
Succinct Priority Indexing Structures for the
Management of Large Priority Queues

Hao Wang and Bill Lin
University of California San Diego, La Jolla, CA 92093

Abstract—Priority queues are an essential building block for
implementing advanced per-flow service disciplines at high-speed
network links. In this paper, we propose novel solutions to the
scalable implementation of priority queues by decomposing the
problem into two parts, a succinct priority index in SRAM that
can efficiently maintain a real-time sorting of priorities, coupled
with a DRAM-based implementation of large packet buffers. In
particular, we propose three related novel succinct priority index
data structures for implementing high-speed priority indexes:
a Priority-Index (PI), a Counting-Priority-Index (CPI), and a
Pipelined Counting-Priority-Index (Pipelined CPI). We show
that all three structures can be very compactly implemented
in SRAM using only Θ(U) space, where U is the size of the
universe required to implement the priority keys (timestamps).
We also show that our proposed priority index structures can
be implemented very efficiently as well by leveraging hardware-
optimized instructions that are readily available in modern 64-bit
microprocessors. The operations on the PI and CPI structures
take Θ(logW U) time, where W is the processor word-length
(i.e., W = 64 bits). Alternatively, operations on the Pipelined
CPI structure take constant time with only Θ(logW U) pipeline
stages. Finally, we show the application of our proposed priority
index structures for scalable management of large packet buffers
at line speeds.

I. INTRODUCTION

A fundamental bottleneck in a number of network pro-
cessing applications is the real-time maintenance of priority
values in sorted order. Priority queues are usually used for this
purpose. Especially in the advanced scheduling of per-flow
queues with Quality-of-Service (QoS) requirements, priority
queues have received the most attention. To provide for QoS
guarantees, a number of advanced scheduling techniques have
been proposed [1], [2].

Scalable priority queue implementation requires solutions
to two fundamental problems. The first is the ability to sort
queue elements in real-time at ever increasing line speeds.
In the advanced QoS scheduling literature, often a binary
heap data structure is assumed for the implementation of
priority queues [4], which is known to have Θ(log2 n) time
complexity for heap operations, where n is the number of
heap elements. However, this algorithmic complexity does
not scale well with growing queue sizes and is not fast
enough for link rates at 40 Gb/s and beyond. To remedy the
performance limitation, pipelined heap data structures have
been proposed [5], [6], [7] that can achieve constant amortized
time complexity with Θ(log2 n) pipelined stages, which can be
prohibitively expensive in hardware complexity for a large n.
For example, with n = 16 million, at least 24 pipelined stages
are required. The Pipelined van Emde Boas Tree structure [8],
[9] has also been proposed, which is based on the van Emde

Boas tree [9]. It achieves constant amortized time complexity
with Θ(log2 log2 U) pipelined stages, where U is the size of
the universe representing the range of the priority keys. With
a universe of size U = 16 million, only 5 pipelined stages
are required. However, in comparison to our proposed data
structures in this paper, the pipelined van Emde Boas tree
requires considerably more complicated operations and more
storage memory.

The second problem of the scalable priority queue imple-
mentation is the ability to store a huge number of packets.
The problem motivated the work in [11] where they proposed
a heap-based hybrid SRAM/DRAM priority queue system.
In particular, they adopted a previously developed hybrid
SRAM/DRAM FIFO memory architecture [12] in their pro-
posed solution. However, this solution is hard to implement
and requires a large amount of SRAMs.

In this paper, we propose novel solutions to solve the scal-
able priority queue implementation problem by decomposing
it into two parts, a succinct priority index in SRAM that can
efficiently maintain the real-time sorting of priorities, coupled
with memory management of large packet buffers. In partic-
ular, we propose three related novel succinct priority index
data structures for implementing high-speed priority indexes:
a Priority-Index (PI), a Counting-Priority-Index (CPI), and a
Pipelined Counting-Priority-Index (Pipelined CPI). We show
that all three structures can be compactly implemented in
SRAM using only Θ(U) space, where U is the size of the
universe required to implement the priority keys (deadline
timestamps). For example, for U = 16 million, which is
sufficient to regulate rate of flows on a 40 Gb/s link from
the full rate down to the slowest rate of approximately just
2.5 Kb/s, only about 2 MB of SRAM suffices to implement
these priority index structures. We also show that our proposed
priority index structures can be implemented very efficiently
as well by leveraging hardware-optimized instructions that
are readily available in modern 64-bit microprocessors. In
particular, operations on the PI and CPI structures can be
realized in Θ(logW U) time, where W is the word-length of
the processor (i.e., W = 64 bits). Alternatively, operations on
the Pipelined CPI structure can be realized in constant time
using only Θ(logW U) pipeline stages (e.g., only 4 pipeline
stages for U = 16 million). Although the Θ(logW U) hard-
ware complexity is not as good asymptotically in comparison
to the pipelined van Emde boas tree structure, the hardware
complexity of our Pipelined CPI design is actually lower for
any universe U ≤ 230 when W = 64, which is practically
the case for all relevant applications. Finally, we show that

978-1-4244-3876-1/09/$25.00 ©2009 IEEE

2

our proposed priority index structures can be combined with a
DRAM-based architecture to provide scalable storage for large
packet buffers at line speeds.

The remainder of this paper is organized as follows. In
Section II, we introduce the basic data structure called a
Priority-Index (PI). Although simple, this basic data structure
is not amenable to pipelining. In Section III, we present an
extended data structure called a Counting-Priority-Index (CPI)
that can be readily pipelined, and the pipelined version of
this data structure, called a Pipelined Counting-Priority-Index
(Pipelined CPI), is described in Section IV. In Section V,
we discuss the memory management issues using DRAM
to implement large packet buffers. Finally, we conclude in
Section VI.

II. SUCCINCT PRIORITY INDEX ABSTRACTION

In this section, we outline a high-level abstraction that we
call a succinct priority index, which is a bitmap data structure
that can conceptually be interpreted as a tree. Although the
priority indexing structure is presented in this paper in the
context of advanced per-flow scheduling, we note that they
can also be applied to other networking problems, such as
statistics counting [3], which also relies on priority queues as
a fundamental building block.

A. Structure

The basic structure of a succinct priority index abstraction,
which we call a Priority-Index (PI), is a perfect W -way tree
as shown in Fig. 1. Suppose we have a fixed universe of size
U = Wh, and we wish to represent a set S of N elements
from this universe, where N ≤ U . The basic abstraction can
be viewed as a bitmap that is used to record which elements of
the universe are present in S. Each element i of the universe is
associated with a binary bit bi. Bit bi is set to 1 if i ∈ S, and
0 otherwise. In a PI structure, a leaf node in the perfect W -
way tree contains W bits of bi, for 0 ≤ i ≤ U . For a non-leaf
node, there are also W bits. Each of these W bits is associated
to a corresponding child node. The bits of the non-leaf nodes
are used as a summary of their child nodes – i.e., a bit in a
non-leaf node is set to 1 if there is at least one non-zero bit
in its child node, or 0 otherwise. As an example, a PI of 3
levels in a universe U = 218 for 18-bit priority indexes with
W = 64 is shown in Fig. 1.

…

…

…

…

…

……

…

…

W

W

W

h
…

Fig. 1. Data Structure of PI with h = 3

B. Supported Operations

The succinct priority indexing abstraction supports the op-
erations shown in Table I. Modern 64-bit x86 processors (from
both Intel and AMD [13], [14]) all have built-in instructions
to compute the position of the most-significant-bit set using
BSR (bit-scan-reverse) or least-significant-bit set using BSF
(bit-scan-forward) as a single step operation. If there is no
such bit, the BSR and BSF operations will set flag ZF (zero
flag) to 1. In addition, AMD also has a LZCNT (leading-zero-
count) instruction [14] that returns the number of leading 0’s.
Then the position of the most significant bit in a word is just
LZCNT + 1, unless LZCNT is 64, in which case all bits are
0’s and there is no value 1 bit in the word. Therefore, the
position of the most-significant-bit or least-significant-bit can
be located in constant time.

TABLE I
OPERATIONS SUPPORTED BY SUCCINCT PRIORITY INDEX ARCHITECTURE

test(i) Test if index i is in set S
insert(i) Insert a new index i to set S
delete(i) Delete index i from set S
findmin Find the smallest index in set S
findmax Find the largest index in set S
extractmin Delete the smallest index in set S
extractmax Delete the largest index in set S
successor(i) Find the successor of index i in set S
predecessor(i) Find the predecessor of index i in set S
extractsucc(i) Delete the successor of index i in set S
extractpred(i) Delete the predecessor of index i in set S

In the succinct priority index architecture, index values
increase from left to right and decrease from right to left,
as opposed to the heap structure where index values increase
from top to bottom (or bottom to top). In this paper, only
findmin, extractmin, successor and extractsucc oper-
ations are described in details. The findmax, extractmax,
predecessor and extractpred operations can be derived
using right-left symmetry.

III. COUNTING-PRIORITY-INDEX

In this section, a new data structure Counting-Priority-Index
(CPI) is presented. In a CPI, all the operations of a succinct
priority index are supported in a top-down fashion.

A. Structure

In CPI, at each non-leaf level node, a total of W coun-
ters are needed. Let the counters for a given non-leaf node
be counter[0], counter[1], · · · , counter[W − 1]. The
counter[i] of a node is used to track the number of value
1 bits in its (i + 1)th child node from the left. For a counter,
if there is no value 1 bit in its child nodes, it should be 0,
and also the corresponding bit in the W -bit word is reset
to 0. Otherwise the counter should be non-zero and the
corresponding bit in the W -bit word is set to 1. The data
structure of CPI with height h = 3 is shown in Fig. 2.

B. Operations

The test operation is implemented in constant time on
the leaf-level nodes. The insert, findmin, and findmax
operations function in a top-down fashion. For the insert(i)
operation, as the operation moves down from the root to the

3

0 0 …1 1 00

0 11

…

…

…

…

……

…

…

11

W

W

W

h

…

bit

counter
Successor(0)

Successor(0) FindMin

updated
suc(op)

suc(op)

1st step

1st step 2nd step

1 memory bank for
suc(op) and pre(op)

Fig. 2. Example of successor(0) operation in CPI

leaf-level nodes, the counters on its path are incremented by
one. If a counter of a non-leaf node is zero before the insert
operation, the corresponding bit in the W -bit word of the node
is set to 1 from 0. The delete(i) operation in CPI starts from
root node and goes down the tree until it reaches the index i. At
each non-leaf level node, the counters on its path is decreased
by one. If the counter reaches zero, the corresponding bit in
the W -bit word of the current node is reset to 0. Otherwise, the
W -bit word is left unchanged. At the leaf-level node, the bit
corresponding to index i is set to be 0 and the index number
i is used as the output. The extractmin operation can be
treated as the combination of findmin and delete operation.

The successor(i) operation works in a greedy way con-
sisting of two steps. In the first step, it starts from root node
and works top-down to find the path to index i. At the same
time, an extra variable suc(op) is used to remember the
possible bit that can lead to the successor of index i. Parameter
op is the operation id number in the system that is unique
for each operation and it is initialized to NULL. If there are
other value 1 bits in the same node to the right of the path
leading to index i, the suc(op) is updated to remember the
location of the first one of such bits from the left. Otherwise,
the suc(op) is left unchanged. After index i is reached at the
leaf-level, the operation continues in the second step by first
checking if the successor of i is in the same leaf node as i.
If it is true, then the operation is finished and the successor
of index i is found. Otherwise, the operation resumes from
the location kept in suc(op) to find the minimum index in S
using suc(op) as root node, and then outputs the index as the
successor of index i. Therefore the second step is the same
as findmin using suc(op) as the root node. An example of
the successor(i) operation in CPI with i = 0 is shown in
Fig. 2. The extractsucc(i) operation can be implemented
similarly.

C. Memory and Complexity

Assume a CPI of size U = Wh with W = 64. There are U
bits at the leaf level. For the upper next level, there are U/W
bits for the W -bit words. And there are U/W counters each
of size log2 W , so together 6U/W bits for the counters. In
the same way, the next upper level needs 7U/W 2 bits, and so
on. Moreover, extra memory bank is needed to keep variable
suc(op) and pre(op). Only log2 h bits are used to record the
level of each variable and log2 W bits are used to keep the

location of each variable within a node. Thus the total memory
size N is,

N ={U +
7U

W
+ · · · + 7U

Wh−1
} + {log2 h + log2 W} (1)

≈1.11U (2)

There is only a size of 1.11U memory required to keep the
priority indexing of the CPI for a universe of size U . In a CPI,
the time complexity for all of the operations is Θ(logW U).

IV. PIPELINED COUNTING-PRIORITY-INDEX

In this section, the Pipelined Counting-Priority-Index
(Pipelined CPI) is presented. In a Pipelined CPI, all supported
operations are also implemented in a top-down fashion and
can be pipelined. In each time slot, a new operation can be
initiated in a Pipelined CPI.

A. Structure

By pipelining all operations, a pipelined CPI can achieve
higher access rate than a regular CPI. The data structure of a
Pipelined CPI with h = 3 is shown in Fig. 3.

0 0 …1 1 00

0 11

…

…

…

…

……

…

…

11

W

W

W

h

…

bit

counter

h memory banks for
suc(op) and pre(op)

Successor(0)

FindMin

Successor(0) FindMin

updated
suc(op)

suc(op)

path A

path A

path B

path B

Fig. 3. Example of successor(0) operation in Pipelined CPI

B. Operations

The test(i) operation can finish in constant time.
insert(i), delete(i), findmin(i), findmax(i),
extractmin(i), and extramax(i) operations are top-
down as in CPI. In order to support pipelined operations,
successor(i), predecessor(i), extractsucc(i) and
extractpred(i) operations need to be modified.

The successor(i) operation is modified based on the one
in CPI to make the best use of the potential pipeline speed.
Once the suc(op) is not NULL at a node with W -bit word at
a certain level, the successor(i) operation is separated into
two parallel sub-operations following two different paths. One
path (path A) is the path of another successor(i) operation
which uses the current bit as its root node. The other path
(path B) is the path of the findmin operation which uses
the suc(op) as its root node. If the suc(op) is updated in
the path A. Path B stops its current process and continues the
findmin operation using the new suc(op) as its root node. As
a consequence, these two sub-operations are always working
at the same level from the root of the Pipelined CPI until

4

they reach the leaf-level nodes. At the leaf-level node, if the
suc(op) is still NULL, the operation outputs SNF (successor
not found). If the suc(op) is updated at leaf-level, it uses the
new suc(op) index as the output of successor(i), because
this means the successor of index i and index i itself are in the
same leaf-level node. Otherwise it uses the output of path B
as the output of the successor(i) operation. The flow graph
of the successor(i) operation is shown in Fig. 4.

suc(op) is
updated

child.successor(i)

output the result
of successor(i)

leaf-level
nodes

findmin using new
suc(op) as root

N

output the result
of findmin

output SNF

suc(op) is
updated

suc(op) is updated
at leaf-level

successor(i)

Y

Y

Y

N

N

test

test

Fig. 4. Flow graph of successor(i) operation in Pipelined CPI

An example of the pipelined successor(i) operation with
i = 0 is shown in Fig. 3. Here the suc(op) is updated twice,
once at the root level, and the second time at the second level.
After each update, the findmin operation resumes from the
new suc(op).

The extractsucc(i) operation cannot be easily pipelined.
During the operation, the counters on the path B need to be
updated. Since part or all of the path B may not be the path
that leads to the successor of index i, some updated counters
may need to be recovered. Therefore it is necessary to sepa-
rate one extractsucc(i) operation into one succeccsor(i)
operation with returned index j and delete(j) operation. In
this way, the counters will not be updated unless it is on the
path leading to the index j.

C. Memory and Complexity

Compared with non-pipelined CPI, in Pipelined CPI, extra
memory banks are needed to keep track of more variables
suc(op) and pre(op). As in CPI, log2 h bits are used to keep
the level of each variable and log2 W bits are used to keep
the location of each variable within a node. There are at most
h operations in the Pipelined CPI at the same time, so h such
variables are enough for the pipeline operations. For W = 64,
the following holds for the total memory size N .

N ={U +
7U

W
+ · · · + 7W} + h{log2 h + log2 W} (3)

≈1.11U + h log2 h + log2 Wh (4)

≈1.11U + log2 U, since h � W (5)

≈1.11U if U > 210. (6)

Using Pipelined CPI, Θ(1) time operations can be achieved.
At each level of the Pipelined CPI, two sub-operations may
happen at the same time on different nodes for successor

and predecessor operations. Therefore if all the nodes in
the same level of the tree are in a single memory bank, this
memory bank needs to support double access rate per time
slot. On the other hand, if different nodes in the same level
of the tree are in different memory banks, each memory bank
only needs to support single access rate per time slot. When
the Pipeline CPI is employed to achieve a constant processing
speed, each level should be stored in an independent SRAM
unless speedup is used in the SRAM.

V. LARGE DRAM-BASED PRIORITY QUEUES

In this section, we describe the application of our proposed
succinct priority index data structures to the management
of large DRAM-based packet buffers in which the priorities
correspond to unique departure times. To store a large number
packets, DRAMs are necessary to provide affordable bulk
storage. However, worst-case access times of DRAM devices
are too slow to match the line rates of high-performance
routers. Suppose 1/b is the ratio between the worst-case access
bandwidth of DRAMs and the line rate, then we can match the
line rate requirement by operating b DRAM banks in parallel.
Although the worst-case access time for each DRAM bank
is still b cycles, a new memory operation can be initiated in
every cycle if it is initiated to a different DRAM bank in
an interleaving manner. The idea of using the interleaving of
DRAM banks has been explored in [15] for the management of
large packet buffers with per-flow queueing. We adapt this idea
for storing packets that will be serviced in earliest-deadline-
first order.

In particular, we uniquely locate a packet in memory based
on its unique departure time. However, we cannot simply stripe
packet locations across the memory banks in timestamp order
for two reasons (i.e., map a packet with departure time t to the
kth DRAM bank where k = t mod b). First, the departure
timestamps of arriving packets may not follow striping order
since the corresponding packets may have different service
requirements. Therefore, there can be pathological cases in
which consecutively arriving packets may be written to the
same DRAM bank. Second, a packet may depart earlier than
its departure timestamp when a link is idle. Suppose the
current time is t, but the packet with the earliest departure
deadline has a departure time of j > t. Then in this case,
we can service this packet in the current cycle by advancing
virtually the clock to j. Here again, the read access pattern
from the DRAM banks may not follow striping order.

The basic idea in dealing with these issues is to randomly
distribute the timestamp locations evenly across the b memory
banks so that with high probability that each memory bank
will receive about one out of b write (read) operations to it
on average. This is achieved by applying a pseudorandom
permutation function π : {1, . . . , N} → {1, . . . , N} to a
packet timestamp to obtain a permuted memory location. We
then use a simple location policy with a packet where the
departure time t will be stored in the kth DRAM bank, where
k = π(t) mod b, at address location a = �π(t)/b�. This is
depicted in Fig. 5.

5

random
permutation

function

…

… …

scheduler

Pipelined
CPI write buffer read buffer

read request buffer

1 2 b

1 2 b 1 2 b

DRAMs

arriving
packets

departing
packets

bypass buffer

Fig. 5. Memory Management of Large Priority Queues

Specifically, when a new packet arrives with a departure
timestamp of i, a write operation is generated to the kth

DRAM bank, k = π(i) mod b, to location a = �π(i)/b�. We
also set the corresponding ith bit in a priority index (using
for example a Pipelined CPI). Then, at every time slot, we
lookup the priority index to find the packet with the next
earliest deadline j to service. This operation can be efficiently
realized thanks to the hardware-optimized extractsucc(t)
operation supported by our priority index structures, which
finds the next bit set at or after the bit location corresponding
to the current time t. We can then retrieve the corresponding
packet from kth DRAM bank, k = π(j) mod b, at location
a = �π(j)/b�. Accordingly, we clear the corresponding jth

bit in the priority index.
For the write operations, we maintain a write request/packet

buffer for the incoming packets waiting to be stored. This
buffer is composed of b queues, one queue for each DRAM
bank. The write requests at the heads of the queues are
serviced in an interleaving order. Both the requests and the
actual packets are stored in the queues. To bound the size of
the buffer, we assume that the arrival process for the incoming
write requests going to a certain DRAM bank (after random
permutation) follows the behavior of an M/D/1 system. This is
because Internet traffic can be thought of as the superposition
of independent traffic sources modeled as point processes [16].
Correspondingly, the probability that a queue in the SRAM
write buffer will overflow some threshold x can be analyzed
using the steady state probability of the unfinished work
exceeding a certain level x for a Poisson source as a surrogate.
This overflow probability can be derived as the overflow
probability of a corresponding M/D/1 system. For example, to
ensure an overflow probability of 10−9 for incoming packet
traffic load up to 90%, it is sufficient for each queue in the
write buffer to hold L = 100 packets. The read operation is
implemented similarly.

We employ a departure buffer in SRAM of size K > T
entries to hold packets retrieved from the DRAM until their
actual departure times. This departure buffer is implemented as
a circular buffer in which the buffer location is mapped from
the departure time slot. We actually size the departure buffer to
have K = 2×T = 2×L×b entries to account for the situation

where the departure time of a packet is less than K = 2×T =
2×L× b cycles away from its arrival time. In this case, there
might not be sufficient time to write the packet to the DRAM
and retrieve it back since the worst-case total round-trip time
is K = 2 × T = 2 × L × b cycles. To address this issue, we
simply write the packet directly to the SRAM departure buffer
at the corresponding departure time slot location so that the
packet is immediately available for retrieval. Effectively, the
departure buffer acts as a bypass buffer in such situations.

VI. CONCLUSION

In this paper, fast and scalable succinct data structures for
the implementation of priority queues in networking appli-
cations are presented. The presented data structures and the
associated algorithms are well-suited for modern 64-bit x86
processors, which have hardware-optimized instructions that
can be leveraged. These structures can be very compactly
implemented in SRAM using only Θ(U) space, where U is
the size of the universe required to implement the priority
keys. Our Pipelined CPI data structure can effectively support
constant time priority management operations. In addition to
being very fast, the architecture also scales well to a large
number of priority values and to large queue sizes. The
hardware complexity is only Θ(logW U), where Moreover, the
Pipelined CPI can be combined with an interleaved DRAM-
based architecture to provide scalable storage for huge priority
queues at line speeds.

REFERENCES

[1] A. K. Parekh, R. G. Gallager, “A generalized processor sharing approach
to flow control in integrated service networks: The single-node case,”
IEEE/ACM Trans. Netw., vol. 1, pp. 334-357, 1993.

[2] A. Demers, S. Keshav, S. Shenkar, “Analysis and simulation of a fair
queueing algorithms,” in Proc. ACM SIGCOMM 1989, Austin, TX, Sep.
1989.

[3] D. Shah, “Analysis of a statistics counter architecture,” IEEE Symp. on
Hot Interconnects , Los Alamitos, CA, Aug. 2001.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to
algorithms,” McGraw-Hill Book Company, ISBN 0-07-013143-0.

[5] R. Bhagwan, B. Lin, “Fast and scalable priority queue architecture for
high-speed network switches,” in Proc. IEEE INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000. 2000.

[6] A. Ioannou, M. Katevenis, “Pipelined heap (priority queue) management
for advanced scheduling in high-speed networks,” IEEE/ACM Trans.
Netw., vol. 15, pp. 450-461, 2007.

[7] H. Wang, B. Lin, “On the Efficient Implementation of Pipelined
Heaps for Network Processing,” in Proc. IEEE GLOBECOM 2006,
San Francisco, CA, Nov., 2006.

[8] H. Wang, B. Lin, “Pipelined van Emde Boas tree: Algorithms, analysis,
and applications,” in Proc. IEEE INFOCOM 2007, Anchorage, AK,
May 2007.

[9] P. van Emde Boas, “Design and implementation of an efficient priority
queue,” Math. Syst. Theory, vol. 10, pp. 99-127, 1977.

[10] C. Villamizar, C. Song, “High performance tcp in ansnet,” ACM
Computer Communication Review, vol. 24, no. 5, pp. 45-60, 1994.

[11] X. Zhuang, S. Pande, “A scalable priority queue architecture for high
speed network processing,” In Proc. IEEE INFOCOM 2006, Barcelona,
Spain, Apr. 2006.

[12] S. Iyer, N. Mckeown, “Analysis of a memory architecture for fast packet
buffers,” In Proc. IEEE HPSR 2001, Dallas, TX, May 2001.

[13] Intel 64 and IA-32 architectures software developer’s manual, volume
2B, Nov. 2007.

[14] Software optimization guide for AMD family 10h processors, Apr. 2008.
[15] G. Shrimali, N. McKeown, “Building Packet Buffers using Interleaved

Memories,” In Proc. IEEE HPSR 2005, Hong Kong, China, May 2005.
[16] J. Cao, K. Ramanan, “A Poisson limit for buffer overflow probabilities,”

In Proc. IEEE INFOCOM 2002, New York, NY, Jun. 2002.

