a program P is a list of address/double-word pairs specifying the initial contents of

memory; all other memory locations assume the initial value of 0.

At every time step, the machine executes the instruction encoded by pc-th double word in memory, where

pc is program counter pc (with its lowest 2W/8 set to 0); every instruction increments pc by 2W/8 (which is

number of bytes in a double word), unless it explicitly modifies pc. The machine’s only input is via the input

tapes and initial memory, and only output is via an answer instruction (which halts execution) having a

single argument A, representing the return value, where A = 0 means “accept”.

Language of accepting computations. Formally, when saying “prover/verify correct execution” we mean

“membership in the language of accepting computations”. This language is defined as follows.

Definition 2.7. Fix bounds ℓ, n, T . The language Lℓ,n,T consists of pairs (P, ①) such that: (i) P is a program

with ≤ ℓ instructions, (ii) ① is a primary input with ≤ n words, (iii) there exists an auxiliary input ✇ s.t.

P(①,✇) accepts in ≤ T steps. We denote byRℓ,n,T the relation corresponding to Lℓ,n,T .

For more details about vnTinyRAM, see [BCGTV13b].

3 Our circuit generator

A circuit generator translates the correctness of suitably-bounded program executions into circuit satisfiability:

given input bounds ℓ, n, T , it produces a circuit that can verify the execution of any program with ≤ ℓ
instructions, on any input of size ≤ n, for ≤ T steps. More precisely, using the notations [[s]]p (for packing

the binary string s into field elements) and |s|p (for computing the number of field elements required to pack

s) introduced in Section 2.2, we define a (universal) circuit generator for vnTinyRAM as follows.

4In concurrent work, Ben-Sasson et al. [BCTV14] build a fully-succinct zk-SNARK, by following the approach of [BCCT13].

See [BCTV14] for a discussion about the tradeoffs between our construction and theirs.
5Byte-addressing is common in programs performing array or string operations (and is a deeply-ingrained assumption in the GCC

and LLVM compilers), while word-addressing in programs performing arithmetic. Simultaneous support for both greatly simplifies

compiling higher-level languages to vnTinyRAM.
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Definition 3.1. A (universal) circuit generator of efficiency f(·) over a prime field Fp is a polynomial-

time algorithm circ, together with an efficient witness map wit, working as follows. For any program size

bound ℓ, time bound T , and primary-input size bound n, C := circ(ℓ, n, T ) is an Fp-arithmetic circuit

C : Fm
p × F

h
p → F

l
p, for m := |ℓ2W |p + |nW |p and some h, l, where W is the word size (cf. Section 2.6).

• EFFICIENCY. The circuit C has f(ℓ, n, T ) gates.

• COMPLETENESS. Given any program P, primary input ①, and witness ✇ such that
(

(P, ①),✇
)

∈ Rℓ,n,T ,

it holds that (~x,~a) ∈ RC , where ~x := [[P]]ℓ2Wp ◦ [[①]]nWp and ~a := wit(ℓ, n, T,P, ①,✇).
• PROOF OF KNOWLEDGE. There is a polynomial-time algorithm such that, given any (~x,~a) ∈ RC , outputs

a witness ✇ for (P, ①) ∈ Lℓ,n,T .

The circuit C output by circ is universal because it does not depend on the program P or primary input

①, but only on their respective size bounds ℓ and n (as well as the time bound T ). When combined with

any proof system for circuit satisfiability (e.g., our zk-SNARK), this fact enables the generation of the proof

systems’ parameters to be universal as well. Namely, it is possible to generate keys for all bound choices (e.g.,

in powers of 2) up to some constant, once and for all; afterwards, one can pick the keys corresponding to

bounds fitting a given computation. This avoids expensive per-program key generation and, more importantly,

the need for a trusted party to conduct key generation anew for every program.

We construct a universal circuit generator with the following efficiency:

Theorem 3.2. There is a circuit generator of efficiency f(ℓ, n, T ) = O
(

(ℓ+ n+ T ) · log(ℓ+ n+ T )
)

over

any prime field Fp of size p > 22W , where W is the word size (cf. Section 2.6).

Remark 3.3. The prime p is determined by the zk-SNARK construction with which the circuit generator is

combined, and in our case is at least 160 bits (so that inverting discrete logarithms in related groups is hard).

Thus, the condition p > 22W is not really a restriction, even for large word sizes (e.g., W = 64). Regardless,

Theorem 3.2 in fact holds for any field F, but the construction, when char(F) ≤ 22W , is more complex, and

our code does not currently support it.

3.1 Past techniques

Most of the difficulties that arise when designing a circuit generator have to do with data dependencies. A

circuit’s topology does not depend on its inputs but, in contrast, program flow and memory accesses depend

on the choice of program and the program’s inputs. Thus, a circuit tasked with verifying program executions

must be “ready” to support a multitude of program flows and memory accesses, despite the fact that its

topology has already been fixed. Various techniques have been applied to the design of circuit generators.

Program analysis. In the extreme, if both the program P and its inputs (①,✇) are known in advance,

designing a circuit generator is simple: construct a circuit that evaluates P on (①,✇) by preparing the circuit’s

topology to match the pre-determined program flow and memory accesses. But now suppose that only P

is known in advance, but not its inputs (①,✇). In this case, by analyzing P piece by piece (e.g., separately

examine the various loops, branches, and so on), one could try to design a circuit CP that can handle different

choices of inputs. Most prior circuit generators [SVPB+12, SBVB+13, PGHR13, BFRS+13] take this

approach.

However, this approach suffers from several limitations. First, the class of supported programs P is not

rich, because support for data dependencies is limited. E.g., [PGHR13] requires array accesses and loop

iteration bounds to be compile-time constants; also, while [BFRS+13] supports data-dependent memory

accesses, most program flow is also restricted to be known (or bounded) at compile-time; mitigations are

possible, but only in special cases [ZE13]. Second, and more importantly, this approach does not seem to

allow for designing universal circuit generators, because the program P is not known in advance and thus

there is no program to analyze.
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Multiplex every access. Computers are universal random-access machines (RAMs), so one approach of

designing a universal circuit is to mimic a computer’s execution, building a layered circuit as follows. The

i-th layer contains the entire state of the machine (CPU state and random-access memory) at time step i, and

layer i+ 1 is computed from it by evaluating the transition function of the machine, handling any accesses

to memory via multiplexing. While this approach supports arbitrary program flow, memory accesses are

inefficiently supported; indeed, if memory has S addresses, the resulting circuit is huge: it has size Ω(TS).

Nondeterministic routing. Ben-Sasson et al. [BCGT13a] suggested using nondeterministic routing on a

Beneš network to support memory accesses efficiently; indeed, sorting and routing are ubiquitous techniques

in fast simulation results between nondeterministic models of computation [Ofm65, Sch78, GS89, Rob91].

Our circuit generator builds on the techniques of [BCGT13a, BCGTV13a], so we briefly review the main

idea behind nondeterministic routing.

Following [BCGT13a], Ben-Sasson et al. [BCGTV13a] introduced a simple computer architecture, called

TinyRAM, and constructed a routing-based circuit generator for TinyRAM. They define the following notions.

A CPU state, denoted S, is the CPU’s contents (e.g., program counter, registers, flags) at a given time step.

An execution trace for a program P, time bound T , and primary input ① is a sequence tr = (S1, . . . , ST )
of CPU states. An execution trace tr is valid if there is an auxiliary input ✇ such that the execution trace

induced by P running on inputs (①,✇) is tr.

We seek an arithmetic circuit C for verifying that tr is valid. We break this down by splitting validity into

three sub-properties: (i) validity of instruction fetch (for each time step, the correct instruction is fetched);

(ii) validity of instruction execution (for each time step, the fetched instruction is correctly executed); and

(iii) validity of memory accesses (each load from an address retrieves the value of the last store to that

address).

The first two properties are verified as follows. Construct a circuit CP so that, for any two CPU states S
and S′, CP(S, S

′, g) is satisfied for some “guess” g if and only if S′ can be reached from S (by fetching from

P the instruction indicated by the program counter in S and then executing it), for some state of memory.

Then, properties (i) and (ii) hold if CP(Si, Si+1, ·) is satisfiable for i = 1, . . . , T − 1. Thus, C contains T − 1
copies of CP, each wired to a pair of adjacent states in tr.

The third property is verified via nondeterministic routing. Assume that C also gets as input MemSort(tr),
which equals to the sorting of tr by accessed memory addresses (breaking ties via timestamps), and write a

circuit Cmem so that validity of memory accesses holds if Cmem is satisfied by each pair of adjacent states

in MemSort(tr). (Roughly, Cmem checks consistency of “load-after-load”, “load-after-store”, and so on.)

However, C merely gets some auxiliary input tr∗, which purports to be MemSort(tr). So C works as follows:

(a) C has T − 1 copies of Cmem, each wired to a pair of adjacent states in tr∗; (b) C separately verifies that

tr∗ = MemSort(tr) by routing on a O(T log T )-node Beneš network. The switches of the routing network

are set according to non-deterministic guesses (i.e., additional values in the auxiliary input), and the routing

network merely verifies that the switch settings induce a permutation; this allows for a very tight reduction.

(Known constructions that compute the correct permutation hide large constants in big-oh notation [AKS83].)

Past inefficiencies. After filling in additional details, the construction of [BCGTV13a] reviewed above

gives a circuit of size Θ
(

(n+ T ) · (log(n+ T ) + ℓ)
)

= Ω(ℓ · T ). The Ω(ℓ · T ) arises from the fact that all of

the ℓ instructions in P are hardcoded into each of the T − 1 copies of CP. Thus, besides being non-universal,

the circuit scales inefficiently as ℓ grows (e.g., for ℓ = 104, CP’s size is already dominated by P’s size).

3.2 Our construction

In comparison to [BCGTV13a], our circuit generator is universal and, moreover, its size only grows with

ℓ + T (additive dependence on program size) instead of with ℓ · T (multiplicative dependence). As our

evaluation demonstrates (see Section 5.1), the size improvement actually translates into significant savings in

practice.
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Instead of hardcoding the program P into each copy of the circuit CP, we follow the von Neumann

paradigm, where the program P lies in the same read/write memory space as data. We ensure that P is loaded

into the initial state of memory, using a dedicated circuit; we then verify instruction fetch via the same routing

network that is used for checking data loads/stores. While the idea is intuitive, realizing it involves numerous

technical difficulties, some of which are described below.

Routing instructions and data. We extend an execution trace to not only include CPU states but also

instructions: tr = (S1, I1, . . . , ST , IT ) where Si is the i-th CPU state, and Ii is the i-th executed instruction.

We seek an arithmetic circuit C that checks tr, in this “extended” format, for the same three properties as

above: (i) validity of instruction fetch; (ii) validity of instruction execution; (iii) validity of memory accesses.

As in [BCGTV13a], checking that tr satisfies property (ii) is quite straightforward. Construct a circuit

Cexe so that, given two CPU states S, S′ and an instruction I , Cexe(S, S
′, I, g) is satisfied, for some guess g,

if and only if S′ can be reached from S, by executing I , for some state of memory. Then, C contains T − 1
copies of Cexe, each wired to adjacent CPU states and an instruction, i.e., the i-th copy is Cexe(Si, Si+1, Ii, gi).

Unlike [BCGTV13a], though, we verify properties (i) and (iii) jointly, via the same routing network.

The auxiliary input now contains tr∗ = (A1, . . . , A2T ), purportedly equal to the memory-sorted list of both

instructions fetches and CPU states. (Since the program P lies in the same read-write memory as data, an

instruction fetch from P is merely a special type of memory load.) Thus, to check that tr satisfies properties

(i) and (iii), we design C to (a) verify that tr∗ = MemSort(tr) via nondeterministic routing, and (b) verify

validity of all (i.e., instruction and data) memory accesses, via a new circuit C ′
mem applied to each pair of

adjacent items Ai, Ai+1 in tr∗. Thus, in this approach, P is never replicated T times; rather, the fetching of

its instructions is verified together with all other memory accesses, one instruction fetch at a time.

Multiple memory-access types. Each copy of C ′
mem inspects a pair of items in tr∗ and (assuming tr∗ =

MemSort(tr)) must ensure consistency of “load-after-load”, “load-after-store”, and so on. However, unlike in

[BCGTV13a], the byte-addressable memory of vnTinyRAM is accessed in different-sized blocks: instruction-

size blocks for instruction fetch; word-size blocks when loading/storing words; and byte-size blocks when

loading/storing bytes. The consistency checks in C ′
mem must handle “aliasing”, i.e., accesses to the same

point in memory via different addresses and block sizes.

We tackle this difficulty as follows. Double-word blocks are the largest blocks in which memory is

accessed (as instructions are encoded as double words; cf. Section 2.6). We thus let each item in tr∗ always

specify a double-word, even if the item’s memory access was with respect to a smaller-sized block (e.g., word

or byte). With this modification, we can let C ′
mem perform consistency checks “at the double-word level”, and

handling word/byte accesses by mapping them to double-word accesses with suitable shifting and masking.

Booting the machine. We have so far assumed that the program P, given as input to C, already appears

in memory. However, the circuit C sketched so far only verifies the validity of tr with respect to a machine

whose memory is initialized to some state, corresponding to the execution of some program. But C must

verify correct execution of, specifically, P, and so it must also verify that memory is initialized to contain P.

Since C does not explicitly maintain memory (not even the initial one) and only implicitly reasons about

memory via the routing network, it is not clear how C can perform this check.

We tackle this difficulty as follows. We further modify the the execution trace tr, by extending it with an

initial boot section, preceding the beginning of the computation, during which the input program P is stored

into memory, one instruction Pi at a time. This extends the length of both tr and tr∗ from 2T to ℓ+ 2T , for

ℓ-instruction programs, and introduces a new type of item, “boot input store”, in tr∗. Similarly, the routing

network is now responsible for routing ℓ+ 2T , rather than 2T , packets.

Further optimizations. The above construction sketch (depicted in Figure 6) is only intuitive, and does

not discuss other optimizations that ultimately yield the performance that we report in Section 5.1.

For example, while [BCGTV13a] rely on Beneš networks, we rely on arbitrary-size Waksman networks

[BD02], which only require N(logN−0.91) switches to route N packets, instead of 2⌈logN⌉(⌈logN⌉−0.5).
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Besides being closer to the information-theoretic lower bound of N(logN − 1.443), such networks eliminate

costly rounding effects in [BCGTV13a], where the size of the network is doubled if N is just above a power

of 2 (since the height of a Beneš network is 2⌈logN⌉).

As another example, we want C to not only support programs with exactly ℓ instructions but also with at

most ℓ, and similarly for the bound n on the size of primary inputs (which our discussion has so far omitted);

we work out the details for C to efficiently support such upper bounds.

Compiling to vnTinyRAM. To enable verification of higher-level programs, written in C, we ported the GCC

compiler to the vnTinyRAM architecture, by modifying the Harvard-architecture, word-addressible TinyRAM

C compiler of [BCGTV13a]. Given a C program, written in the same subset of C as in [BCGTV13a], the

compiler produces the initial memory map representing a program P. This also served to validate the

vnTinyRAM architectural choices (e.g., the move to byte-addressing significantly, and added instructions,

improved efficiency for many programs).
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Figure 6: Outline of our universal circuit construction with the extended trace tr on the left and (allegedly) its memory sort tr∗ on the

right. All inputs to the circuit, with the exception of P (and the primary input ①, not shown), are nondeterministic guesses.

4 Our zk-SNARK for circuits

We discuss our second main contribution: a high-performance implementation of a zk-SNARK for arithmetic

circuit satisfiability. Our approach is to tailor the requisite mathematical algorithms to the specific zk-SNARK

protocol at hand. While our techniques can be instantiated in many algebraic setups and security levels, we

demonstrate them in two specific settings, to facilitate comparison with prior work. Later, in Section 5.2, we

provide benchmarks for our zk-SNARK.

4.1 The PGHR protocol and the two elliptic curves

See Section 2.5 for an informal definition of a zk-SNARK for arithmetic circuit satisfiability. We improve

upon and implement the zk-SNARK of Parno et al. [PGHR13]. For completeness the “PGHR protocol” is

summarized in Figure 10, which provides pseudocode for its key generator G, prover P , and verifier V . The

construction is based on QAPs, introduced in Section 2.3.

Like most other zk-SNARKs, the PGHR protocol relies on a pairing, which is specified by a prime r ∈ N,

three cyclic groups G1,G2,GT of order r, and a bilinear map e : G1 ×G2 → GT . (See Section 2.4.)
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A pairing is typically instantiated via a pairing-friendly elliptic curve. Concretely, suppose that one uses a

curve E defined over Fq, with embedding degree k with respect to r, to instantiate the pairing. Then GT is set

to µr, the subgroup of r-th roots of unity in F
∗
qk

. The instantiation of G1 and G2 depends on the choice of e;

typically, G1 is instantiated as an order-r subgroup of E(Fq), while, for efficiency reasons [BKLS02, BLS04],

G2 as an order-r subgroup of E′(Fqk/d) where E′ is a d-th twist of E. Finally, the pairing e is typically a

two-stage function e(P,Q) := FE(ML(P,Q)), where ML : G1 × G2 → F
k
q is known as Miller loop, and

FE : Fk
q → F

k
q is known as final exponentiation and maps α to FE(α) := α(qk−1)/r.

As mentioned, we instantiate our techniques based on two different curves: an Edwards curve for the

80-bit security level (as in [BCGTV13a]) and a Barreto–Naehrig curve for the 128-bits security level (as

in [PGHR13, BFRS+13]). We selected both the Edwards curve and Barreto–Naehrig curve so that r − 1
has high 2-adic order (i.e., r − 1 is divisible by a large power of 2), because this was shown to improve the

efficiency of the key generator and the prover [BCGTV13a].

Next, we describe the optimizations that we have applied to the zk-SNARK verifier (Section 4.2), then to

the prover (Section 4.3), and, finally, to the key generator (Section 4.4).

4.2 An optimized verifier

The verifier V takes as input a verification key vk, input ~x ∈ F
n
r , and proof π, and checks if π is a valid proof

for the statement “~x ∈ LC”. The computation of V consists of two parts. First, use vkIC,0, . . . , vkIC,n ∈ G1

(part of vk) and input ~x to compute vk~x := vkIC,0 +
∑n

i=1 xivkIC,i(see Step 1 in Figure 10c). Second, use vk,

vk~x, and π, to compute 12 pairings and perform the required checks(see Step 2, Step 3, Step 4 in Figure 10c).

In other words, V performs O(n) scalar multiplications in G1, followed by O(1) pairing evaluations.

With regard to V ’s first part, variable-base multi-scalar multiplication techniques can be used to reduce

the number of G1 operations needed to compute vk~x [BCGTV13a, PGHR13]. With regard to V ’s second

part, even if the pairing evaluations take constant time (independent of the input size n), these evaluations are

very expensive and dominate for small n. Our focus here is to minimize the cost of these pairing evaluations.

When only making “black-box” use of a pairing, the verifier must evaluate 12 pairings(see Figure 10c),amounting

to 12 Miller loops plus 12 final exponentiations. The straightforward approach is to compute these using a

generic high-performance pairing library. We proceed differently: we obtain high-performance implementa-

tions of sub-components of a pairing, and then tailor their use specifically to V ’s protocol.

Namely, first, we obtain state-of-the-art implementations of a Miller loop and final exponentiation.

We utilize optimal pairings [Ver10] to minimize the number of loop iterations in each Miller loop, and,

to efficiently evaluate each Miller loop, rely on the formulas of [ALNR11] (for Edwards curves) and

[BGDMO+10] (for BN curves). As for final exponentiation, we use multiple techniques to speed it up:

[SBCDPK09, GS10, FCnKRH12, KKC13].

Next, building on the above foundation, we incorporate in V the following optimizations.

(1) Sharing Miller loops and final exponentiations. The verifier V computes two products of two

pairings(see Step 3 and Step 4 in Figure 10c).We leverage the fact that a product of pairings can be evaluated

faster than evaluating each pairing separately and then multiplying the results [Sol03, Sco05, GS06, Sco07].

Concretely, in a product of m pairings, the Miller loop iterations for evaluating each factor can be carried out

in “lock-step” so to share a single Miller accumulator variable, using one Fqk squaring per loop instead of m.

In a similar vein, one can perform a single final exponentiation on the product of the outputs of the m
Miller loops, instead of m final exponentiations and then multiplying the results. In fact, since the output of

the pairing can be inverted for free (as the element is unitary so that inverting equals conjugating [SB04]), the

idea of “sharing” final exponentiations extends to a ratio of pairing products. Thus, in the verifier we only

need to perform 5, instead of 12, final exponentiations.

Our implementation incorporates both of the above techniques. For example, at the 80-bit security level,

separately computing 12 optimal pairings costs 13.6ms, but the above techniques reduce the time to only
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8.1ms. We decrease this further as discussed next.

(2) Precomputation by processing the verification key. Of the 12 pairings the verifier needs to evaluate,

only one is such that both of its inputs come from the proof π. The other 11 pairings have one fixed input,

either a generator of G1 or G2, or coming from the verification key vk.

Whenever one of the two inputs to a pairing is fixed, precomputation techniques apply [GHS02, BLS03,

Sco07], especially in the case when the fixed input is the base point in Miller’s algorithm. In V , this holds

for 9 out of the 11 pairing evaluations. We thus split the verifier’s computation into an offline phase, which

consists of a one-time precomputation that only depends on vk, and a many-time online phase, which depends

on the precomputed values, input ~x, and proof π. More precisely, the result of the offline phase is a processed

verification key vk∗. While vk∗ is longer than vk, it allows the online phase to be faster.

E.g., at the 80-bit security level, vk∗ decreases the total cost of pairing checks from 8.1ms to 4.7ms.

4.3 An optimized prover

The prover P takes as input a proving key pk (which includes the circuit C : Fn
r × F

h
r → F

l
r), input

~x ∈ F
n
r , and witness ~a ∈ Fr. The prover P is tasked to produce a proof π, attesting that ~x ∈ LC .

The computation of P consists of two main parts. First, compute the coefficients ~h of the polynomial

H(z) := A(z)B(z)−C(z)
Z(z) (see Step 4 in Figure 10b), where A,B,C ∈ Fr[z] are derived from the QAP instance

( ~A, ~B, ~C,Z) := QAPinst(C) and QAP witness ~s := QAPwit(C, ~x,~a). Second, use the coefficients ~h, QAP

witness ~s, and public key pk to compute π(see Step 6 in Figure 10b).

With regard to the first part of P , the coefficients ~h can be efficiently computed via FFT techniques

[BCGTV13a, PGHR13]; our implementation follows [BCGTV13a], and leverages the high 2-adic order

of r − 1 for both of the elliptic curves we use.6 With regard to P ’s second part, computing π requires

solving large instances of the following problem: given elements Q1, . . . ,Qn all in G1 (or all in G2) and

scalars α1, . . . , αn ∈ Fr, compute 〈~α, ~Q〉 := α1Q1 + · · ·+ αnQn. Previous work [PGHR13, BCGTV13a]

has leveraged generic multi-scalar multiplication to compute π. We observe that these algorithms can be

tailored to the specific scalar distributions arising in P . In P , the vector ~α is one of two types: (i) ~α ∈ F
d+1
r

and represents the coefficients of the degree-d polynomial H; or (ii) ~α = (1 ◦ ~s ◦ δ1 ◦ δ2 ◦ δ3) ∈ F
4+m
r , for

random δ1, δ2, δ3 ∈ Fr.

In case i, the entries in of ~α are random-looking. We use the Bos–Coster algorithm [BC89] due to

its lesser memory requirements (as compared to, e.g., [Pip80]). We follow [BDLSY11]’s suggestions and

achieve an assembly-optimized heap to implement the Bos–Coster algorithm.

In case ii, the entries in ~s depend on the input (C, ~x,~a) to QAPwit; in turn, (C, ~x,~a) depends on our

circuit generator (Section 3). Using the above algorithm “as is” is inefficient: the algorithm works well when

all the scalars have roughly the same bit complexity, but the entries in ~c have very different bit complexity.

Indeed, ~α equals to ~s augmented with a few entries; and ~s, the QAP witness, can be thought of as the list

of wire values in C when computing on (~x,~a); the bit complexity of a wire value depends on whether it is

storing a boolean value, a word value, and so on. We observe that there are only a few “types” of values, so

that the entries of ~α can be clustered into few groups of scalars with approximately the same bit complexity;

we then apply the algorithm of [BC89] to each such group.

4.4 An optimized key generator

The key generator G takes as input a circuit C : Fn
r × F

h
r → F

l
r, and is tasked to compute a proving key pk

and a verification key vk. The computation of G consists of two main parts. First, evaluate each Ai, Bi, Ci at

6If the 2-adic order of r − 1 is i then Fr contains a primitive root of unity of order 2i. Hence, one can use the classical radix-2

multiplicative FFT [CT65] and its inverse over domains of size 2i. These algorithms only require O(n log n) field operations for

degree-n polynomials, and are particularly efficient in practice.
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a random element τ , where ( ~A, ~B, ~C,Z) := QAPinst(C) is the QAP instance. Second, use these evaluations

to compute pk and vk(see Step 3 and Step 4 in Figure 10a).

With regard to G’s first part, we follow [BCGTV13a] and again leverage the fact that Fr has a primitive

root of unity of large order. With regard to G’s second part, it is dominated by the cost of computing pk,

which requires solving large instances of the following problem: given an element P in G1 or G2 and

scalars α1, . . . , αn ∈ Fr, compute α1P, . . . , αnP . Previous work [PGHR13, BCGTV13a], used fixed-base

windowing [BGMW93] to efficiently compute such fixed-base multi-scalar multiplications.

In our implementation, we achieve additional efficiency, in space rather than in time. Specifically, we

leverage a structural property of QAPs derived from arithmetic circuits, in order to reduce the size of the

proving key pk, as we now explain. Lemma 2.4 states that an F-arithmetic circuit C : Fn × F
h → F

l, with

α wires and β gates, can be converted into a corresponding QAP of size m = α and degree d ≈ β over F.

Roughly, this is achieved in two steps. First, construct three matrices A,B,C ∈ F
(m+1)×d that encode C’s

topology: for each j ∈ [d], the j-th column of A,B respectively encodes the “left” and “right” coefficients

of the j-th bilinear gate in C, while the j-th column of C encodes the coefficients of the gate’s output.

Second, letting S ⊂ F be a set of size d, define Z(z) :=
∏

ω∈S(z−ω) and, for i ∈ {0, . . . ,m}, let Ai be the

low-degree extension of the i-th row of A; similarly define each Bi and Ci. All prior QAP-based zk-SNARK

implementations exploit the fact that columns in the matrices A,B,C are very sparse.

In contrast, we also leverage a different kind of sparsity: we observe that it is common for entire rows

of A,B,C to be all zeroes, causing the corresponding low-degree extensions to be zero polynomials.7 For

instance, our circuit generator typically outputs a circuit for which the percentage of non-zero polynomials in
~A, ~B, ~C is only about 52%, 15%, 71% respectively. The fact that many polynomials in ~A, ~B, ~C evaluate to

zero can be used towards reducing the size of pk, by switching from a dense representation to a sparse one.

In fact, we have engineered our circuit generator to reduce the number of non-zero polynomials in ~B as

much as possible, because computations associated to evaluations of ~B are conducted with respect to more

expensive G2 arithmetic, which we want to avoid as much as possible.8

5 Evaluation

We evaluated our system on a desktop computer with a 3.40 GHz Intel Core i7-4770 CPU (with Turbo Boost

disabled) and 32 GB of RAM. All experiments, except the largest listed in Figure 8 and Figure 9, used a small

fraction of the RAM. For the two largest experiments in Figure 9 we added a Crucial M4 solid state disk for

swap space. Finally, while our code supports multi-threading, we ran all of our experiments in single-thread

mode, for ease of comparison with prior work.

5.1 Performance of our circuit generator

In Section 3 we described our universal circuit generator; we now benchmark its performance.

Parameter choices. The circuit generator supports the architecture vnTinyRAM, which is parametrized by

two quantities: the word size W and the number of registers K (see Section 2.6). We report performance

for a machine with K = 16 registers, and two choices of word size: W = 16 and W = 32. Also, a circuit

generator is defined relative to a prime field Fp (see Definition 3.1) and its efficiency may in principle depend

on p; since our construction has the same number of gates for any p with p > 22W (a condition that holds for

any cryptographically-large p), in the discussion below we do not have to worry about the value of p.

7E.g., if the i-th wire never appears with a non-zero coefficient as the “left” input of a bilinear gate, then the i-th row of A is zero,

and thus Ai is the zero polynomial.
8Moreover, 15% non-zero polynomials in ~B is likely not optimal: one can verify that minimizing the number of non-zero

polynomials in ~B reduces to a minimum vertex cover problem [MR96]. It is an interesting open question whether approximation

algorithms for such a problem can be used to further improve efficiency, and go below 15%.
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Per-cycle gate count of C := circ(ℓ, n, T ) with vnTinyRAM parameters (W,K)

n = 102, K = 16

W = 16 W = 32

|C|/T
|C|/T divided among Per

cycle
|C|/T divided among

boot exec. mem. routing boot exec. mem. routing

ℓ
=

1
0
3 T = 220 1,367.4 0.04 777.0 422.2 168.1 1,992.5 0.08 1,114.0 710.4 168.1

T = 224 1,399.0 0.00 777.0 422.0 200.0 2,024.0 0.00 1,114.0 710.0 200.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0

ℓ
=

1
0
4 T = 220 1,370.3 0.41 777.0 424.0 168.8 1,997.0 0.72 1,114.0 713.4 168.8

T = 224 1,399.2 0.03 777.0 422.1 200.1 2,024.3 0.05 1,114.0 710.2 200.1
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0

ℓ
=

1
0
5 T = 220 1,399.7 4.12 777.0 442.1 176.4 2,041.5 7.19 1,114.0 743.9 176.4

T = 224 1,401.1 0.26 777.0 423.3 200.6 2,027.2 0.45 1,114.0 712.1 200.6
T = 228 1,431.1 0.02 777.0 422.1 232.0 2,056.2 0.03 1,114.0 710.1 232.0

Figure 7: Performance of our circuit generator: per-cycle gate counts in C := circ(ℓ, n, T ) for different choices of (ℓ, n, T ) and

vnTinyRAM parameters (W,K).

Methodology. Theorem 3.2 provides an asymptotic efficiency guarantee: it states that our circuit generator

has efficiency f(ℓ, n, T ) = O
(

(ℓ+n+T ) · log(ℓ+n+T )
)

. To understand concrete efficiency, we “uncover”

the constants hidden in the big-oh notation. By studying the number of gates in various subcircuits of the

generated circuit C := circ(ℓ, n, T ), we computed the following (quite tight) upper bound on C’s size:

(12 + 2W ) · ℓ+ (12 +W ) · n+ |Cexe| · T + (|Cmem|+ 4 logH − 1.82) ·H
where H := (ℓ+ n+ 2T ) is the “height” of the routing network, and

• for (W,K) = (16,16): |Cexe| = 777 and |Cmem| = 211; and

• for (W,K) = (32,16): |Cexe| = 1114 and |Cmem| = 355.

In Figure 7, we give per-cycle gate counts (i.e., |C|/|T |) for various choices of (ℓ, n, T ); we also give sub-

counts divided among program/input boot, CPU execution, memory checking, and routing. (See Figure 11 in

Appendix C for an extended table with additional data.)

Discussion. We first go through the size expression, to understand it: The first two terms, (12 + 2W ) · ℓ+
(12 +W ) · n, correspond to the pre-execution boot phase, during which an ℓ-instruction program and an

n-word primary input are loaded into the machine. The term |Cexe| · T corresponds to the T copies of Cexe

used to verify each CPU transition, given the fetched instruction and two CPU states. The term |Cmem| ·H
corresponds to the H copies of Cmem used to verify consistency on the memory-sorted trace. Finally, the

term (4 logH − 1.82) · H corresponds to the routing network for routing H packets (two gates for each

of (2 logH − 0.91) ·H binary switches). Note that H = (ℓ+ n+ 2T ) because boot needs ℓ+ n memory

stores (one for each program instruction and primary input word) and execution needs 2T memory accesses

(1 instruction fetch and 1 data store/load per execution cycle).

The gate counts in Figure 7 demonstrate the additive (instead of multiplicative) dependence on program

size of our universal circuit pays off. For example, for (W,K) = (32,16), a 100-fold increase in program

size, from ℓ = 103 to ℓ = 105, barely impacts the per-cycle gate count: for T = 220, it increases from

1,992.5 to only 2,041.5. Indeed, the cost of program size is incurred, once and for all, during the machine

boot; Figure 7 shows that the per-cycle cost of machine boot diminishes as T grows.

Second, less than half of C’s gates are dedicated to verifying accesses to random-access memory, while

the majority of gates are dedicated to verifying execution of the CPU; indeed, almost always, |Cexe|T > 1
2 |C|.

Put otherwise, C, which verifies an automaton with random-access memory (vnTinyRAM), has size that

is less than twice that for verifying an automaton with the same CPU but no random-access memory at all.

Moreover, note that the size of Cexe appears quite tight: for example, with (W,K) = (32,16), it has size

1114, not much larger than the size of the CPU state (545 bits).
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5.2 Performance of our zk-SNARK for circuit satisfiability

In Section 4 we described our zk-SNARK implementation; we now benchmark its performance.

Methodology. We provide performance characteristics for each of the zk-SNARK algorithms, G, P and V ,

at the 80-bit and 128-bit security levels. We benchmark the system as follows.

(1) The key generator G takes as input an arithmetic circuit C : Fn
r × F

h
r → F

l
r. Its efficiency mostly depends

on the number of gates and wires in C, because these affect the size and degree of the corresponding QAP

(see Lemma 2.4). Thus, we evaluate G on a circuit with 2i gates and 2i wires for i ∈ {10,12, . . . ,24} (and

fixed n = h = l = 100). In Figure 8 we report the resulting running times and key sizes, as per-gate costs.

(2) The prover P takes as input a proving key pk, input ~x ∈ F
n
r , and witness ~a ∈ F

h
r . Its efficiency mostly

depends on the number of gates and wires in C (the circuit used to generate pk); we thus evaluate P on the

proving keys output by G, for the same circuits as above. In Figure 8 we report the resulting running times,

as per-gate costs, and (constant) proof sizes.

(3) The verifier V takes as input a verification key vk, input ~x ∈ F
n
r , and proof π. Its efficiency depends only

on ~x (since the size of ~x determines that of vk). Thus, we evaluate V on a random input ~x ∈ F
n
r of 2i bytes

for i ∈ {2,4, . . . ,20}. In Figure 8 we report the resulting running times, along with corresponding key sizes.

For completeness, Figure 12 in Appendix C reports the unnormalized measurements and additional informa-

tion (e.g., times for various subcomputations).

Discussion. The data demonstrates that our zk-SNARK implementation works and scales as expected, as

long as sufficient memory is available (e.g., on a desktop computer with 32GB of DRAM: up to 16 million

gates); also, as expected, the higher security level entails higher costs. Key generation takes about 10ms per

gate of C; the size of a proving key is about 300B per gate, and the size of a verification key is about 1B per

byte of input to C. Running the prover takes 11ms to 14ms per gate. For an n-byte input, proof verification

time is c1n+ c0, where c0 is a few milliseconds and c1 is a few tenths of microseconds.

Remark 5.1. Another factor affecting the efficiency of G and P is the number of non-zero polynomials in

the QAP instance obtained from the circuit C (see Section 4.4). In Figure 8 we reported worst-case numbers

in this respect: we only used circuits whose QAP has no non-zero polynomials. In general, QAP with more

zero polynomials make the key generator and prover faster; in particular, the circuits output by our circuit

generator induce QAP instances with many zero polynomials, so that the numbers reported in Section 5.3 are

somewhat better than what one would expect by merely multiplying the per-gate costs of Figure 8 with the

number of gates in the circuit output by the circuit generator.

5.3 Performance of the combined system

As discussed, our circuit generator (Section 3) and zk-SNARK for circuits (Section 4) can be used indepen-

dently, or combined to obtain a zk-SNARK for vnTinyRAM. For completeness, in Appendix D.2 we spell

out how these two components can be combined. Here we report measured performance of this combined

system, at the 128-bit security level, and for a word size W = 32 and number of registers K = 16.

Methodology. A zk-SNARK for vnTinyRAM is a triple of algorithms (KeyGen,Prove,Verify). Given

bounds ℓ, n, T (for program size, input size, and time), the efficiency of KeyGen and Prove depends on

ℓ, n, T , while that of Verify essentially depends only on ℓ, n. Thus, we benchmark the system as follows.

We evaluate KeyGen and Prove for various choices of ℓ and T , while keeping n = 100. (Varying ℓ or

n affects efficiency in similar ways, so we fix n and vary ℓ.) Instead, since the efficiency of Verify does

not depend on T , we evaluate Verify, for various choices of ℓ and n, on random ℓ-instruction programs and

n-word inputs. In Figure 9, we report the following measurements: KeyGen’s running time, the sizes of the

keys pk and vk, Prove’s runtime, the (constant) proof size, and Verify’s running time. For quantities growing

with T , we divide by T and report the per-cycle cost.
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80 bits of security 128 bits of security

key gen. G time/|C| |pk|/|C| time/|C| |pk|/|C|

n
=

1
0
0

|C| = 210 0.21ms 248.8B 0.21ms 304.1B

|C| = 212 0.16ms 252.5B 0.17ms 309.1B

|C| = 214 0.14ms 253.4B 0.16ms 310.3B

|C| = 216 0.12ms 253.7B 0.14ms 310.6B

|C| = 218 0.11ms 253.7B 0.12ms 310.7B

|C| = 220 0.10ms 253.7B 0.12ms 310.7B

|C| = 222 0.09ms 253.7B 0.11ms 310.7B

|C| = 224 0.08ms 253.7B 0.10ms 310.7B

|vk| 2.8KB 3.6KB

prover P time/|C| |π| time/|C| |π|

n
=

1
0
0

|C| = 210 0.18ms 230B 0.21ms 288B

|C| = 212 0.16ms 230B 0.18ms 288B

|C| = 214 0.14ms 230B 0.16ms 288B

|C| = 216 0.13ms 230B 0.15ms 288B

|C| = 218 0.12ms 230B 0.15ms 288B

|C| = 220 0.12ms 230B 0.15ms 288B

|C| = 222 0.11ms 230B 0.14ms 288B

|C| = 224 0.11ms 230B 0.14ms 288B

verifier V |vk|/|~x| time/|~x| |vk|/|~x| time/|~x|

|~x| = 4B 118.7B 1.2ms 123.4B 1.2ms

|~x| = 16B 29.7B 0.3ms 30.8B 0.3ms

|~x| = 64B 8.1B 76.7µs 8.7B 81.2µs

|~x| = 256B 2.8B 19.5µs 2.9B 20.3µs

|~x| = 1.0KB 1.5B 5.4µs 1.5B 5.9µs

|~x| = 4.1KB 1.1B 1.8µs 1.1B 2.1µs

|~x| = 16.4KB 1.1B 0.8µs 1.0B 1.0µs

|~x| = 65.5KB 1.0B 0.5µs 1.0B 0.7µs

|~x| = 262.1KB 1.0B 0.4µs 1.0B 0.6µs

|~x| = 1.0MB 1.0B 0.4µs 1.0B 0.5µs

Figure 8: Performance of our zk-SNARK for arithmetic circuit satisfiability: per-gate costs of the key generator and prover for

various circuit sizes; and per-byte costs of the verifier for various input sizes. (N = 10 and std < 1%)

For completeness, Figure 13 in Appendix C reports the unnormalized measurements and additional infor-

mation, such as times for various subcomputations (e.g., subtimes for the circuit generator and zk-SNARK).

Discussion. The measurements demonstrate that, on a desktop computer, our zk-SNARK for vnTinyRAM

scales up to computations of 32,000 machine cycles, for programs with up to 10,000 instructions. Key

generation takes about 200ms per cycle; the size of a proving key is 500KB to 650KB per cycle, and the

size of a verification key is a few kilobytes in total. Running the prover takes 100ms to 200ms per cycle.

Verification times remain a few milliseconds, even for inputs and programs of several kilobytes.

Program-specific vk. The time complexity of Verify is O(ℓ+ n), so verification time grows with program

size. This is inevitable, because Verify must read a program P (of at most ℓ instructions) and input ① (of at

most n words) in order to check, via the given proof π, if (P, ①) ∈ Lℓ,n,T (cf. Definition 2.7). However, this

is inconvenient, e.g., when one has to verify many proofs relative to different inputs to the same program P.

In our zk-SNARK it is possible to amortize this cost as follows. Given vk and P, one can derive, in time

O(ℓ), a program-specific verification key vkP, which can be used to verify proofs relative to any input to P.

Subsequently, the time complexity of Verify for any input ① (to P) is only O(n), independent of ℓ. Essentially,

one can pre-compute the program-specific part of vk~x (see Step 1 in Figure 10c), so that, later, one only needs

to compute the input-dependent part of vk~x and combine it with vkP. (Conversely, it is also possible to derive

an input-specific verification key, for verifying proofs relative to the same input to different programs.)

Figure 13 in Appendix C also reports the subtime to compute vkP, which represents the time saved when
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128 bits of security

W = 32, K = 16

ℓ = 2K ℓ = 4K ℓ = 6K ℓ = 8K ℓ = 10K

K
e
y
G
e
n ti
m
e/

T

n
=

1
0
0

T = 4K 209.8ms 232.1ms 257.5ms 275.9ms 306.4ms

T = 8K 190.9ms 205.9ms 216.1ms 228.9ms 238.8ms

T = 16K 195.4ms 198.1ms 204.2ms 213.6ms 218.3ms

T = 32K 206.0ms 208.4ms 211.2ms 213.5ms 223.7ms

|p
k
|/
T

T = 4K 584.2KB 653.6KB 727.1KB 784.0KB 876.8KB

T = 8K 552.4KB 585.2KB 618.1KB 655.1KB 683.7KB

T = 16K 539.4KB 553.9KB 570.4KB 586.9KB 605.5KB

T = 32K 533.8KB 541.1KB 548.3KB 555.6KB 563.4KB
|v
k
|

T = ∗ 17.0KB 33.1KB 49.2KB 65.3KB 81.5KB

P
ro
v
e

ti
m
e/

T

n
=

1
0
0 T = 4K 75.7ms 86.7ms 103.4ms 104.8ms 133.7ms

T = 8K 69.2ms 79.7ms 97.0ms 110.4ms 113.0ms

T = 16K 89.0ms 89.1ms 98.4ms 99.6ms 103.3ms

T = 32K 98.9ms 98.6ms 102.3ms 102.1ms 114.2ms

V
e
ri
fy

ti
m
e

(i
n

d
ep

.
o

f
T

) n = 0 19.0ms 30.0ms 40.6ms 51.2ms 61.3ms

n = 10 19.1ms 30.2ms 40.7ms 51.2ms 61.4ms

n = 102 19.6ms 30.7ms 41.3ms 51.8ms 61.9ms

n = 103 23.0ms 34.1ms 44.7ms 55.2ms 65.4ms

n = 104 48.9ms 60.0ms 70.6ms 81.1ms 91.3ms

Figure 9: Performance of our zk-SNARK for vnTinyRAM: per-cycle costs of KeyGen and Prove for various choices of program

size ℓ (all with input size n = 100), and total running time of Verify for various choices of ℓ and n.

(N = 10 and std < 1.5% for all, except that std < 5% whenever T = 32K)

one first precomputes vkP ahead of time.

5.4 Comparison with prior work

5.4.1 Comparison with prior circuit generators

Universality is the main innovative feature of our circuit generator. No previous circuit generator achieves

universality. (See Figure 1 and Section 3.)

Putting universality aside and focusing on efficiency instead, a comparison with previous circuit generators

is a multi-faceted problem. On one hand, due to a shared core of techniques, a comparison with [BCGTV13a]’s

circuit generator is straightforward, and shows significant improvements in circuit size, especially as program

size grows. See Section 1.4.1 and Figure 2 (the figure’s numbers are for W,K = 16).

Instead, a comparison with other circuit generators [SVPB+12, SBVB+13, PGHR13, BFRS+13] is

complex. First, they support a smaller class of programs (see Figure 1), so a programmer must “write around”

the limited functionality, somehow. And second, their efficiency is not easily specified: due to the use of

program-analysis techniques (see Section 3.1) the output circuit is ad hoc for the given program, and the only

way to know its size is to actually run the circuit generator.

Compared to [SVPB+12, SBVB+13, PGHR13, BFRS+13], our circuit generator performs better for

programs that are rich in memory accesses and control flow, and worse for programs that are more “circuit

like”.

Comparison with [SVPB+12, SBVB+13, PGHR13]. The circuit generators in [SVPB+12, SBVB+13,

PGHR13] restrict loop iteration bounds and memory accesses to be known at compile time; if a program

does not respect these restrictions, it must be first somehow mapped to another one that does. For simplicity,

we take [PGHR13]’s circuit generator (the latest one) as representative and, to illustrate the differences

between [PGHR13]’s and our circuit generator, we consider two “extremes”.

On one extreme, we wrote a simple C program multiplying two 10× 10 matrices of 16-bit integers. The

circuit generator in [PGHR13] produces a circuit with 1100 gates9; instead, our circuit generator (when given

9The circuit produced by [PGHR13] for int values, with “--bit-width= 16”, nonetheless performs arithmetic modulo

some large prime, without reductions modulo 216.
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the corresponding vnTinyRAM assembly) produces a much larger circuit: one with ≈ 107 gates.

On the other extreme, we consider a program making many random accesses to memory: pointer-chasing.

Given a permutation π of [N ], start position i ∈ [N ], and an integer k, the program outputs πk(i), the element

obtained by starting from i and following “pointers” for k times. Since no information about π is known at

compile time, the only way of obtaining π(j), the pointer to follow, in [PGHR13] is via a linear scan. On a

simple C program that does one linear scan of π to obtain each new pointer, [PGHR13]’s circuit generator

outputs a circuit with 2Nk + 1 gates (each of the k array accesses costs 2N gates).

In vnTinyRAM, the corresponding program P consists of 9 instructions, and the input ① to it is N + 3
words. Booting vnTinyRAM with P and ① requires 9 + N + 3 “boot stores” (see Section 3.2), and takes

5 + 4k cycles to execute (independent of N ). Say that we fix k = 10; then, in our circuit generator (with

W = 32 and K = 16), each cycle costs about 2000 gates, and can perform a random access to memory.

Thus, pointer chasing in our case is cheaper than in [PGHR13] already for N > 5000, and the multiplicative

saving, which is about 20N
2000·(5+40) =

N
4500 , grows unbounded as N increases.

Comparison with [BFRS+13]. The circuit generator of [BFRS+13] is also based on program analysis, but

provides an additional feature that allows data-dependent memory accesses: a program may access memory

by guessing the value and verifying its validity via a subcircuit that checks Merkle-tree authentication

paths. In [BFRS+13], memory consists of 230 cells, and each access costs many gates: 140K for a load,

and 280K for a store. In comparison, in our circuit generator for vnTinyRAM (with word size W = 32
so that memory has 232 cells), each memory store/load costs less than 1000 gates out of about 2000 per

cycle (see Section 5.1). Besides the aforementioned feature, [BFRS+13] rely on program analysis, and

(as in [SVPB+12, SBVB+13, PGHR13]) only support bounded control flow. Thus, [BFRS+13] performs

better than our circuit generator for programs with bounded control flow and few data-dependent accesses to

memory.

It is an intriguing open question whether techniques underlying our circuit generator can be combined with

program analysis so to yield circuit generators achieving good efficiency both for restricted and rich programs,

and avoid the sharp functionality vs. efficiency tradeoffs that exist among current circuit generators.

5.4.2 Comparison with prior zk-SNARKs

Addressing the other component of our system, the zk-SNARK for circuits: Figure 3 compares our imple-

mentation with prior ones, on a 1-million-gate circuit with a 1000-byte input. As shown, we mildly improve

the key generation time and, more importantly, significantly improve the “online” costs of proving and

verification.

6 Conclusion

We have presented two main contributions: (i) a circuit generator for a von Neumann RISC architecture that

is universal and scales additively with program size; and (ii) a high-performance zk-SNARK for arithmetic

circuit satisfiability. These two components can be used independently to the benefit of other systems, or

combined into a zk-SNARK that can prove/verify correctness of computations on this architecture.

The benefits of universality. Universality attains the conceptual advance of once-and-for-all key generation,

allowing verifying all programs up to a given size. This removes major issues in prior systems: expensive

per-program key generation and the thorny issue of conducting it anew in a trusted way for every program.

The price of universality. We have demonstrated that our zk-SNARK scales, on a desktop computer, up to

computations of 32,000 cycles, for programs with up to 10,000 instructions, relative to a simple universal

computer (vnTinyRAM). Yet, the price of universality is still very high. Going forward, and aiming for

widespread use in security applications, more work is required to slash costs of key generation and proving so

to scale up to larger computations: e.g., billion-gate circuits, or millions of vnTinyRAM cycles, and beyond.
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An interesting open problem is whether the “program analysis” techniques underlying most prior circuit

generators [SVPB+12, SBVB+13, PGHR13, BFRS+13], typically more efficient for restricted classes of

programs, can be used to construct universal circuits (for those same classes of programs).

Beyond vnTinyRAM. Finally, going beyond the foundation of a von Neumann RISC architecture, more work

lies ahead towards a richer architecture (e.g., efficient support for floating-point arithmetic and cryptographic

acceleration), code libraries, and tighter compilers.
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A Other prior work

Prior work most relevant to us is about zk-SNARKs, and is discussed in Section 1.2. There are also numerous

works studying variations or relaxations of the goal we consider; here, we summarize some of them.

Interactive proofs for low-depth circuits. Goldwasser et al. [GKR08] obtained an interactive proof for

outsourcing computations of low-depth circuits. A set of works [CMT12, TRMP12, Tha13] has optimized

and implemented the protocol of [GKR08]. The protocol of [GKR08] can also be reduced to a two-message

argument system [KR09, KRR13]. Canetti et al. [CRR12] showed how to extend the techniques in [GKR08]

to also handle non-uniform circuits.

Batching arguments. Ishai et al. [IKO07] constructed a batching argument for NP, where, to simultaneously

verify that N circuits of size S are satisfiable, the verifier runs in time max{S2, N}.
A set of works [SBW11, SMBW12, SVPB+12, SBVB+13] has improved, optimized, and implemented

the batching argument of Ishai et al. [IKO07] for the purpose of outsourcing computation. In particular, by

relying on quadratic arithmetic programs of [GGPR13], Setty et al. [SBVB+13] have improved the running

time of the verifier and prover to max{S,N} · poly(λ) and Õ(S) · poly(λ) respectively.

Vu et al. [VSBW13] provide a system that incorporates both the batching arguments of [SBW11,

SMBW12, SVPB+12, SBVB+13] as well as the interactive proofs of [CMT12, TRMP12, Tha13]. The

system decides which of the two approaches is more efficient to use for outsourcing a given computation.

Braun et al. [BFRS+13] apply batching techniques (as well as zk-SNARKs) to verify MapReduce

computations, by relying on various verifiable data structures.

Arguments with competing provers. Canetti et al. [CRR11] use collision-resistant hashes to get a protocol

for outsourcing deterministic computations in a model where a verifier interacts with two computationally-

bounded provers at least one of which is honest [FK97]. The protocol in [CRR11] works directly for

random-access machines, and therefore does not require reducing random-access machines to any “lower-

level” representation (such as circuits). Canetti et al. implement their protocol for deterministic x86 programs.

Previous circuit generators. Some prior work addresses the problem of translating high-level languages

into low-level languages such as circuits. Most prior work only supports restricted classes of programs:

[SVPB+12, SBVB+13] present a circuit generator based on Fairplay [MNPS04, BDNP08], whose SFDL

language does not support important primitives and has inefficient support for others; [PGHR13] present

a circuit generator for programs without data dependencies (pointers and array indices must be known at

compile time, and so do loop iteration bounds).

Other works support more general functionality: [BCGTV13a] rely on nondeterministic routing to

support random-access machine computations [BCGT13a]; [BFRS+13] rely on online memory checking

[BEGKN91, BCGT13a] to support accessing untrusted storage from a circuit.

See [BFRS+13, Section 2] for a more detailed overview of some of the above techniques.

Other cryptographic tools. Fully-homomorphic encryption (FHE) [Gen09] and probabilistically-checkable

proofs [AS98, ALMSS98] are powerful tools that are often used in protocols for outsourcing computations

(with integrity or confidentiality guarantees, or both) [Kil92, Mic00, AIK10, GGP10, CKV10, KRR13,

GKPVZ13]. However, such constructions have so far not been explored in practice. Another powerful tool is

secure multi-party computation [GMW87, BOGW88], but most work in this area does not consider the goal

of succinctness.
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B The PGHR zk-SNARK protocol

For the purposes of completeness and to fix notation, in Figure 10 below we recall the zk-SNARK protocol

of Parno et al. [PGHR13]. The zk-SNARK can be used to prove/verify satisfiability of Fr-arithmetic circuits,

where r is the order of the two cyclic groups G1 and G2, forming the domain of the pairing e : G1×G2 → GT .

We refer the reader to [PGHR13] for further details regarding the intuition for the protocol, as well as

the cryptographic assumptions on which its proof of security relies. (Briefly, security relies on the q-power

Diffie–Hellman, q-power knowledge-of-exponent, and q-strong Diffie–Hellman assumptions [Gro10b, BB04,

Gen04] for q that depends polynomially on the arithmetic circuit’s size.)

Public parameters. A prime r, two cyclic groups G1 and G2 of order

r with generators P1 and P2 respectively, and a pairing e : G1×G2 →
GT (where GT is also cyclic of order r).

(a) Key generator G

• INPUTS: circuit C : Fn
r × F

h
r → F

l
r

• OUTPUTS: proving key pk and verification key vk

1. Compute ( ~A, ~B, ~C,Z) := QAPinst(C); extend ~A, ~B, ~C via

Am+1 = Bm+2 = Cm+3 = Z ,

Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0 .

2. Randomly sample τ, ρA, ρB, αA, αB, αC, β, γ ∈ Fr .

3. Set pk := (C, pkA, pk
′

A, pkB, pk
′

B, pkC, pk
′

C, pkK, pkH) where:

pkA := {Ai(τ)ρAP1}
m+3
i=0 , pk

′

A := {Ai(τ)αAρAP1}
m+3
i=n+1

pkB := {Bi(τ)ρBP2}
m+3
i=0 , pk

′

B := {Bi(τ)αBρBP1}
m+3
i=0 ,

pkC := {Ci(τ)ρAρBP1}
m+3
i=0 , pk′C := {Ci(τ)αCρAρBP1}

m+3
i=0 ,

pkK := {β
(

Ai(τ)ρA +Bi(τ)ρB + Ci(τ)ρAρB
)

P1}
m+3
i=0 ,

and pkH := {τ iP1}
d
i=0.

4. Set vk := (vkA, vkB, vkC, vkγ , vk
1
βγ , vk

2
βγ , vkZ, vkIC) where

vkA := αAP2 , vkB := αBP1 , vkC := αCP2

vkγ := γP2 , vk
1
βγ := γβP1 , vk

2
βγ := γβP2 ,

vkZ := Z(τ)ρAρBP2 , vkIC :=
(

Ai(τ)ρAP1

)n

i=0
.

5. Output (pk, vk).

Key sizes. When invoked on a circuit C : Fn
r × F

h
r → F

l
r with a wires

and b (bilinear) gates, the key generator outputs:

• pk with (6a+ b+ l + 25) G1-elements and (a+ 4) G2-elements;

• vk with (n+ 3) G1-elements and 5 G2-elements.

Proof size. The proof always has 7 G1-elements and 1 G2-element.

(b) Prover P

• INPUTS: proving key pk, input ~x ∈ F
n
r , and witness ~a ∈ F

h
r

• OUTPUTS: proof π

1. Compute ( ~A, ~B, ~C,Z) := QAPinst(C).

2. Compute ~s := QAPwit(C, ~x,~a) ∈ F
m
r .

3. Randomly sample δ1, δ2, δ3 ∈ Fr .

4. Compute ~h = (h0, h1, . . . , hd) ∈ F
d+1
r , which are the coefficients

of H(z) := A(z)B(z)−C(z)
Z(z)

where A,B,C ∈ Fr[z] are as follows:

A(z) := A0(z) +
∑m

i=1 siAi(z) + δ1Z(z) ,

B(z) := B0(z) +
∑m

i=1 siBi(z) + δ2Z(z) ,

C(z) := C0(z) +
∑m

i=1 siCi(z) + δ3Z(z) .

5. Set ˜pkA := “same as pkA, but with pkA,i = 0 for i = 0,1, . . . , n”.

Set ˜pk′A := “same as pk′A, but prepend n+ 1 zeroes”.

6. Letting ~c := (1 ◦ ~s ◦ δ1 ◦ δ2 ◦ δ3) ∈ F
4+m
r , compute

πA := 〈~c, ˜pkA〉, π
′

A := 〈~c, ˜pk′A〉, πB := 〈~c, pkB〉, π
′

B := 〈~c, pk′B〉,

πC := 〈~c, pkC〉, π
′

C := 〈~c, pk′C〉, πK := 〈~c, pkK〉, πH := 〈~h, pkH〉.

7. Output π := (πA, π
′

A, πB, π
′

B, πC, π
′

C, πK, πH).

(c) Verifier V
• INPUTS: verification key vk, input ~x ∈ F

n
r , and proof π

• OUTPUTS: decision bit

1. Compute vk~x := vkIC,0 +
∑n

i=1 xivkIC,i ∈ G1.

2. Check validity of knowledge commitments for A,B,C:

e(πA, vkA) = e(π′

A,P2) , e(vkB, πB) = e(π′

B,P2) ,

e(πC, vkC) = e(π′

C,P2) .

3. Check same coefficients were used:

e(πK, vkγ) = e(vk~x + πA + πC, vk
2
βγ) · e(vk

1
βγ , πB) .

4. Check QAP divisibility:

e(vk~x + πA, πB) = e(πH, vkZ) · e(πC,P2) .

5. Accept if and only if all the above checks succeeded.

Figure 10: The zk-SNARK protocol of Parno et al. [PGHR13]. (More precisely, the protocol above differs from [PGHR13] in two

ways. First, it does not assume that G1 = G2. Second, it has a verification key whose size grows as n+ o(n), rather than 3n+ o(n),
by leveraging the non-degeneracy property in Lemma 2.4. The current version remedies a problem found by Gabizon [Gab19] and

reported as CVE-2019-7167 in Zcash: pk′A now starts at index n+ 1, and ˜pkA,
˜pk′A have been redefined accordingly.)
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C Additional experimental data

For completeness, we report additional experimental data, beyond that reported in Section 5.

Additional data for our circuit generator. In Section 5.1 we discuss the performance of our circuit

generator for vnTinyRAM, and provided per-cycle gate counts in Figure 7. In Figure 11 we provide an

extended version of Figure 7.

Additional data for our zk-SNARK for circuits. In Section 5.2 we discuss how we evaluated (G,P, V ),
which is our zk-SNARK for arithmetic circuit satisfiability. In Figure 12 we report the unnormalized data

from which Figure 8 is derived: we report the costs of the key generator G and prover P for various circuit

sizes, and of the verifier V for various input sizes. We also provide information on various subcomputations,

split between the information-theoretic ones having to do with QAPs, and the cryptographic ones having to

do with exponentiations.

The reported key sizes assume that an element of G1 or G2 is compressed (i.e., a point (x0, y0) lying on

an elliptic curve y2 = x3 +Ax+B is encoded as (x0, b), where b is a bit distinguishing between the two

square roots of x30 + Ax0 + B); to use a key, one typically first decompresses each element (and this is a

one-time operation after transmission).

In the verifier, the reported running times assume that vk has been preprocessed (see Section 4.2), which

is a one-time operation that can be amortized across any number of verifications.

Additional data for the combined system. In Section 5.3 we discuss how we evaluated (KeyGen,Prove,
Verify), which is our zk-SNARK for vnTinyRAM. In Figure 13 we report part of the unnormalized data from

which Figure 9 is derived, and also provide the same data for word size W = 16 as a comparison (since

Figure 9 only reports W = 32). Concretely, we report the costs of KeyGen for various choices of program

size bound ℓ and time bound T , while keeping the input size bound n fixed at 100; similarly for Prove. As

for Verify, we report its running time for various choices of program size bound ℓ and input size bound n.

We also provide information on various subcomputations, specifically on how the running times are

divided between the circuit generator and the zk-SNARK (the two components from which (KeyGen,Prove,
Verify) is constructed). Namely, for KeyGen we report the subtime for running the circuit generator circ

and the remaining time, which is spent in the zk-SNARK key generator G. And for Prove we report the

subtime for running the witness map wit and the remaining time, which is spent in the zk-SNARK prover P .

For Verify, we report the subtime to derive the program-specific verification key vkP (see Section 5.3); this

represents the time that is saved if one wishes to verify multiple statements (P, ①) for different inputs ①.
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Per-cycle gate count of C := circ(ℓ, n, T ) with vnTinyRAM parameters (W,K)

n = 102, K = 16

W = 16 W = 32

|C|/T
|C|/T divided among Per

cycle
|C|/T divided among

boot exec. mem. routing boot exec. mem. routing

ℓ
=

1
0
3

T = 215 1,337.8 1.41 777.0 429.1 130.3 1,968.6 2.44 1,114.0 721.9 130.3
T = 216 1,340.4 0.70 777.0 425.5 137.2 1,968.4 1.22 1,114.0 716.0 137.2
T = 217 1,345.8 0.35 777.0 423.8 144.6 1,972.2 0.61 1,114.0 713.0 144.6
T = 218 1,352.4 0.18 777.0 422.9 152.3 1,978.1 0.30 1,114.0 711.5 152.3
T = 219 1,359.7 0.09 777.0 422.4 160.2 1,985.1 0.15 1,114.0 710.7 160.2
T = 220 1,367.4 0.04 777.0 422.2 168.1 1,992.5 0.08 1,114.0 710.4 168.1
T = 221 1,375.2 0.02 777.0 422.1 176.0 2,000.3 0.04 1,114.0 710.2 176.0
T = 222 1,383.1 0.01 777.0 422.1 184.0 2,008.1 0.02 1,114.0 710.1 184.0
T = 223 1,391.0 0.01 777.0 422.0 192.0 2,016.1 0.01 1,114.0 710.0 192.0
T = 224 1,399.0 0.00 777.0 422.0 200.0 2,024.0 0.00 1,114.0 710.0 200.0
T = 225 1,407.0 0.00 777.0 422.0 208.0 2,032.0 0.00 1,114.0 710.0 208.0
T = 226 1,415.0 0.00 777.0 422.0 216.0 2,040.0 0.00 1,114.0 710.0 216.0
T = 227 1,423.0 0.00 777.0 422.0 224.0 2,048.0 0.00 1,114.0 710.0 224.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0
T = 229 1,439.0 0.00 777.0 422.0 240.0 2,064.0 0.00 1,114.0 710.0 240.0
T = 230 1,447.0 0.00 777.0 422.0 248.0 2,072.0 0.00 1,114.0 710.0 248.0

ℓ
=

1
0
4

T = 215 1,426.2 13.25 777.0 487.0 149.0 2,105.5 23.11 1,114.0 819.4 149.0
T = 216 1,385.2 6.63 777.0 454.5 147.1 2,037.3 11.55 1,114.0 764.7 147.1
T = 217 1,368.4 3.31 777.0 438.3 149.9 2,007.0 5.78 1,114.0 737.4 149.9
T = 218 1,363.9 1.66 777.0 430.1 155.1 1,995.6 2.89 1,114.0 723.7 155.1
T = 219 1,365.5 0.83 777.0 426.1 161.6 1,993.9 1.44 1,114.0 716.8 161.6
T = 220 1,370.3 0.41 777.0 424.0 168.8 1,997.0 0.72 1,114.0 713.4 168.8
T = 221 1,376.7 0.21 777.0 423.0 176.4 2,002.5 0.36 1,114.0 711.7 176.4
T = 222 1,383.8 0.10 777.0 422.5 184.2 2,009.3 0.18 1,114.0 710.9 184.2
T = 223 1,391.4 0.05 777.0 422.3 192.1 2,016.6 0.09 1,114.0 710.4 192.1
T = 224 1,399.2 0.03 777.0 422.1 200.1 2,024.3 0.05 1,114.0 710.2 200.1
T = 225 1,407.1 0.01 777.0 422.1 208.0 2,032.2 0.02 1,114.0 710.1 208.0
T = 226 1,415.1 0.01 777.0 422.0 216.0 2,040.1 0.01 1,114.0 710.1 216.0
T = 227 1,423.0 0.00 777.0 422.0 224.0 2,048.0 0.01 1,114.0 710.0 224.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0
T = 229 1,439.0 0.00 777.0 422.0 240.0 2,064.0 0.00 1,114.0 710.0 240.0
T = 230 1,447.0 0.00 777.0 422.0 248.0 2,072.0 0.00 1,114.0 710.0 248.0

ℓ
=

1
0
5

T = 215 2,323.2 131.70 777.0 1,066.6 347.9 3,486.2 229.79 1,114.0 1,794.5 347.9
T = 216 1,833.1 65.85 777.0 744.3 246.0 2,727.1 114.90 1,114.0 1,252.2 246.0
T = 217 1,595.1 32.93 777.0 583.1 202.0 2,354.6 57.45 1,114.0 981.1 202.0
T = 218 1,478.6 16.46 777.0 502.6 182.5 2,170.8 28.72 1,114.0 845.6 182.5
T = 219 1,423.6 8.23 777.0 462.3 176.0 2,082.2 14.36 1,114.0 777.8 176.0
T = 220 1,399.7 4.12 777.0 442.1 176.4 2,041.5 7.18 1,114.0 743.9 176.4
T = 221 1,391.5 2.06 777.0 432.1 180.4 2,024.9 3.59 1,114.0 726.9 180.4
T = 222 1,391.4 1.03 777.0 427.0 186.3 2,020.6 1.80 1,114.0 718.5 186.3
T = 223 1,395.2 0.51 777.0 424.5 193.2 2,022.3 0.90 1,114.0 714.2 193.2
T = 224 1,401.1 0.26 777.0 423.3 200.6 2,027.2 0.45 1,114.0 712.1 200.6
T = 225 1,408.1 0.13 777.0 422.6 208.3 2,033.6 0.22 1,114.0 711.1 208.3
T = 226 1,415.5 0.06 777.0 422.3 216.2 2,040.8 0.11 1,114.0 710.5 216.2
T = 227 1,423.3 0.03 777.0 422.2 224.1 2,048.4 0.06 1,114.0 710.3 224.1
T = 228 1,431.1 0.02 777.0 422.1 232.0 2,056.2 0.03 1,114.0 710.1 232.0
T = 229 1,439.1 0.01 777.0 422.0 240.0 2,064.1 0.01 1,114.0 710.1 240.0
T = 230 1,447.0 0.00 777.0 422.0 248.0 2,072.1 0.01 1,114.0 710.0 248.0

Figure 11: Performance of our circuit generator for vnTinyRAM for various choices of (ℓ, n, T ).
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Key generator G

80 bits of security 128 bits of security

Gate Total Subtime for computing pk vk Total Subtime for computing pk vk

count time QAP at τ pk vk size size time QAP at τ pk vk size size

210 0.2 s 2.1ms 0.2 s 5.4ms 254.8KB 2.8KB 0.2 s 3.2ms 0.2 s 3.9ms 311.4KB 3.6KB

211 0.4 s 4.1ms 0.4 s 5.4ms 514.6KB 2.8KB 0.4 s 6.3ms 0.4 s 3.8ms 629.6KB 3.6KB

212 0.7 s 8.1ms 0.6 s 5.4ms 1.0MB 2.8KB 0.7 s 12.4ms 0.7 s 3.8ms 1.3MB 3.6KB

213 1.2 s 16.2ms 1.2 s 5.4ms 2.1MB 2.8KB 1.3 s 24.8ms 1.3 s 3.7ms 2.5MB 3.6KB

214 2.3 s 32.4ms 2.3 s 5.7ms 4.2MB 2.8KB 2.5 s 49.7ms 2.5 s 3.7ms 5.1MB 3.6KB

215 4.3 s 64.8ms 4.2 s 5.3ms 8.3MB 2.8KB 4.8 s 99.4ms 4.7 s 3.5ms 10.2MB 3.6KB

216 8.0 s 129.2ms 7.8 s 5.2ms 16.6MB 2.8KB 9.0 s 198.5ms 8.8 s 3.5ms 20.4MB 3.6KB

217 15.1 s 259.3ms 14.8 s 5.4ms 33.3MB 2.8KB 17.1 s 0.4 s 16.7 s 3.4ms 40.7MB 3.6KB

218 28.1 s 0.5 s 27.6 s 5.2ms 66.5MB 2.8KB 32.1 s 0.8 s 31.2 s 3.4ms 81.5MB 3.6KB

219 53.3 s 1.0 s 52.1 s 5.2ms 133.0MB 2.8KB 61.8 s 1.6 s 60.0 s 3.3ms 162.9MB 3.6KB

220 102.5 s 2.1 s 100.1 s 5.1ms 266.1MB 2.8KB 121.0 s 3.2 s 117.4 s 3.3ms 325.8MB 3.6KB

221 194.4 s 4.2 s 189.6 s 5.1ms 532.1MB 2.8KB 223.4 s 6.3 s 216.2 s 3.2ms 651.7MB 3.6KB

222 366.2 s 8.3 s 356.7 s 5.1ms 1.1GB 2.8KB 444.7 s 12.7 s 430.3 s 3.2ms 1.3GB 3.6KB

223 707.8 s 16.6 s 688.7 s 5.1ms 2.1GB 2.8KB 861.4 s 25.5 s 832.6 s 3.4ms 2.6GB 3.6KB

224 1360.6 s 33.2 s 1322.3 s 5.1ms 4.3GB 2.8KB 1676.7 s 51.0 s 1619.2 s 4.5ms 5.2GB 3.6KB

Prover P
80 bits of security 128 bits of security

Gate Total Subtime for computing π Total Subtime for computing π
count time H(z) π size time H(z) π size

210 189.0ms 3.4ms 182.5ms 230B 214.3ms 5.5ms 206.2ms 288B

211 0.3 s 7.3ms 0.3 s 230B 0.4 s 11.8ms 0.4 s 288B

212 0.6 s 15.5ms 0.6 s 230B 0.7 s 25.1ms 0.7 s 288B

213 1.2 s 32.9ms 1.2 s 230B 1.4 s 53.1ms 1.3 s 288B

214 2.2 s 69.6ms 2.2 s 230B 2.6 s 112.8ms 2.5 s 288B

215 4.3 s 147.5ms 4.2 s 230B 5.1 s 238.7ms 4.8 s 288B

216 8.4 s 0.3 s 8.1 s 230B 10.1 s 0.5 s 9.6 s 288B

217 16.4 s 0.7 s 15.8 s 230B 19.9 s 1.1 s 18.8 s 288B

218 31.9 s 1.4 s 30.5 s 230B 39.3 s 2.2 s 37.1 s 288B

219 63.4 s 3.0 s 60.4 s 230B 77.2 s 4.8 s 72.5 s 288B

220 122.4 s 6.2 s 116.1 s 230B 152.7 s 10.0 s 142.7 s 288B

221 241.5 s 13.2 s 228.3 s 230B 302.8 s 20.9 s 281.9 s 288B

222 470.2 s 27.6 s 442.6 s 230B 605.0 s 43.6 s 561.4 s 288B

223 941.7 s 57.4 s 884.3 s 230B 1194.7 s 90.7 s 1104.0 s 288B

224 1835.6 s 119.1 s 1716.5 s 230B 2409.3 s 204.8 s 2204.4 s 288B

Verifier V
80 bits of security 128 bits of security

Input vk Total Subtime for computing vk Total Subtime for computing

size size time vk~x pairing checks size time vk~x pairing checks

2B 475B 4.8ms 0.1ms 4.7ms 494B 5.0ms 0.2ms 4.8ms

4B 475B 4.8ms 0.1ms 4.7ms 494B 4.9ms 0.2ms 4.8ms

8B 475B 4.8ms 0.1ms 4.7ms 494B 5.0ms 0.2ms 4.8ms

16B 475B 4.8ms 0.1ms 4.7ms 494B 5.0ms 0.1ms 4.8ms

32B 498B 4.9ms 0.2ms 4.7ms 525B 5.1ms 0.3ms 4.8ms

64B 521B 4.9ms 0.2ms 4.7ms 557B 5.2ms 0.4ms 4.8ms

128B 590B 4.9ms 0.2ms 4.7ms 621B 5.1ms 0.3ms 4.8ms

256B 728B 5.0ms 0.3ms 4.7ms 749B 5.2ms 0.4ms 4.8ms

512B 1.0KB 5.2ms 0.5ms 4.7ms 1.0KB 5.5ms 0.7ms 4.8ms

1.0KB 1.5KB 5.6ms 0.9ms 4.7ms 1.5KB 6.1ms 1.3ms 4.8ms

2.0KB 2.6KB 6.2ms 1.5ms 4.7ms 2.5KB 7.0ms 2.2ms 4.8ms

4.1KB 4.7KB 7.4ms 2.6ms 4.7ms 4.6KB 8.6ms 3.8ms 4.8ms

8.2KB 8.8KB 9.5ms 4.8ms 4.7ms 8.7KB 11.7ms 6.9ms 4.8ms

16.4KB 17.2KB 13.4ms 8.7ms 4.7ms 17.0KB 17.2ms 12.4ms 4.8ms

32.8KB 34.0KB 21.7ms 16.8ms 4.9ms 33.5KB 27.5ms 22.7ms 4.8ms

65.5KB 67.5KB 34.6ms 29.8ms 4.7ms 66.5KB 47.0ms 42.1ms 4.8ms

131.1KB 134.4KB 61.2ms 56.5ms 4.7ms 132.6KB 83.3ms 78.5ms 4.8ms

262.1KB 268.4KB 112.7ms 107.8ms 4.9ms 264.7KB 153.7ms 148.9ms 4.8ms

524.3KB 536.4KB 207.7ms 203.0ms 4.8ms 528.9KB 284.5ms 279.6ms 4.8ms

1.0MB 1.1MB 395.1ms 390.3ms 4.8ms 1.1MB 538.6ms 533.7ms 4.8ms

Figure 12: Performance of our zk-SNARK for arithmetic circuit satisfiability, for the two security levels we considered in this paper.

(N = 10 and std < 1%)
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KeyGen

128-bit security, K = 16, n = 100
W = 16 W = 32

ℓ = 2K ℓ = 4K ℓ = 2K ℓ = 4K

total subtime subtime total subtime subtime total subtime subtime total subtime subtime

time for circ for G time for circ for G time for circ for G time for circ for G
T = 4K 538.1 s 4.5 s 533.6 s 606.4 s 4.9 s 601.5 s 839.2 s 7.0 s 832.1 s 928.5 s 7.7 s 920.8 s

T = 8K 996.9 s 8.4 s 988.4 s 1040.9 s 8.9 s 1032.1 s 1527.0 s 12.7 s 1514.3 s 1647.4 s 13.9 s 1633.4 s

T = 16K 1927.7 s 16.2 s 1911.5 s 1980.1 s 16.8 s 1963.2 s 3125.6 s 24.7 s 3101.0 s 3170.2 s 25.3 s 3144.9 s

T = 32K 3896.0 s 32.0 s 3864.0 s 3956.9 s 32.5 s 3924.4 s 6593.1 s 48.9 s 6544.2 s 6669.5 s 50.7 s 6618.8 s

pk size vk size pk size vk size pk size vk size pk size vk size

T = 4K 1.5GB 8.7KB 1.7GB 16.8KB 2.3GB 17.0KB 2.6GB 33.1KB

T = 8K 2.8GB 8.7KB 3.0GB 16.8KB 4.4GB 17.0KB 4.7GB 33.1KB

T = 16K 5.5GB 8.7KB 5.7GB 16.8KB 8.6GB 17.0KB 8.9GB 33.1KB

T = 32K 10.9GB 8.7KB 11.1GB 16.8KB 17.1GB 17.0KB 17.3GB 33.1KB

Prove

128-bit security, K = 16, n = 100
W = 16 W = 32

ℓ = 2K ℓ = 4K ℓ = 2K ℓ = 4K

total subtime subtime total subtime subtime total subtime subtime total subtime subtime

time for wit for P time for wit for P time for wit for P time for wit for P
T = 4K 204.5 s 7.0 s 197.6 s 260.8 s 7.7 s 253.1 s 302.7 s 11.1 s 291.6 s 346.8 s 12.2 s 334.6 s

T = 8K 414.7 s 13.3 s 401.4 s 417.4 s 14.1 s 403.3 s 553.6 s 20.6 s 533.0 s 637.5 s 22.5 s 615.1 s

T = 16K 1039.1 s 26.3 s 1012.8 s 1042.4 s 27.5 s 1014.9 s 1424.7 s 55.2 s 1369.5 s 1424.9 s 57.3 s 1367.5 s

T = 32K 2107.5 s 64.3 s 2043.2 s 2111.1 s 65.2 s 2045.9 s 3166.3 s 269.3 s 2897.0 s 3156.6 s 265.6 s 2890.9 s

Verify

128-bit security, K = 16, indep. of T
W = 16 W = 32

ℓ = 2K ℓ = 4K ℓ = 2K ℓ = 4K

total subtime subtime total subtime subtime total subtime subtime total subtime subtime

time for vkP for rest time for vkP for rest time for vkP for rest time for vkP for rest

n = 0 13.1ms 7.5ms 5.6ms 19.1ms 13.5ms 5.6ms 19.0ms 13.4ms 5.6ms 30.0ms 24.4ms 5.6ms

n = 10 13.2ms 7.5ms 5.7ms 19.2ms 13.5ms 5.7ms 19.1ms 13.4ms 5.8ms 30.2ms 24.4ms 5.8ms

n = 102 13.5ms 7.5ms 6.0ms 19.6ms 13.5ms 6.0ms 19.6ms 13.3ms 6.3ms 30.7ms 24.4ms 6.3ms

n = 103 15.4ms 7.5ms 7.9ms 21.5ms 13.6ms 7.9ms 23.0ms 13.3ms 9.7ms 34.1ms 24.4ms 9.7ms

n = 104 29.4ms 7.5ms 21.9ms 35.3ms 13.5ms 21.8ms 48.9ms 13.3ms 35.6ms 60.0ms 24.5ms 35.6ms

Figure 13: Performance of our zk-SNARK for vnTinyRAM at the 128-bit security level, for word sizes W = 16 and W = 32.

(N = 10 and std < 1.5% for all, except that std < 5% whenever T = 32K)
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D zk-SNARKs for vnTinyRAM

For completeness, we explain how a circuit generator for vnTinyRAM (see Section 3) can be combined with

a zk-SNARK for arithmetic circuit satisfiability to obtain a zk-SNARK for vnTinyRAM. We first informally

define zk-SNARKs for vnTinyRAM (Appendix D.1) and then we give the construction (Appendix D.2).

D.1 Informal definition

A zk-SNARK for vnTinyRAM is a cryptographic primitive that gives short and easy-to-verify non-interactive

zero-knowledge proofs of knowledge for the correct execution of programs on the machine vnTinyRAM.

Below, we only provide an informal definition; for details, we refer the reader to [BCIOP13], where a formal

definition for any random-access machine can be found. Below, the security parameter is implicit.

A zk-SNARK for vnTinyRAM is a triple of polynomial-time algorithms (KeyGen,Prove,Verify) work-

ing as follows.

• KeyGen(ℓ, n, T ) → (pk, vk). On input a program size bound ℓ, time bound T , and primary-input size

bound n, the key generator KeyGen probabilistically samples a proving key pk and a verification key vk.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove and

verify membership in the language Lℓ,n,T as follows.

• Prove(pk,P, ①,✇)→ π. On input a program P with ≤ ℓ instructions, primary input ① with ≤ n words,

and auxiliary input ✇ such that P(①,✇) accepts in ≤ T steps, the prover Prove outputs a non-interactive

proof π for the statement (P, ①) ∈ Lℓ,n,T .

• Verify(vk,P, ①, π) → b. On input a program P with ≤ ℓ instructions, primary input ① with ≤ n words,

and proof π, the verifier Verify outputs b = 1 if he is convinced that (P, ①) ∈ Lℓ,n,T .

The key generator KeyGen is universal: it does not depend on the program P or primary input ①, but only on

their respective size bounds ℓ and n (as well as the time bound T ).

A zk-SNARK satisfies the following properties.

Completeness. The honest prover can convince the verifier for any instance in the language. I.e., for every

(P, ①) ∈ Lℓ,n,T with a witness ✇,

Pr

[

Verify(vk,P, ①, π) = 1

∣

∣

∣

∣

(pk, vk)← KeyGen(ℓ, n, T )
π ← Prove(pk,P, ①,✇)

]

= 1 .

Succinctness. An honestly-generated proof π has O(1) bits, and Verify(vk,P, ①, π) runs in time O(ℓ+ n).
In particular, verification time does not depend on the time bound T .

Proof of knowledge (and soundness). If the verifier accepts a proof, the prover “knows” a witness for the

instance. (Thus, soundness holds.) I.e., for every polynomial-size adversary A there is a polynomial-size

witness extractor E s.t.

Pr





Verify(vk,P, ①, π) = 1
(

(P, ①),✇
)

/∈ Rℓ,n,T

∣

∣

∣

∣

∣

∣

(pk, vk)← KeyGen(ℓ, n, T )
(P, ①, π)← A(pk, vk)

✇← E(pk, vk)



 ≤ negl .

Zero knowledge. The proof π is statistical zero knowledge.
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KeyGen

• INPUTS: bounds ℓ, n, T
• OUTPUTS: proving key pk and verification key vk

1. Compute C := circ(ℓ, n, T ).
2. Compute (pk, vk) := G(C), and output (pk, vk).

Prove

• INPUTS: proving key pk and (P, ①) ∈ Lℓ,n,T with witness ✇

• OUTPUTS: proof π

1. Compute ~x := [[P]]ℓ2Wr ◦ [[①]]nW
r .

2. Compute ~a := wit(ℓ, n, T,P, ①,✇).
3. Compute π := P (pk, ~x,~a), and output π.

Verify

• INPUTS: verification key vk and (P, ①) ∈ Lℓ,n,T

• OUTPUTS: decision bit

1. Compute ~x := [[P]]ℓ2Wr ◦ [[①]]nW
r .

2. Compute b := V (vk, ~x, π), and output b.

Figure 14: A zk-SNARK for vnTinyRAM is obtained by combining the circuit generator and the zk-SNARK for circuit satisfiability.

D.2 Construction

Let (G,P, V ) be a zk-SNARK for Fr-arithmetic circuit satisfiability, and let (circ,wit) be a circuit generator

for vnTinyRAM over F′. (The prime r is typically determined by the order of the two cyclic groups G1 and

G2 that form the domain of the pairing e : G1×G2 → GT used to instantiate (G,P, V ).) In Figure 14 below,

we give the construction of the three algorithms (KeyGen,Prove,Verify) of a zk-SNARK for vnTinyRAM.
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E Case study: memcpy with just-in-time compilation

The function memcpy is a standard C function that works as follows: given as input two array pointers and a

length, memcpy copies the contents of one array to the other. Of course, with no data dependencies, copying

data in a circuit is trivial: you just connect the appropriate wires. However, when the array addresses and

their lengths are unknown, and memcpy is invoked as a subroutine in a larger program, the trivial solution

does not work, and an efficient implementation is needed.

A naive implementation of memcpy iterates, via a loop, over each array position i and copies the i-th
value from one array to the other. In vnTinyRAM each such loop iteration costs 6 instructions; 2 of these are

to increase the iteration counter and jump back to the start of the loop. Thus, for m-long arrays, copying takes

6m instructions (discounting loop initialization). A cost of 6m also holds for TinyRAM of [BCGTV13a].

But, in vnTinyRAM, one can do better: loop unrolling can be used to avoid paying for the 2 “control”

instructions. Asymptotically, the optimal number of unrollings depends on the array length: it is Θ(
√
m).

Thus, optimal unrolling requires dynamic code generation on a von Neumann architecture. We wrote a

54-instruction vnTinyRAM program for memcpy that uses dynamic loop unrolling to achieve an efficiency

of ≈ 4m + 11.5
√
m cycles for m-long arrays. For m ≥ 600, we get 1.25× speed-up over the naive

implementation, and 1.4× speed-up for m ≥ 3000.
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