
SUCCJNCT REPRESENTATION,

RANDOM STRINGS, AND COMPLEXITY CLASSES •

Gary L. Peterson

Department of Computer Science

The University of Rochester

Rochester, New York 14627

TR69

August, 1980

AbtsUact

A genera] paradigm for relating measures of succinctness of representation and complexity theory

is presented. The measures are based on the new Private and Blindfold Alternation machines. These

measures are used to indicate the inherent information (or "randomness") of a string, but with respect

to time and space complexity classes. These measures are then used to show that the existence of strings

which are random with respect to one measure but not to another can show the relationship between

the corresponding complexity classes. The basic hierarchy theorems given allow different and possibly

more powerful approaches to these problems.

• This research was supported in part by NSF grant No. MCS79-02971. This pa.per is to appear in the

proceedings of the 21st FOeS Symposium.

Introduction

"The 'computable' numbers may be described briefly as the real numbers whose expressions as a decimal

are calculable by finite means. Although the subject of this paper is ostensibly the computable numbcT8,

it is almost equally easy to define and investigate computable lunctions of an integral variable or a

real or computable variable, co~putable predicates, and so forth. The fundamental problems involved

are, however, the same in each case, and I have chosen the computable numbers for explicit treatment

as involving the least cumbrous technique. I hope shortly to give an account or the relations 01 the

computable numbers, functions, and so forth to one another."

A.M. Turing {AT}

So begins Turing's famous paper on the "Entscheidungsproblem." Note that the paper focuses on

computable numbers as an easy approach to the problems of computable functions. In a similar way, this

paper develops the notion of the complexity 01 numbers (or strings) with respect to familiar complexity

measures. This will in turn lead to a paradigm Cor complexity theory analogous to Turing's number

paradigm lor computability theory.

The underlying notion is that of succinctness of representation. That is, how can one represent an

object (number, string, computation) more succinctly in one model than another. Succinct representation

has been studied in several difi'erent forms, e.g., automata, grammars, recursive functions, etc. One can

even think of such ordinary measures as formula size to be measures of succinct representation. Most of

the results in these areas are based on counting arguments. Such arguments are non-constructive and are

sometimes easier than constructive arguments. It is hoped that the theorems of this paper will simila.rly

lead to proors of very difficult complexity theory problems based on non-constructive arguments.

Algorithmic information theory is a relatively new field devoted to measures of information content,

and therefore ways of representing information. Turing's non-computable numbers are called random

numbers in algorithmic inCormation theory. However, the inherent time or space complexity contained in

a.n encoding of a string is not measured. Therefore, what is needed are sets of measures of "randomness"

of strings which indicate the corresponding time or space complexity. An appropriate set of measures

will be defined which do exactly that.

The measures are based on the new Private a.nd Blindfold Alternation machines [p&RJ. These

machines are able to simulate long calcul1l.tions with very little space, and thererore oontnin a way of com

pressing information. Other more fa.miliar models turn out to be inappropriate to studying complexity

based representation.

Using these new measurcs, hierarchy theorems are proven. These theorems show thnt the existence

2

of ~rtain strings which are random "ith respect to one measure and not random for another indicates

the dift'erence between the two corresponding complexity classes. In particula.r, some standard time YS.

time and space vs. space theorems can be expressed in this paradigm. The theorems indicate possible

new ways in which time vs. space and similar complexity questions can be approached.

Random Strings

We begin as everyone else does, with a variation ot Berry's paradox [W&R). Consider the fewest

number of English words necessary to represent a number. For example, 101,000,000,000 can be represented

by (the five words) "ten to the one billion." Clearly some numbers can be represented by a hundred

words, while most (an understatement) cannot. Consider then "the smallest number requiring more than

a hundred words to describe." This number is not well-defined since it has been described with many

fewer than a hundred words. (At the heart of the problem is the lack of formal meaning in English, i.e.,

what is "the smallcst even number greater than two not the sum ot two primes" 1)

Another problem uises in trying to define a "random" number. Consider a state "pick'em" style

lottery. If the winning numbers for one month were:

1000000000

2000000000

3000000000

people would have every right to suspect a "fix." Similarly, the sequence:

3141592653

2718281828

1414213562

would arouse suspicion among the more mathematically inclined. Although the above numbers hardly

Jook random, they have just as much probability ot appcaring as any other sequence.

The relationship between the two problems is succinctness ot representation. The sample sequences

ue very easy to describe. That is, they have short descriptions. This implies that a truly random number

is one whose description in an appropril.'.te systcm is essentially no shorter than the length of the number.

But as Berry's paradox shows, such a descriptive system might have lurking dangers.

Church [Ae) was apparently the first to propose an algorithmic definition or a random sequence, the

http:appropril.'.te

3

idea being tha.t an infinite sequence of digits is random if it cannot be eti'ectively genera.ted (by a Turing

machine, partial recursive Cunction, etc.). It was some time later that researchers such as Kolmogorov

[Kl,K2], Solomonoti' [SI], Chaitin [Cl,C21, and Martin-LOr fMLl] began to formalize algorithmic infor

mation theory and the concept of random strings. Zvonkin and Levin [ZL] provide a comprehensive

overview of the field; their nota.tions will be used here.

Following Kolmogorov [ZL], we can define a measure of the information content of a string.

("String" and "number" will be used interchangeably.) Let F be a partia.l recursive function. Then the

Kolmogorov complexity of ~tring X with respect to F is defined by:

min size p such that F(p) = X
KF{X) = .

{
infinite otherwise.

A basic result is that there exists an "optimal" Fo such that for all G, X:

Hence, for any optimal Fo, Go, and any X:

to within additive constants.

Any such optimal Fo is therefore adequate to define the information content or a string. Such Fo's

are sometimes called "universal" since they are usually taken to be the function of a universal Tm which

accepts as inputs encodings of Tm's which generate strings when started on bhl.nk tape. It is easy to see

that each such KFo is not computable, else it would be possible to reproduce Berry's paradox, i.e., to

define a small machine which generates a string not generated by any small machine.

The usual universal functions do not in any way indicate the time or space complexity of encoding

or decoding strings from their representation, and how this might relate to complexity theory. In this

paper, a major result is the application of mll.chines related to familiar complexity classes to define

information mel!.sures representing the time or space complexity of encoding and decoding. The next

sections define the ma.chines and relate tbem to men,sures of suceinctlless of representation.

4

Multiple-person Alternation Machine.

The underlying c:omputational models used in this paper are variations or the mUltiple-person alter

nation machines (MPA-Tm's) [p&R]. They are direct extensions of the Chandra, Kozen, and Stoekmeyer

alternation machines (A-Tm's) [CKS} and Reli's two-person private alternation machines [JHR}. Whereas

A-Tm's model two-person games. or c:omplete information, :MFA-Tm's model multiple person games or

inc:omplete information. The addition or incomplete inrormation gives the machines c:onsiderably more

power ror fixed space resources. These machines can thereCore represent a long computation very suc

cinctly. This is the tie-in to algorithmic information theory.

Acceptance for an :MFA-Tm is intimately tied into the outcome problem for the c:orresponding

game. The outcome problem is to decide iC a player (or team of players) have a strategy (sequence

or moves) which take the game from the initial position to a winning position, despite the opponent's

countermoves. The corresponding elements or the game in the ma.chine are the initial configuration (input

tape, start state, etc.), transitions between c:onfigurations are moves, and accepting configurations are

wins.

The resources (elements of the state tuple, tapes) are divided among the players. Players may

share resources with other players or have them private to themselves. The players make their moves

based on the current state of the visible resources and a history of past moves, and in turn alter these

resources. As in a game oC incomplete information, a strategy for a player cannot depend on inCormation

not visible to it, even li the information is visible to a team-mate.

The players are divided into two teams, the A team, trying to win, and the B team, trying to

avoid losing. It turns out that the B team needs only one player, so if the A team has k players, this

number k determines the degree or complexity oC the game. Hence an :MFAk-Tm is a k+l person game

with k players on the A team. These players are numbered and denoted by 31-player, 32-player, .•., 3k

player, B.nd the other player is the V-player. The names c:orrespond to their roles of making existential

or universal choices, respectively. More Cormal definitions ca.n be found in [p&R}.

The complexity oC space and time bounded MPA·Tm's was studied in [p&R]. Unfortunately, Cor

even MPA2-Tm's with small space, their complexity is the same as ordinary Tm's with no space restric

tions, i.e., the r.c. languages. Restrictions had to be placed on the machines. One is to make the A team

hicrarchica~ .that is, the resources of the 3k-player is a subset of the resurces or the 3k _1-player, whose

resources are a subset of the 3k_2-player's, etc. Such machines are called Private Alternation machilles,

PA·Tm's. A Curther restriction is to make the A team blindfolded, i.e., no player can communicate to a

higher numbered player and the V-player cannot communicl!te to any or them, excf'.pt to iDdicll.te turn.

http:iDdicll.te
http:excf'.pt

5

Th~ machines are called Blindfold Alternation machines, BA-Tm's. The spa~ bounded versions of

these machines gave the rollowing interesting hierarchy, where Sen) is n space constructible runction at

least logarithmic and k~l:

While the full proofs in [p&RJ are too lengthy to be given here, a brief look into how this compactness

comes about is necessary to understand some of the later developments. One key idea is that a two

person game or incomplete intormation can simulate counting on 2n bits using only n bits of storage.

Consider yourseIr playing in the following simple game: your opponent sc:lects a 2n bit number, a bit

at a time, showing you each bit as it is selected. Arterwards you are supposed to send back a bit at a

time, that number plus one. You win if your opponent cannot prove that the number you sent back is

not the correct one. Can you cheat and send back a different number and still be assul'ed or winning!

The answer is no. Your opponent could have 8ecretly remembered a bit of the original number and its

location (using only n bits) and when you send your number, he/she could check the same bit against the

one you send, taking care to check tor carry-in. Sin~ you don't know which bit was saved, in order to

ensure winning you must give the correct bit in all places. It turns out that just about the sole difference

between PA-Tm's and BA-Tm's is that the former allows the V-player to flsk the 3-players to count up

or down, while the latter forbids such communication to the 3-players. This method generalizes to more

players in a recursive way so that two 3-players can be ror~d to count on 2211 bits using n bits, etc.

The upper bounds on the complexity or PAfBA-Tm's are a type of subset construction. In the

simple PArTm case, this consists of noting that the 3-player's strategy need depend only on the inferred

set of possible configurations of the V-player's private information. If' the V-player has n bits of private

information, then there are 211 possible configurations, and 22n sets of possible configurations. These sets,

along with the 3-player's configurations, torm a graph which can be constructed and search in time on

the order or its size. For the BA1·Tm case, the graph need not be constructed and can be searched non

deterministically. The result generalizes to more players in a similar way.

One corollary to this result shown in [p&R] is that the fsa. versions of these machines become

correspondingly more succinct than ordinary fsa'e. For example, for each k, there is a language Lk

211
which is accepted by an O(n) size PAk-rGa. but by no nrsa ,yith fewer than 22.' }k+l states nor any dfsa

with fewer than 22.•
2
}k+2 states. This is the beginning of determining the rel~tionship between succinct

6

representation and complexity classes.

Random Strings lUld Complexity Cl8Sllu

Using the Kolmogorov measure, KFQI it is quite easy to define a random string to be one whose

measure is effectively the same ~ its length. Therefore no small algorithmic process can generate that

string. As noted earlier, this measure cannot reBect the time or space complexity of encoding and decoding

the information contained in the string. As will be seen in this section, the PAfBA-rsa's do measure the

information content of a string, and relate this to some standard complexity classes. The result is a set

of measures of "landomness" of a string with respect to time and space.

The standard way of relating a machine and a string is to consider generators rather than acceptors.

A machine which generates a string is considered to be a representation of that string. When discussing

complexity classes, however, acceptors are the standard model. One can still create an appropriate

definition of a string based on acceptors: any such acceptor must accept a unique string, which is the

string the machine represents. Hopefully the model allows us to determine the space/time complexity of

the machine from its description; something which might require the use of "clocks" or similar obvious

resource limiters. A particularly ugly problem is that the string accepted by such a machine is not

effectively constructible rrom the machine description. Consider Cor example an LBA which accepts only

the unary representation of the smallest even number that is not the sum of two primes. Due to such

problems, it is impossible in general to construct the string Crom the machine description alone. An

additional problem is that there is no bound on the relative succinctness of the machine over the string.

It will be seen later that bounding the power of succinct representation (which incidentally eliminates

the problems of undecidability) gives a major link between succinctness lUld hierarchy theorems.

The only interesting space or time bounded class of machines that does not have the above problems

are the finite state machines. (The reader should be beginning to understand the reason for the discussion

on BA/pA-rsa's in the last section.) However, any dfsa or drag (finite state generator) which represents a

single string of length n will have to have n+l states (or n+2, depending on your model). (Similarly for

nrsa/nreg's.) Therefore, we are in a dilemma; non-finite state time or space bounded machines do not

apply well while ordinary finite state machines give a trivial measure.

The answer, of coursc, is alternating finite state machines. For the PAfBA-rsa case, we are quickly

forced to eliminate acceptors. It turns out that the input head can be used as a counter (even if it is only

one-way), which causes confusion between classes. This leaves us with gencratoi's. Adapting the results

from (p&J.'l, Scdion V]. it is straightrorward to derive the following theorem.

1

, 20 (n)

Theorem.. For every language L in DTIME(22" }k) and string X oC length n, there is an efficient1y

constructible PAkMfsg which halts (on blank input tape, without output) iff X is in L. Similarly for
2°(0)

languages in NSPACE(22•• }k-l) and BAk-Csg's.

Proof: This is a simple adaptiol1 of Theorem 10 in [p&R}. Using n+1 states, one can have a size n

counter. The V-player can use this to check cOunts by an 3-player on n bits. The general process oC

recursive counting then Collows simply. The V-player also can use another n+1 states to remember X.

The V-player can be secretly checking either the 3-player's counts or the 3-player's simulation oC the

input (X) separately. IT it had to do both at the same time, it would need 0(n2) states. This Cact becomes

important later on. II

Similarly,. one can simulate PA/BA-Csg's by machines in the respective complexity classes.

20 (n)

Theorem. There exists a Tm in DTIME(22.• }k) which on given a PAk-fsg of size n will output the
2°(11)

string it represents (if it exists) and halt. Similarly Cor NSPACE(22.• }k-l) and BAk-Csg's.

Proof: Again this is an adaptation oC the PA/BA-SPACE(n) upper bou~ds in [P&R}. A PAl-Csg oC size n

has at most n states; therefore the number or configurations or the V-player is at most n; thereCore the

number oC sets or possible configurations is at most 2n. The resulting graph can be searched in time 2c:n

ror some c. The generalizations to more players and BA-Csg's is similar to beCore. a

An important note: In the first theorem, we count the number of states, but in the second theorem we

count size. Such a discrepancy causes unCortuna.te un/log ntt terms to appear iC the usual encoding oC

machines is allowed. It turns out that in the cases used here, a simple addition to the standard way

oC representing machines allows us to drop the distinction between states and size where it matters.

Consider an n+1 state drsg which generates a string oC length n. Just to write down the names oC the

states takes about O(D log n) symbols. However, iC the states are numbered with qo the initial state and

qn the final state, only those two states need be explicitly referred to. All the others can be referred to

by saying "the next state." Hence when writing down the "S' transition Cunction, let "." refer to the

current state. Thus ".+1" is the next state (in the enumeration), etc. Using this notation, the drsg can be

written down with O(n) symbols. Thus, the first theorem can be changed to mean O(n) size PA/BA-fsg's.

(Almost all transitions are simple cycles (which take constant symbols) or count.ers and input checkers

(which take O(n) symbols total).) We will never come across in this paper an n sta.te fsg which cannot

be represented by O(n) symbols.

http:unCortuna.te

8

A similarity has now been rully established between PA/BA.rsg's and DTIME/NSPACE. We use

"'CIt" to denote this similarity, and thererore paraphrase the last two theorems very succinctly. (pAk/BAk

fsg(n) denotes the classes or machines or size n which generate strings, where n is a parameter much

like in "DTIME(n),n etc.)

We briefly return to one or the original problems: determining if a string is "random." In other

words, does the string appear to be the result or a natural, unbiased random process, or does it look

like it was generated by a small machine. Using the Kolmogorov measure, it X is random then KFo(X)

is roughly IXI. Ir another partial recursive runction is used, we can have a more practical definition or

randomness. Let Pk(Bk) be the (computable) partial recursive runction which when given aPAk-fsg (BAk

fsg) determines 'the string it represents. Note that by the previous theorem these runctions are exactly in
20(n) 20(11)

DTIME(22" }k) and NSPACE(22•· }k-l). Consider a measure such as Kp1i there exists a string X or

length n which can have Kp1(X)-n, but the measure Kp2(X) is much less. This means that any process

which finds the shorter description of X must take more than exponential time. Thus, while a string

might have a short description (and thererore be non-random), it is entirely intractable to encode the

string into its shorter description. For all practical purposes (where practical means polynomial time),

such an X is random. Therefore, measures such as Kpb etc., are sufficient ror everyday randomness.

Unfortunately they are also intractable to compute. This is another rorm of Berry's para.dox: a measure

based on exponential time, for instance, is itself exponential time (though computable). Therefore these

measures are mainly userul as an indication oC the' inherent representation abilities oC the respective

classes.

Given a long string or pseudo-random numbers generated by a standard random number generator,

it is quite easy to represent the string very succinctly: the program and the initial value(s) Cor the itera

tion. However, finding the particular random number generator and the starting values could be quite

time consuming. Such "one-way trap doors" in computa.tion lie at the center oC the determinism/non

determinism questions (p=NP!, etc.). These measures as yet do not reflect this property. See Adleman

[LA] ror a discussion or P=NP1-type problems (prime testing) and their relation to inCormation theory.

Machine Size and Comple."dty

There are several papers that have dealt with program/machine/grammar size and its effect on

the power of the descriptive system. In early works on program size and complexity there are Blum

9

.,..

[MB], DiPaola [RDl, Meyer and McCreight [rvLllM}, Meyer [AM}, Constable [Rel, and Constable and

Borodin [CkSj. The problem of complexity of describing numbers was studied by Simon [JS], Schnorr

[CS], and many others. There are some parallels here with the straight line program complexity studied

by Lynch [NL]. The descriptive power of automata was studied by Meyer and Fischer [M&F], Sakoda

and Sipser [S&Sl, and Sipser [MS]. Formal languages and their automata have also b~en studied from

this approach; see, for example, Schmidt and Szymanski [SSz],- Valiant [LV], Ginsberg and Lynch

[G&L], and Hartmnnis [JH].

Recently, Hartmanis and Baker [H&B,B&H, TB] have studied problems relating machine size nnd

complexity questions such as P=NP? They rely on an observation concerning completeness results and

relative succinctness of description. Consider your favorite l\rp~Complete (poly-time reduction) problem,

such as SAT. Note that for any NP language L there is a P machine, call it.Mh which takes any question

for L and converts it into an "equivalent" SAT question. If SAT were in P, i.e., P=NP, then there is

a P machine for SAT, call it M2• Combining the two machines will give a P machine which accepts L

and bas size 0(IM11 + 1M2!), (Actually, the "0" can be dropped for an additive constant, but for later

purposes, we prefer to retain it.) Note that IM21 is a constant independent of L. The main observation

is that P=NP iff every 1'11> machine has an equivalent P machine whose size is at most linearly larger.

On the other hand, if P;*NP then there is no equivalent P machine linearly (or even recursively) larger

than many NP machines. Hartmanis and Baker then go on to study the implications of this fact in ita

relationship to possible proper ways to represent P and NP machines, such as docked, "provable," etc.

Consider SAT again, and imagine trying to find Boolean formulae of certain sizes which

are the "hardest" ones to test for satisfiability among strings of their respective lengths. ''Hardest''

would naturally mean that they require time exponential (hopefully) in their length on any deterministic

machine for SAT. However, every such string is accepting in linear time by a host of machines via

table look-up. Such machines, however, have greatly increased size in order to hold the tables. Hence it

follows that machine size should be incorporated into studies of "hardest" elements of languages. It is

also natural to assume that such "hardest" elements might be rando:n or non-random with respect to

appropriate complexity based measures. And in turn, this indicates something about the inherent nature

of the string, the language, and finally the class.

Anothe~ way of looking a~ hierarchy theorems is to consider that in addition to there being langua.ges

in PSPACE not in LOGSPACE, there may be languages which are in LOGSPACE, but can be represented

much more succinctly by PSPACE mllchines. Such languages do not need to be very complex; they could

be a simple class such as regular (or finite state, a familiar phrase by now), perhaps even 11 finite set of

10

,,,..

strings all of the same length. However, there is no effective way to tell apart ordinary LOGSPACE and

PSPACE which accept finite languages, even i£ explicit resource bounds are given. (I.e., a polynomial

or log or a constant is still constant.)

There are certain ways to represent some classes which do indicate their true complexity even Cor

finite languages. For example, L'OGSPACE can be nicely represented by multi-bead two-way automata.

However, tbe alternating finite state machines beat them all; their type (BA/pA-Tm's) and number or

players dearly indicate their complexity (ror those classes they represent).

Still we have to concern ourselves with one problem iC we are to look at finite languages. Suppose one

has a language whose LOGSPACE representation is 5000 symbols long while its PSPACE representation

is only 50 symbols long. The PSPACE machine is clearly much more succinct. However, we are rorgetting

the constant Cactors. It could be that any such PSPACE machine has an equivalent LOGSPACE machine

which is no more than 8. hundred times larger. In general, we thereCore need to consider an infinite number

of languages; so that Cor every possible constant Cactor there is a language whose proportion oC the t'\\'O

measures is greater than the constant.

Consider the simple case where the above family or finite languages has the property that each

language consists only oC strings of the same length. It would be tempting to assume that the union

oC these languages is a PSPACE language not in LOGSPACE. This is totally wrong. The union could

be a language anywhere Crom LOGSPACE to non-r.e. And in the latter case, th~ sets oC strings has

presumably just been shown to exist without explicitly constructing them. This interesting point will be

discussed much more later on.

Note that all oC this requires that each class or interest have appropriate complete members. This

is certainly true of the classes P, NP, PSPACE, in addition to the elementary recursive hierarchy or

PAfBA-Tm's. But it is not too difficult to see that every well-defined complexity class has such complete

members, even ir they are trivial ones such 0.$ CSL (LBA) membership being complete Cor PSPACE.

Basic mCl'arehy Theorems

The reader should have noted that the previous section dealt solely with acceptors, while generators

have been touted as the preCerred model or succinctness. This section ties these two models together and

allows us to express some basic hierarchy theorems.

Consider a string X or length 2n generated by some size n PA1-fsg. (A PAl-Csg corresponds to

exponential time and can therefore easily generate such a string.) Note that there is a simple finite

11

.,

la,nguage which can be used to convert a.ny such output into an input problem for some machine. In the

case of X, let the language Lx be the set of il1b, where b is in {O,l} and ill is the n-bit binary representation

of i with i between 0 and 2n-l, such that b is the i+lst bit of X. Note that Lx consists of 20 strings of

length n+1. Via simulation, Lx is a.ccepted by some O(n) size EXPTIME machine.

11; is also possible to revers~ the proeess. That is, given such an Lx for a size n EXPTIME machine,

it is possible to build (efficiently) an O(n) size PAl-fsg which generates the X. The machine runs through

all strings oC size n+1 in order and simulates the EXPTIME machine on that input. Note that all of

the classes Cor PAfBA-Tm's are linear space or exponential time and higher, and it is possible to do this

without increasing the order oC complexity. If the simulation responds "yes" to some inb, then a "b'" i.e

output (being at position i+l). Note that both inl and inO are simulated so that the 3-players (being

non-deterministic) do not cheat and say "no" to one, hoping that the V-player will believe the answer

is "yes" to the other. The above observations clearly generalize to all PAfBA-Csg types and we can now

state our main theorems.

Time Hierarchy Theorem. For a given Cunction C(n), if ror all constants c>O, there exists an X of size

2n, such that X is generated by a PAk+rCsg oC size O(n) but by no PAk-fsg oC size cxC(n), then there is
20(11) 20(f(0»

a language in DTTh1E(22.• }k+l) not in DTIME(22.· }k).

Space Hierarchy Theorem. For a given Cunction C(n), if for all constants c>O, there exists an X of size

2n such that X is generated by a BAk+1-rsg of size O(n) but by no BAk-fsg of size cxf(n), then there is
20(n) 20(I(0»

a language in NSPACE(22.· }k+l) not in NSPACE(22" }Ie).

Proofs: Consider the PA2 vs. PAl case. Assume otherwise, that DTIME(20 (!(n») equals DTIME(220(0»).

Then by the completeness approach, Cor every DTIME(220(n~ machine, there is an equivalent

DTIME(20(f(n») machine which is at most linearly larger. Thus, for every size n PA2-fsg, there is n.n

equivalent size CXr(ll) size PArfsg (where c is now the constant of the theorem). But this contradicts

the hypothesis that there is a PA2-Csg with no equivalent PAI-Csg of the given size. Therefore the classes

are different. The snme argument applies to all PAfBA-rsg classes and their respective time and space

classes. I

Note that the theorems effectively require an infinite sequence oC such X's. These X's (or their

respective languages Lx) do not necessarily Corm a language in one class and not in the other. A simple

diagonalization argument allows us to construct such sequences of X's. Consider, Cor example, trying to

construct an X or size 2n which is generated by an 0(11) size PA2-fsg but by no n log n size PArrsg. Of

12

the 20. log 0. such machines, some generate strings which start with 1, while the 'others start with 0 (if My

tltring is generated at all). Let X begin with the first bit or the rewer or the two groups. At least haIr

of the machines have been eliminated as not generating strings starting with the same bit as X. Of the

remaining machines, let X's serond bit be the same as the second bit of the fewer of the nen two groups

or machines, based on their serond bit generated, etc. By the (n log n)+lst bit, all machines have been

eliminated and X can be padded out to its 20. bits. A size O(n) PA2-fsg can simulate the above process

and generate X. (A DTIME(220(o.J) machine can simulate D TIME(20 (0. log: 0.) machines.) Clearly this will

work for any sub-exponential size PAl-fsg. This gives the following standard general theorems (for time

and space).

2f(n) 20(0.) 2f(o.)
Coroll&17' DTIME(22•• }k) is properly contained in DTIME(22" }k+l) and NSPACE(22.· }k-l) is

20 (n) •

properly contained in NSPACE(22•• }k), where fen) is asymptotically smaller than any exponential.

Hopefully this is not too surprising to any reader. Note that we do not yet distinguish say 20. and

an time or space. A closer look at the completeness idea to see where machine sizes change by additive

constants, rather thlUl constlUlt ractors, might be helpful.

Note that the above method is constructive. However, once any such sequence is proven to exist, we

can non-constructively assume its existence without further need to explicitly give it. Still no technique

has been found that is explicitly non-constructive, which might be a limit to proving more interesting

theorems about time vs. space. Speaking of which, the corresponding hierarchy theorems can now be

gh'"en as corollaries of the previous theorems.

Theorem. For a given runction r(n), if ror all c>O, there exists an X or size 20. such that X is generated

by a PAk-rsg or size O(n) but by no BAk-Csg or size cxr(n), then there is a language in DTIME(22.·20(o.~k)
2°(£(0.»

not in NSPACE(22" }k-l).

Theorem. For a given runction C(n), if ror a,lI c>O, there exists an X of size 2n such that X is genera.ted by

20
a BAk+rrsg or size O(n) but by no PAk-rsg or size cxf(n), then there is a language in NSPACE(22.. (n}k)

2°(£(0.»
not in DTIME(22•• }k).

According to popular belier, C(n) is nearly exponential in n in both cases. All that is known ror sure

is that it is a.t least linear. Several attempts were made to deduce what possible sequences or X's might

work, but the underlying techniques turned out to be constructive and or course railed. It is proba.bly

just as hard as the two way drsa/nfsa succinctness questions [S&S,MSJ, which themselves are closely

related to the DLOG=I\TLOG? question.

13

Note that the theorems can be "translated" down into something approaching more familiar

questions such as P=PSPACE!

Non-constzuctive Methods

One of the threads running through this paper has been the recurring principle or non-constructive

methods. The Hierarchy Theorems allow, in theory, non-constructive methods to be used to prove com

plexity results. In fact, non-constructive arguments are favored. Only existence of certain sets of strings

each with certain properties need be demonstrated. There is no requirement that tbe strings form a

language in a nice recursive set. Another way of phrasing this is that there is no "uniformity" requirement

or any kind. (Karp and Lipton [K&L] have recently derived several results concerning uniformity and

P=NP1 questi~ns.)

This brings up a perfect analogy to Boolean circuit complexity. By counting arguments (which are

non-constructive) it is easy to show that there must be Boolean runction of n variables whose circuit

complexity is roughly exponential. However, when it is required that the functions be "natural," that

is, easily constructed or "uniform," then the Jower bounds are only linear, and a small constant factor

at that. Hence, non-constructive arguments seem intrinsically more powerful.

The work of Baker, Gill, and Solovay [BGS}, Lipton fRLI, and DeJ.\IDlo and Lipton ID&L],

all indicate certain limitations, or possible limitations, of current techniques in solving P=NP? type

questions. The first shows that diagonalization and other simulation arguments are probably not powerCul

enough, while the other two point out that our lack of proofs may be due to overly wea.k logical systems

in use. Hence, other avenues or exploration may be more fruitful, especially if the techniques do not

relativize and are not restricted to simple proof systems. The non-constructive approaches leCt open in

this paper are 8. step in these directions.

Other Classes

So far the discussion has focused only on DTIME and NSPACE hierarchies. (Actually the latter is 8.

DSPACE hiera.rchy also Cor k;;::::2, but the Cundamental function is non-deterministic.) This leaves NTThfE

and DSPA~ unrepresented. There arc no such hierarchies to be found in [p&R]. In fact, DSPACE has

not been represented appropriately at any nontrivial level. NTIME does appear in [P&R], b~t only for

1 I , 1" .. " I ~ 1 • " r... m ,\ ,. 1""\" "'" , I • 11 _ ... • • 1 ,

one JOVel. MCrlrotJ .fHl;ernauon macnmes \1VU\-l m s) are orOlDary rl\-l ms ,wIta one 1\ ",cam ptnyer)

where the 3-player's strntegy can depend on visible inCormlltion alone, and not on any history. It was

14

shown in [p&R] that MA-SPACE(n) is the same as NEXPTIME (non-deterministic exponential time).

Hence we would expect that MA-fsg's are similar to NTIME(n), but not quite.

Theorem. For every Lin NTIME(n) and input X of size n, there is an efficiently (log-space) constructible

MA-fsg of size O(n) which halts iff X is in L. Every size n MA-fsg can be simulated in NTIME(n2).

Proof: For the first part, the 3-player has n states, and will guess the sequence of n moves of the NTIME

machine for L. A move is the old state, old symbol, new state, new symbol, head motion. The V-player

uses O(n) private states as a counter to either check the 3-playcr's picture of input against X, or to check

a position, and every time 3-player returns to that position checks the previous new symbol against the

current old symbol, etc. This proof is also applicable to machines ",ith more tha.n one tape. Note that

each player can have O(n) states, for 0(n2) possible machine states but that the description remains size

O(n) since each is given separately. The upper bound follows by constructing an NTIME(n2) machine

which simulates MA-rsg's. First it will guess in time O(n) the moves of the 3-player. Then it simulates

in parallel the moves of the V-player against that sequences of guesses. Since the V-player has no more

than n states, the set of possible states is at most n long, and can be updated in time O(n). This gives

a total time of 0(n2). Note that the latter simulation could be significantly improved, but it doesn't

matter here. I

Corollary. MA-fsg(nO(l» =-: NP.

Multi-player MA-Tm's do not form a non-deterministic time hierarchy, so no Curther levels are

known. However, ordinary A-Tm's do allow us to find a similar class for P.

Theorem. A-fsg(nO(l» = P.

Proof: The lower bound is a straightforward simulation of a DTIME(n) machine on an input of size n

by an A-fsg of size O(n). Similarly the upper bound is much like the previous theorem except that a.ll

machine states are written down and searched. There are 0(n2) such states (n by n) and the resulting

graph can be searched in DO more than 0(n4) time. I

The next logical step would be to phrase the P=NP! question using A-fsg's and ~1A-Csg's.

Unfortunately, this is not easily do-able. However, using PAl-fsg's, it is possible to make some weak

conjectures about NP containing exponential time problems, etc., but nothing RS tight as the previous

hierarchy theorems.

Other possible models Cor finite state ..-ersions of these classes come to mind. For exnmple, some

15

limited (orm of an A-PDA [LLSJ might work out, but only ror very low level complexity classes. Vector

machines [P&Sl might have reasonable rsg versions. A similar hierarchy of complexity for regular ex

pressions with complements [LSJ does not appear to relate significantly to this a.pproach.

Clearly, it must be that in any generalization all deterministic/non-deterministic space/time,

etc., classes should be represen~ed. And not just the simple hierarchies given here. All "in-between"

classes should also be represented. This would undoubtedly require. that the PAfBA-Tm basis be either

scrapped or thoroughly revised.

Summary

We have shown a direct relationship between complexity theory and succinctness of representation.

The measures of succinctness developed are computable and also mea..sure inherent time and space com

plexity. The major hierarchy theorems are especially designed to allow non-constructive methods to be

applied in familiar ways. The possible non-constructive techniques remain to be found, however. The

next logical steps are to determine what such methods might be like and to generalize the theorems to

more complexity classes.

Bibliography

[LA] L.M. Adleman, "Time, lipace and randomness," M.LT.fLCS/TM-131, April 1979.

[TB] T.P. Baker, "On 'Provable' analogs of P and I\rp," Math. S1/s. Theory, 1f (1979),213-218.

[B&H] T.P. Baker and J. Hartmanis, "Succinctness, verifiability and determinism in representations of

polynomial time languages," Proc. 0/ the £Oth Annual IEEE Symp. on Foundations 01

Computer Science (1979), 392-396.

[BGS} T.P. Baker, J. Gill and R. Solovay, "Relativizations of the P=NPT question," Siam J. Comp.,

4,431-442.

[MBl M. Blum, ''On the size of machines," In/o. a.nd Control, 11 (1967), 257-265.

[Cl] G.J. Chaitin, "On the length or programs ror computing finite binary sequences," JACM, 19

(1966), 547-569.

[C2} G.J. Chaitin, "On the length of programs for computing finite binary sequences: statistical

considerations," JACM, 16 (1969), 145-159.

[CKS] A. Chandra, D. Kozen, and L. Stock meyer, "Alternation," roM Research Report RC 7139,

Yorktown Heights, N.Y., January 1978.

[AC] A. Church, "On the concept or rnndom sequence," BAMS, 46 (l!HO), 254-2GO.

16

lRtC] R. Constable, "On the sh:e or programs in subrecursiyc formalisms," Proe. of the 2nd Annual

ACM Symp. on theory of Computing (1970), 1-9.

[C&B] R. Constable and A. Borodin, "On the efficiency of programs in subrecursiye formalisms," Proe.

ofthe 11th Annual IEEE Symp. on Switching and Automata Theory (1970),60-67.

lOkL] R. De..\fillo and R. Lipton, "On the consistency or 'P=NP' and related problems with fragments

or arithmetic," Proc. of the 12th Annual ACM Symp. on theory of Computing (1980),45

57.

[aD] R. DiPaola, "Random'sets in subrecursive hierarchies," JACM, 16 (1969), 621-630.

[GkL] S. Ginsberg and N.A. Lynch, "Comparative complexity or grammar forms," Proe. of the 7th

Annual ACM Symp. on theory of Computing (1975), 153-158.

[JH] J. Hartmanis, "On the succinctness or different representations of ~anguages/' SIAM J. Comp.,

9 (1980), 114-120.

[.H&B] J. Hartmanis and T.P. Baker, '"Rela.tive succinctness or representations or languages and

separation or complexity classes," MFOCS 1979, Lecture Notes in Computer Science 74,

Springer-Verlag, 70-88.

[l<kL] R. Karp and R. Lipton, "Some connections between nonuniform and uniform complexity classes,"

Proe. of the 1fth Annual ACM Symp. on theory of Computing (1930), 302-309.

[1<1] A.N. Kolmogorov, "Three approaches to the quantitative definition or inCormation," Prob. Info.

Transmission, 1 (1965), 1-7.

[1<2] A.N. Kolmogorov, "Logical basis Cor information theory and probability theory," IEEE Tra.ns.

Info. Theory, 14 (1968), 662-664.

[LLS] R. Ladner, R. Liptoll, a.nd L. Stockmeyer, "Alternating pushdown automata," Proe. of the

19th Annual IEEE Symp. on Foundations of Computer Science (1978), 92-106.

[RL] R. Lipton, "Model theoretic aspects of computational complexity," Proc. of the 19th Annual

IEEE Symp. on Foundations of Computer Science (1978), 193-200.

[NL] N.A. Lynch, "Straight-line program length as a parnmeter lor complexity measures," Froe. of

the 10th Annual ACM Symp. on theory of Computing (1978), 150-161.

[MLl] P. Martin-LOC, "The definition oC random sequences," Info. and Control, 9 (19BG), 602-619.

[AM] A.R. Meyer, ''Program size in restricted programming languages," Info. a.nd Control, 111

(1972), 382-394.

[M&r.F] A.R. Meyer and M.J. Fischer, ''Economy oC description by automa.ta, grammars, and formal

systems," Proc. of th.e l£tJl Annual IEEE Symp. on Switching and Automata Theory

17

(1971), 188-191.

[M&M] A.R. Meyer and E.M. McCreight, "Computationally complex and pseudo-random zero-one

valued functions," Int. Symp. on Theory 0/ Afachines and Computation (1970), 1~.

[p&R] G.L. Peterson and J.H. Reif, "Multiple-person alternation," Proc. 0/ the ~Ot" Annual IEEE

Symp. on Foundations 0/ Computer Science (1979), 34~363.

[P&S] V.R. Pratt and L. Stockmeyer, "A characterization of the power of vector machines," JCSS,

If (1976), 198-221.

[.lHR] J.H. Reu, "Univerllal games of incomplete information," Proc. 0/ the 11 Annual ACM Symp.

on theory 0/ Computing (1979), 288-308.

[S&S} W.J. Sakoda and M. Sipser, "Nondeterminism and the size of two way finite automata," Proc.

o/the 10th Annual ACM Symp. on theory o/Computing (1978),275-286.

[SSz] E.H. Schmidt and T.G. Szymanski, "Succinctness of description of unambiguous context-free

languages," SIAM J. 0/ Computing, 8 (1977),547-553.

[CS] C.P. Schnorr, "Process complexity and effective random tests," Proc. o/the 4th Annual ACl'J

Symp. on theory 0/ Computing (1972), 168-176.

[JS] J. Simon, "On feasible numbers," Proc. 0/ the 9th Annual ACM Symp. on theory 0/

Computing (1977), 195-207.

(MS] M. Sipser, "Lower bounds on the size of sweeping automata," Proc. o/the 11th Annual ACAf

Symp. on theory 0/ Computing (1979),360-364.

[SI] R.J. Solomonoff, "A formal theory of inductive inference," In/o. and Control, 7 (1964), 1-22.

[LS} L. Stockmeyer, "The complexity of decision problems in automata theory and logic," M.I.T.

MAC TR-133 (ph.D. thesis), July 1974.

[AT} A.M. Turing, "On computable numbers with an application to the Entscheidungsproblem," Proc.

London Math. Soc., f (1933), 230-265.

[LV) L.G. Va.liant, "A note on the succinctness of description of deterministic languages," In/o. and

Control, se (1976), 139-145.

[W&R] A.N. Whitehead and B. RusGell, Principia Mathematica, 1, Cambridge University Press,

London (1925) 61.

[ZL] A.I<. Zvonkin and L.A. Levin, "The complexity of finite objects and the deVelopment of the

concepts or informa.tion theory and randomness by means of the theory of algorithms," RU8sian

Math. Surveys, £5 (1970),83-124.

